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In this section we develope a powerful method of decomposing an 

operator T € BL(X) in such a way that the spectrum a(T) of T 

becomes the disjoint union of the spectra of the restrictions of T . 

It also allows us to determine the coefficients in the Laurent expansion 

of the resolvent operator R(z) . We start with a simple result. 

PROPOSITION 6. 1 Let T € BL(X) be decomposed by ,Z) . Then 

(6.1) p(T) 

or, equivalently 

(6. u 

In fact, for z in p(T) , we have 

.3) ru'1d R(T,z) lz R(Tz, 

while for z € p(Ty) n p(Tz) we have 

(6. R(Tv,z}P + R(Tz, (I-P) 
i 

R(T,z) 

where P is the projection on Y along Z . 

Proof The formula 3) can be verified easily and since P commutes 

with T (Proposition 2.1) the formula (6.4) also follows. Hence the 

relations 0 1} at"ld 2) hold. 1/ 

We remark that when T Ty !» Tz , a(T) need not he the disjoint 

since the parts Ty and TZ of T can, 

in general, r~ve common spectral values. TI~e simplest exa~ple is given 



by the identity operator 

t . Z ~ {[O,z2] . z1 E 

74 

_2 t . 
I on X=~ , Y = {[z1 ,0J · z1 € ~} and 

so that a(T) = a(Ty) = a(Tz) = {1} 

To describe a special way of decomposing an operator T for which 

the union in {6.2) is disjoint, we introduce the following notations. 

Unless otherwise stated, T denotes a simple closed positively 

oriented rectifiable curve in ~ Let T € BL{X) If r c p(T) , 

define 

(6.5) Jr R(z)dz , 

let 

(6.6) 

When there is no ambiguity, we shall denote Pf(T) simply by Pf or 

by P , and Sr(T,z0 ) by Sr(z0 ) or S(z0 ) . 

Cauchy's theorem (Theorem 4.5(a)) can be used to show that if f 

is continuously deformed in p(T) to another curve T 
and if this process can be carried out in p(T) ' {z0 } 

then Pr == Pr 
then Sr(z0) = 

PROPOSITION 6.2 Let T E BL(X) , f C p(T) and z0 ~ f . Denote 

Pr(T) by P , and Sr(T,z0 ) by s . 

(6.7) 

(6.8) 

(a) The operators T , P and S commute with each other. 

(b) 2 p :::: p ' i.e., P is a projection, and 

TP = - ~ I zR(z)dz . 
2n r 

(c) If z0 E Int f , then 

SP 0 and (T-z0I)S = I - P , 



while if 

(6. 

Proof Since 

E Ext f 

p 

ou 
'"'' 

and 

Riemann-Stie1tjes sums 

comrliUtes with R(w) 

then 

s are 

.,,e see 

other~ Thj.s proves (a)~ 

the 

and 

that 
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limits in RL(X) of the respective 

since fo:r z iOmd 1!l in R(z) 

T 
' 

p ai'ld s COllli'IIIUte with each 

To calculate P2 let us consider a curve f in . which can 

be continuously defonned in p(T} to f ana: which encloses r in 

its interior. This is 

since 

By using 

[ r l~(ild;;.qdz 
Jrz-iJ 

since r c 

Figure 6. 

, we h,ave 

R(z)dz I r 
r 
I 
l 

r r 
L J~ 

l 

and p(T) is open. 

and 
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for every i € f by Cauchy's theorem. But as 

for every z E T we see that 

This proves (b). Now, by (4.17) and {5.4), 

TP = - ~ J TR(z)dz 
21r1 r 

=- 2
1 . J zR(z)dz, 
11"1 r 

which proves (6. 

As for the part {c), let z0 ~ f , and f be a curve which 

encloses r in its interior and can be continuously deformed to r in 

Thus, z0 € Int f if and only if z0 € Int f . Also, 

sr<z0 ) = S . Again as before, 

- 1 I I JlliL ~ PS = --2 R(z)dz ~ ~ dz 
(21Ti) r r z - z0 

-1 I [ r R(z)-R(i) ~] ---2 ~ ~ ~ dz dz 
(27ri) r Jr (z-z)(z-zo) 

since by (4.10), and 

I ~ = 0 for every i € f by Cauchy's theorem. But 
r z- i 



Hence 

PS = SP {
0, 

S, 
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if 

,if 

z0 E Int f 

z0 E Ext f 

if z0 € Int r 

if :z0 E Ext f 

Finally, since TR(z) I + zR(z) 

l r (T-z0 I)R(z) 
(T-z0I)S = 2--::- J dz 

:n r z - z0 

r r - p if zo € Int r 
I 

l - p if z0 E Ext r 

Thus, are proved. // 

The commutation relations of part (a) of the above proposition can 

be used to cr~racterize Pr(T) and Sf(z0 ) , z0 E Int f . See Problem 

6.5. 

Now we come to the major result of this section. 

T.HBJ:m!ll[ 6.3 (Spectral decomposition theorem) Let T E BL(X) and 

r c p(T) Then T is decomposed and 

a(T) is the disjoint union of a(Ty} and a(Tz) . In fact 
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a(Ty) = a(T) n Int T 
(6.10) 

a(Tz) ~ a(T) n Ext r 

Also, for z0 € Int f , 

.11) R(Tz, = 8r<zo) lz · 

and for z0 E Ext f , 

(6.12) R(Ty, = -sr(zo) !Y · 

Proof By Proposi ticm 6.2, Pf = P is a projection and it commutes 

with T . Hence T is decomposed by Y = R(P) and Z = Z(P) 

(Proposition 2.1). Also, by Proposition 6.1, 

hence maps Y into Y and Z into Z . 

Let z0 E Int f . By the part (c) of Proposition 6.2, we have 

Considering restrictions to the closed subspace Z , we obtain 

This shows that z0 E p(Tz) and S(z0 )lz is the inverse of 

This proves (6.11) and we have 

(6.14) Int r c p(Tz) . 

Next, let :z0 € Ext f . Then, by (6.9) we have 
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Considering now restrictions to the closed subspace Y. we.see that 

z0 € p{Ty) and -S{z0 )1y is the inverse of Ty- z0Iy. This proves 

(6.12) and we have 

(6.15) Ext r c p(Ty) . 

The relations (6.13). (6.14) and (6.15) imply (6.10) since r C p(T) 

It shows. in particular, that a{T) is the dtsjotnt union of a(Ty) 

and a(T2 ) . // 

The above theorem tells us that if we wish to study only a part of 

the spectrum a{T) of T . which is separated by a closed curve f 

from the rest of a{T) , then we need to study only a part of the 

operator T namely Ty where Y is the range of Pr . 

We now investigate the range of Pr . Let z0 € Int r , and 

x € X with n {T-z0I) x = 0 for some nonnegative integer n Then 

But by {6.11), (T2-z0I2 ) and hence (T2-z0I2 )n are invertible, where 

Z = (I-Pr)(X) . In particular, {T-z0I)nlz is one to one. Hence 

or X Pr . 

i.e., x € R(Pr) . Thus, if for some z0 € Int r and some nonnegative 

integer n . n (T-z0I) x = 0 , then x is in the range of Pr . Of 

course, such an element x is nonzero only if z0 € a{T) n Int r The 

case n = 1 is of particular importance. If x # 0 and Tx = z0x , 

then x is called an eigenvector of T corresponding to the 

eigenvalue z0 More generally, a nonzero element x with 

n (T-z0I) x = 0 for some n ~ 1 is called a generalized eigenvector of 

T corresponding to z0 and it is said to be of grade n if 

n-1 {T-z0 I) # 0 ; in this case, z0 is an eigenvalue of T with a 
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eigenvalue of T with a corresponding eigenvector When 

z0 is an eigenvalue of T , the space Z(T-z0 I} is called the 

n corresponding eigenspac~ ~nd the space {x € X : (T-z0I) x ~ 0 for some 

n = 1,2, ... } is called the corresponding generalized eigenspace. As a 

trivial example, let X !!? , T be represented by the matrix [~ i] 
and r be a closed curve enclosing the point 1 . Then Pr(X) X , 

which is spanned by the eigenvector [~] and the generalized 

eigenvector of T corresponding to the only eigenvalue 1 of 

T Thus, the rang;e of P r conta:l.ns all ized eigenspaces 

corresponding to the eigenvalues of T in Int r . 

For z0 € Int r , we have by (6.8) ~nd (6.11), 

where 0, and 

These considerations allow us to give appropriate names to the 

operators which we have introduced: Pr(T) is called the spectral 

pro,jection associated with T and f , and the closed subspace 

Y = R(Pf) is called the associated spectral subspace. For 

z0 E Int r , the operator Sr(z0) is called the reduced resolvent of 

(T-z0I) on the closed subspace Z = Z(Pf) . 

We introduce another operator which vanishes on Z(Pf) and which 

tells us how T differs from a scalar multiple of the identity operator 

on R(Pf) 

For E ~ , let 

(6.16) 
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Then it follows that Dr(z0) commutes with Pr • so that 

Also, it can be seen that 

{6.17) 

We now characterize the spectra of Sr(z0) and Dr(z0) . 

PROI'{EITl(lf 6.4 Let f C p(T) . 

(a) Pr = 0 if and only if a{T) C Ext f • and then 

(b) Pr = I if and only if. a{T) c Int r • and then 

(c) Let 0 ¢ Pf ¢ I . Then for z0 € Int f • we have 

(6.18) a(Sr{z0)) = {O} u {A: z : A € a{T) nExt f} . 
0 

Also, for z0 € ~ • we have 

{6.19) a(Dr(z0)) = {A- z0 : A € a(T) n Int f} u {O} 

Proof Let Y = R(Pr) and Z = Z{Pr) . Then we know by (6.2) that 

a(T) = a(Ty) U a(Tz) . 
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Now, Pr = 0 if and only if Y = 

5.2. This is the case if and only if 

i.e., a(Ty) = 0 , by Theoreril 

€ a(T) : A E 

Ext T} , by Theorem 6.3. In this case, we have :fo:r z0 E Int r , 

(T-z0I)Sr(z0 ) = I - P = I by (6.8), so that = R(z0 ) 

Dr(z0) = (T-z0I)Pr = (T-z0I = 0 . This proves (a). The 

is exactly similar. 

Let, now, 0 ;;l Pr # I . For z0 € Int r , we h:i.we 

-1 
where Sy = 0 and SZ = (Tz-zolz) by 

Y # '{0} , we see that a(Sy) {0} , and 

\ 
( 6. B) and _(§,11.~ . 

{A ~ z A E a(T) n Ext T} , 
0 

Also, 

of (b) 

Since 

by .10). Since a(Sf(z0 )) = a(Sy) U a(Sz) , we obtain (6. 18). The 

proof of {6.19) is very similar. // 

We are now in a position to find the coefficients in the Laurent 

exansion of R(z) in an annulus about z0 . 

THEO~ 6.5 (Laurent expansion of R(z)) Let f c p(T) z0 E Int f , 

(6.20) 

(6.21) min{iA-z0 1 
1 

A E a(T) n Ext f} = r(S} = r 2 
a 

Let r 1 < r 2 . The resolvent operator R(z) is analytic on the annulus 

{z E ~ : r 1 < lz-z0 1 < r 2} , and we have 
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(6.22) R(z) 

Proof The expressions for r (D) and 1/r (S) follow immediately a a 

from Proposition 6.4 upon making use of the convention that if a set of 

nonnegative numbers reduces to the empty set, then its maximum is 0 , 

while its minimum is infinity. 

Now, assume that z € ~ is such that the two infinite series on 

the right hand side of (6.22) converge in BL(X) . Let f(z) denote 

the right hand side of (6.22) and for n = 1,2, ... , let 

f (z} 
n 

Since z0 € Int r , we see by (6.8} that (T-z0I)S = I - P Also, by 

(6.16) and (6.17), we have {T-z0 I)P = D , {T-z0 I)D = n2 . Hence 

(T-zi)f (z} 
n 

Dn+1 8n+1( )n+1 + p = (I-P) - - z-z 
( )n+1 0 z-z0 

[ D ]n+1 n+1 
= I - ---- - [(z-z )S] z-z0 0 

which tends to I as n ~oo, since the latter two terms are the 

(n+1}-st terms of convergent series. This shows that z € p{T) and 

R(z) = f(z} . 

Now, we know from Theorem 4.9 that the series 

and both converge if 
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Thus, for r 1 < I < r 2 , the expansion (6.22) of R(z) is vaiid and 

R(z) is analytic there. // 

We remark that the coefficients in the Laurent expansion of R(z) 

around z0 are given by 

k+l 
~ = s (z0 ) • k = 0.1 ,2, ... , 

h1 "' ~P , 

k-1 
~ = -D (z0 ) , k = 2,3, ... 

Thus, they are determined by three operators: S(z0) , P and D(z0) 

In fact, since D(z0) = (T-z0I)P and P = I - (T-z0I)S(z0) , we see 

that the single operator S(z0 ) determines all these coefficients. 

Another noteworthy feature of these coefficients is as follows: If some 

'+1 k+l 
aj = sJ (zo) = 0 . then for all k ) j • we have ~ = s (zo) = 0 ; 

and if some b . 
J 

k-1 

j-1 = -D (z0 ) = 0 , then for all k ) j , we have bk = 

-D (z0 ) = o . This fact would be used quite fruitfully in the sequel. 

We also note that if 0 E Int T and a(T) C Int T , then 

Dr(O) = T and Sf(O) = 0 . Hence the Laurent expansion 

(6.22) reduces to 

00 

R(z) I Tkz-(k+l) 

k=O 
for lz I > r (T) . a 

This coincides with the first Neumann expansion (5.8), which we have 

obtained earlier. 
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Problems Let f be a simple closed positively oriented rectifiable 

curve in p(T) 

6.1 Let r be another closed rectifiable curve in p(T) . If 

Int f n Int f = 0 , then PfPf = 0 0 If Int f c Int f , then 

prpr = pr ' and p = 

Z = Z(P) , then 

- Pf is a projection. If Y = R(P) and 

a(Ty) = a(T) n (Int f n Ext 

a(Tz) = a(T) n (Ext f U Int f) 

6.2 Let z 0 E Int r . Then for n = 1,2, o •• 

6.3 Let E Ext r . If 

if 0 # Pf ¢ I , then 

= {0} U {A =lz : A € a(T] n Int rjl . 
0 

6.4 For z0 E II: , let D = Df(z0 ) and for z0 E: f , let 

S = Sr(z0 ) o Then DP = PD = D . If z0 € Int f then DS = SD = 0 

while if z0 E Ext f , then DS = SD = -P Fork=1,2,ooo, 

if z0 € Int f 

Theorem 6.5 can be proved by noting that if r 1 ( then r can be 

continuously deformed in p(T) \ {z0} to f , where f(t) 

it 8k+l 
z0 + re , t € [0,2~] , r 1 < r < r 2 and showing that ~ = 

k-1 
for k = 0,1, ... , b 1 = -P and bk = -D , k = 2,3, .. 0 (See 

(4.12) and (4.13).) 
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6.5 Let Q be a (bounded} projection such that Q(X) = Pr(X) . 

(i) For x,y € X , we have x = y if a..nd only if Qx = Qy and 

Q comutes with T (iii) Let z0 E Int T and A E BL(X) . Then 

commutes with T . 

6.6 Let X= Y ~ Z with T(Y) C Y . Let Q be the projection on Y 

along Z and Tz = (I-Q)Tiz . Then a(T) c a(Ty) U a(Tz) : (Hint: If 

z € p(Ty) n p(Tz) , then R(Ty,z)Q + [I-R(Ty,z)QT]R(T2,z)(I-Q) is the 

inverse of T- zi .) 

6.7 Let Y be a closed subspace of X such that T(X) C Y . Then for 

0 ;~:. z € p(T) 

Pf(X) C T(X) C Y 

(Y) C Y , and if f does not enclose 0 , then 

Moreover, 

p = -T. I ~dz r 2n r z 


