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6. SPECTRAL DEOCOMPFOSITION

In this section we develope a powerful method of decomposing an
operator T € BL(X) in such a way that the spectrum o(T) of T
becomes the disjoint union of the spectra of the restrictions of T .
It also allows us to determine the coefficients in the Laurent expansion

of the resolvent operator R(z) . We start with a simple result.

PROPOSITION 6.1 Let T € BL(X) be decomposed by (Y,Z) . Then

(6.1) p(T)

i}

P(TY) n p(Tz) s

or, equivalently

(6.2) a(T) = a(TY) u a(TZ) .
In fact, for z in p(T) , we have
(6.3) R(T,z)|Y = R(TY,Z) and R(T.z)lZ = R(TZ,Z) ,

while for =z € p(TY) n p(TZ) , Wwe have
(6.4) R(TY,z)P + R(TZ,Z)(I—P) = R(T.z) .
where P is the projection on Y along Z .

Proof The formula (6.3) can be verified easily and since P commutes
with T (Proposition 2.1) the formula (6.4) also follows. Hence the
relations (6.1) and (6.2) hold. Vs

We remark that when T = TY ® T, . o(T) need not be the disjoint

z
union of U(TY) and U(TZ) , since the parts TY and TZ of T can,

in general, have common spectral values. The simplest example is given
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by the identity operator I on X = Cz ., Y= {[21,0]t Pz € C} and
Z = {[0.2,]° : z, €€} . so that o(T) = o(Ty) = o(T,) = {1} .
To describe a special way of decomposing an operator T for which
the union in (6.2) is disjoint, we introduce the following notations.
Unless otherwise stated, I’ denotes a simple closed positively

oriented rectifiable curve in € . Let T € BL(X) . If T C p(T) .

define

(6.5) PA(T) = - 5or fr R(z)dz .
and for zZ, e¢r , let

(6.6) Sp(T.z,) = 2%]; ;ﬁ_z—%g az .

When there is no ambiguity, we shall denote PT(T) simply by PF or

by P, and SF(T’ZO) by SF(ZO) or S(zo) .

Cauchy’s theorem (Theorem 4.5(a)) can be used to show that if T
is continuously deformed in p(T) to another curve T, then PT = PF
and if this process can be carried out in p(T) \ {zo} . then SF(ZO) =

Sf(zo) .

PROFOSITION 6.2 Let T € BL(X) , I C p(T) and z, ¢ I' . Denote
PF(T) by P, and SF(T’ZO) by S .

(a) The operators T , P and S commute with each other.

(b) P2 =P, i.e., P is a projection, and

(6.7) TP = - 2—11“- L ZR(z)dz .

(c) 1If g € Int I' , then

(6.8) SP=0 and (T-z,I)$=1-P,
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while if Zy € Ext T, then

(69) SP =S and (T-ZOI)S =-P .

Proof Since P and S are the limits in BL(X) of the respective
Riemann-Stieltjes sums (4.5), and since for z and w in p(T) ., R(z)
commutes with R(w) , we see that T , P and S commute with each
» other. This proves (a).

To calculate P2 , let us consider a curve I in. p(T) which can
be continuously deformed in p(T) to I , and which encloses I in

its interior. This is possible since T C p(T) and p(T) is open.

Then PI‘ = P'i: .

Ne

Figure 6.1

By using (4.17) and (5.5), we have

R | 3 gy
P” = PFPF = (21ri)2 Jr R(z)dz J\'I‘" R(z)dz
_ 1 5 ~ o~
= (2.,,-i)2 I [ J\'f R(Z)R(z)dz]dz

1 i [J R(z)-R(Z) d’z“]dz
ri)29r VIF z-%

i (2111'1)2 vnr w=) [ L’* “ ”}dz '

since L‘ [J’v 13-(Z%;]dz = \f'i" [R(;) L‘ dz — }d; by (4.10). and

'z -z Z - Z
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f —gzﬁ: = 0 for every zeT by Cauchy’s theorem. But as
'z -z

J; dz — = —2wi for every z € I' , we see that
'z -z

P2=——-1—.— j R(z)dz = P
r

This proves (b). Now, by (4.17) and (5.4),

TP

J TR(z)dz

2w1

= - i%; J} [1+zR(z})]d=z

- - :3.1171 ZR(z)dz .
r

which proves (6.7).

As for the part (c), let zZ, €T, and T be a curve which

encloses I in its interior and can be continuously deformed to I in

p(T) \ {z Thus, € Int I' if and only if z, € Int ¥ . Also,

ol %0
Sf(zo) =S . Again as before,

PS:(zsz e [, 20
o [L(ﬂ—;(ﬂﬁ)—f]d
=<;ri>2 ) R(Z)”f T'f—";?]d

f gz — =0 for every zefT by Cauchy’s theorem. But
'z -z
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f dz ___1'[sz +J‘ d%]
r (z—;)(;—zo) ) Fz-2 rz- z,

0 , if Z, € Int T

-2ri , if z, € Ext I

'Z—ZO

Hence

0o, if zZ, € Int I
PS = SP =

s, if Zg € Ext T

Finally, since TR(z) = I + zR(z) , we have

1 (T—ZOI)R(z)
(Tz2DS =7 ) 22—z &
r 0
1 I+ (z-zo)R(z‘) 5
“%wmi." z-z, ¢
r (0]
_ I-P, if Zq € Int T
- P, if Z, € Ext I
Thus, (6.8) and (6.9) are proved. 1/

The commutation relations of part (a) of the above proposition can
be used to characterize PF(T) and SF(ZO) s Zg € Int I' . See Problem
6.5.

Now we come to the major result of this section.

THEOREM 6.3 (Spectral decomposition theorem) Let T € BL(X) and
' c p(Ty . Then T 1is decomposed by Y = R(PF) and Z = Z(PF) , and

o(T) 1is the disjoint union of a(TY) and a(TZ) . In fact
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a(TY) =o(T)y N Int T
(6.10)
a(TZ) =o(T) N Ext T
Also, for zZ, € Int I ,
(6.11) R(Tz,zo) = SF(ZO)IZ s
and for Z, € Ext I,
(6.12) R(TY,ZO) = —-Sr(zo)lY .
Proof By Proposition 6.2, PF = P 1is a projection and it commutes

with T . Hence T 1is decomposed by Y = R(P) and Z = Z(P)

(Proposition 2.1). Also, by Proposition 6.1,
(6.13) o(T) = a(TY) U U(TZ) .

For z, € ', the operator SF(ZO) = S(zo) commutes with P , and
hence maps Y into Y, and Z into Z .

Let z, € Int I' . By the part (c) of Proposition 6.2, we have

S(zo)(T—zOI) =I-P= (T—zOI)S(zO) .

Considering restrictions to the closed subspace Z , we obtain

S(zo)IZ(TZ—zoIZ) = IZ = (TZ—ZOIZ)S(zo)lZ .

This shows that zy € p(TZ) and S(ZO)IZ is the inverse of
TZ - ZOIZ . This proves (6.11) and we have
(6.14) Int T C p(TZ) .

Next, let zy € Ext ' . Then, by (6.9) we have

-8(zy)(T-zy1) = P = (T-z,1)(-S(z;)) -
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Considering now restrictions to the closed subspace Y , we see that
zy € p(TY) and ~~S(ZO)IY is the inverse of T, - zOIY . This proves
(6.12) and we have

(6.15) Ext I' C p(TY) .

The relations (6.13), (6.14) and (6.15) imply (6.10) since T C p(T) .
It shows, in particular, that o(T) is the disjoint union of a(TY)

and o(T Ves

z)

The above theorem tells us that if we wish to study only a part of

the spectrum o(T)} of T , which is separated by a closed curve T

from the rest of o(T) . then we need to study only a part of the
operator T , mnamely T, , where Y is the range of PF .

We now investigate the range of PF . Let zZ, € Int I' , and
x € X with (T—zOI)nx = 0 for some nonnegative integer n . Then

0= (I—Pr)(T—zO)nx = (T-—zOI)n(I—Pr)x )

But by (6.11), (TZ—ZOIZ) and hence (TZ—ZOIZ)n are invertible, where

7 = (I—PF)(X) . In particular, (T—ZOI)nlZ is one to one. Hence

(I—Pr)x =0, or x-= PFX ,

i.e., xX € R(PF) . Thus, if for some zZ, € Int I' and some nonnegative
integer =n , (T—ZOI)nx =0, then x is in the range of PF . Of
course, such an element x 1is nonzero only if z, € o(T) N Int I' . The

case n =1 1is of particular importance. If x # 0 and Tx = Zp¥

then x 1is called an eigenvector of T corresponding to the

eigenvalue zy - More generally, a nonzero element x with

(T—ZOI)nX =0 for some n 2 1 is called a generalized eigenvéctor of
T corresponding to z, and it is said to be of grade n if

(T-—zOI)n_1 # 0 ; 1in this case, z, is an eigenvalue of T with a

0
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eigenvalue of T with a corresponding eigenvector (T—ZOI)n_lx . VWhen
z, 1is an eigenvalue of T , the space Z(T—zOI) is called the
corresponding eigenspace and the space {x € X : (T—zol)nx = 0 for some
n=1,2,...} 1is called the corresponding generalized eigenspace. As a
trivial example, let X = Cz ., T Dbe represented by the matrix Lé i] ,
and I be a closed curve enclosing the point 1 . Then PF(X) =X,
which is spanned by the eigenvector Lé] and the generalized
eigenvector F?] of T corresponding to the only eigenvalue 1 of

T . Thus, the range of PF contains all generalized eigenspaces

corresponding to the eigenvalues of T in Int I .

For Zo € Int T , we have by (6.8) and (6.11),

Sp(z,) =8, ®S, .

-1

where SY =0, and SZ = (TZ—ZOIZ) .
These considerations allow us to give appropriate names to the

operators which we have introduced: PF(T) is called the spectral

projection associated with T and I' , and the closed subspace

Y = R(PF) is called the associated spectral subspace. For

z, € Int I' , the operator ST(ZO) is called the reduced resolvent of

(T—ZOI) on the closed subspace Z = Z(PF) .

We introduce another operator which vanishes on Z(PF) and which
tells.us how T differs from a scalar multiple of the identity operator
on R(PF) .

For Z, €C, let

(6.16) Dp(zy) = (T-z,1)Pp .
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r Aso that

Then it follows that DI"(ZO) commutes with P
Dp(zy) = Dy © D, ,

where DY = TY - ZOIY and DZ =0 .

Also, it can be seen that
(6.17) p2(z.) = (T-2.1)D.(z.)
: rvo’ - o~/ rUo’ -
We now characterize the spectra of SI‘(ZO) and Dr(zo) .

PROPOSITION 6.4 Let I C p(T) .

(a) P = 0 if and only if o(T) CExtI' , and then

SI..(ZO) R(zo) for z, € Int T,

0

DI"(ZO) =0 for z, € C .

(b) P I if and only if. o(T) C Int I' , and then

SF(ZO) =0 for z, € Int T ,

DF(ZO) =T - ZOI for zy € C .

(c) Let O;ePr;él. Then for zoelntr, we have

(6.18) o(Sp(zy)) = {0} U {—= i he o(T) N Ext T} .

Also, for zZ, € C, we have
(6.19) U(DF(ZO)) = {A - zy P A€ o(T) N Int I'} U {0} .

Proof Let Y = R(PF) and Z = Z(Pr) . Then we know by (6.2) that

a(T} = a(TY) u cr(TZ) .
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Now, PT =0 if and only if Y = {0} ., i.e., a(TY) =@ , by Theorem

5.2. This is the case if and only if o(T) = a(TZ) ={AN€o(T) : A€

Ext I'} . by Theorem 6.3. In this case, we have for Z, € Int T,

(T*ZOI)ST(ZO) =I1-P=1 by (6.8), so that SF(ZO) = R{z Also,

O) .
DT(ZO) = (T_ZOI)PF = (T—ZOI)O = 0 . This proves (a). The proof of (b)

is exactly similar.

Let, now, O # PF # I . For Z, € Int I' , we have

Sp(zg) =8¢ © 5, .

- L}Au 1
where SY =0 and SZ = (TZ—ZOIZ) by (6.8) and (6 . Since
Y # {0} . we see that a(SY) = {0} . and

1
z)={7\—z0

: A € o(T,)}

1
= {k )

tAN€o(T) NExt T},

by (6.10). Since U(ST(ZO)) = a(SY) u U(SZ) , we obtain (6.18). The

proof of (6.19) is very similar. /7

We are now in a position to find the coefficients in the Laurent
exansion of R(z) in an annulus about Zy -
THEOREM 6.5 (Laurent expansion of R(z)) Let I C p(T) , z, € Int T ,

and write P = PT , S = SF(ZO) ., D= F(ZO) . Then

(6.20) max{|A-zyl : N €o(T) N Int I} =1 (D) =r, ,
; . 1

(6.21) m1n{|k—zol : A€ o(T) NExt T} = ra(s) =r,

Let T < Ty - The resolvent operator R(z) is analytic on the annulus

{zecC: r < Iz—zol < r2} , and we have
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o o k
k+1 k P D
(6.22) R(Z) = z S (Z_ZO) - z. - =z - Z ——_—l{'l'-l— .
k=0 0 k=1 (z—zo)

Proof The expressions for rU(D) and 1/rU(S) follow immediately
from Proposition 6.4 upon makihg use of the convention that if a set of
nonnegative numbers reduces to the empty set, then its maximum is O ,
while its minimum is infinity.

Now, assume that z € € is such that the two infinite series on
the right hand side of (6.22) converge in BL(X) . Let f(z) denote

the right hand side of (6.22) and for n =1,2,..., let

B n Dk

0 k=1 (z—zo)

P
zZ - Z

n
k+1 k

£f(z)= ) S (z-z,) - .

n k=0 0 k1

Since Zo € Int T, we see by (6.8) that (T—ZOI)S =1I-P . Also, by
(6.16) and (6.17). we have (T-zyI)P =D , (T-z,I)D = D° . Hence

fn(z)(T—zI)

(T-zI)f_(z)

(T—ZOI)fn(z) - (z—zo)fn(z)

n n k+1
k k D D
= ) (I-P)S (z-2p)" -~ =5~ - ) —=T
k=0 0 k=1 (z—zo)
n n k
- ) Sk+1(z—zo)k+1 + P+ ) __Q__—E
k=0 k=1 (z—zo)
n+1
= (1) - 2 - ™ g )™ w P
(Z_Zo)
n+l
D n+1
=1~ [Z"ZO] - [(z—zO)S] .
which tends to I as n = ® , since the latter two terms are the

(n+l)-st terms of convergent series. This shows that z € p(T) and

R(z) = f(z) .

Now, we know from Theorem 4.9 that the series ) Sk+1(z¥z0)k
k=0
© Lk
D .
and 2 =T both converge if

k=1 (z—zo)
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r (D) = Tim ik l7k ¢ |z-zy| < 1/ Tim igkplk o 1

ko k- rs(8)

Thus, for r < Iz—zol < L the expansion (6.22) of R(z) is valid and

R(z) 1is analytic there. V4

We remark that the coefficients in the Laurent expansion of R(z)

around z, are given by

Sk+1

2y (zo) , k=0,1,2,...,

(6.23) b =P,

Py

0Nz . k=2.3....

Thus, they are determined by three operators: S(z P and D(z

o) - o) -
In fact, since D(zo) = (T—zOI)P and P=1 - (T—ZOI)S(ZO) . We see
that the single operator S(zo) determines all these coefficients.

Another noteworthy feature of these coefficients is as follows: If some

i
and if some b, = D7(z,) =0 . then for all k> j . we have b =

—Dk_l(zo) = 0 . This fact would be used quite fruitfully in the sequel.

_ odtl _ . _ oktl .
a, =8 (zo) =0, then for all k > j ., we have 2y = S (zo) =0 ;

We also note that if 0 € Int I' and o(T) C Int I' , then

PF =1, DT(O) =T and ST(O) = 0 . Hence the Laurent expansion

(6.22) reduces to
s .k —(k+l
R(z) =- ) Tz (k+1) for |zl > rU(T) .
k=0

This coincides with the first Neumann expansion (5.8), which we have

obtained earlier.
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Problems Let I' be a simple closed positively oriented rectifiable

curve in p(T) .

6.1 Let I’ be another closed rectifiable curve in p(T) . If

Int TN IntT =@, then PxPL =0 . If Int TC IntT , then

PFPF = PF ., and P = Pf - Pr vis a projection. If Y = R(P) and

Z =Z(P) . then

~

o(Ty) = o(T) N (Int F N Exe T) ,

a(TZ)

o(T) N (Ext T U Int T) .
6.2 Llet z, € Int ' . Then forn=1,2,... ,
Z(Pp) C R((T—zOI)n) .

6.3 Let z, €ExtI' . If PT

-R(z

0. then Sp(z)) =0; if P.=1,

then SF(Z

L}

0) O); if O;ePF;eI. then

o(Sp(z)) = (0} U {51

A€ o(T) N Int F} .
%0

6.4 For z € C., let D= DF(ZO) and for z, e€r , let

S = SF(ZO) . Then DP=PD=D. If z, € Int T then DS =SD =20,

while if Zy €ExtI', then DS=SD=-P. Fork=1,2,...,

- 2—11;1-L (z-2)R(z) = D¥ .

k

S, if Zy € Int I,
1 [ R@ .
2L Jp (=2 )E k-1_k
o GYRIRRINETIPAES 2

Theorem 6.5 can be proved by noting that if T < Ty » then I' can be

continuously deformed in p(T) \ {zo} to I', where f(t) =

it .  oktl
zytre’, t€ [0.27] . r <r< Ty s and showing that a = S

k-1
for k=0,1,..., b1 = -P and bk =-D , k=2,3,... . (See

(4.12) and (4.13).)



86

6.5 Let Q be a (bounded) projection such that Q(X) = PT(X) .

(i) For x,y € X, we have x =y if and only if Ox = Qy and
SF(ZO)X = SF(ZO)Y for some zy € Int ' . (ii) Q= PT if and only if
Q comutes with T . (iii) Let 2, € Int T and A € BL(X) . Then

A= ST(Z if and only if APT =0, A(T—ZOI) =1I-P. and A

O) r

commutes with T .

6.6 Let X=Y®Z with T(Y)CY . Let Q be the projection on Y

along Z and TZ (I-Q)T|, . Then o(T) C o(Ty) uU(TZ). (Hint: If
z € p(Ty) N p(T,) . then R(T,.2)Q + [I-R(T,,z)QTIR(T,.2)(I-Q) is the

inverse of T - zI .)

6.7 Let Y be a closed subspace of X such that T(X) CY . Then for
O0#z¢€p(T), R(z)Y)CY . and if T does not enclose O , then
PT(X) CT(X) CY . Moreover,

P '_T._J R(=) 4, .
r z

T~ o7



