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THE CONVERGENCE OF ENTROPIC 
ESTIMATES FOR MOMENT PROBLEMS 

A.S. Lewis 

Abstract. We show that if xn is optimal for the problem 

{ 
1 1 . } 

sup flog x(s)ds If (x(s)-x(s))s1ds = 0, i = O, ... ,n , 0 $; x E L [0, i] , 
0 0 1 

then ..L-71. weakly in L (providing x is continuous and strictly 
X A 1 

n X 

positive). This result is a special case of a theorem for more general 

entropic objectives and underlying spaces. 
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§1. Introduction 

The following problem, known as a 'moment problem' or · 

'underdetermined inverse problem', occurs frequently in physical and other 

applications (see for example [Mead and Papanicolaou, 1984]). We are 

given a finite number of 'moments' f x a. ds , for i = I , ... ,n, where 
S I 

(S,ds) is some measure space and ai e L00(S) , i = I , ... ,n are given, and we 

wish to estimate the unknown non-negative density x e L1 (S) . One 

popular technique is to choose an estimate x to have the given moments 

and in order to minimize some objective function. Typically the objective 

function used is of the form f $(x(s))ds, where $: IR ~ (-oo,oo] is 
s 

convex, so the problem becomes 

inf f $(x(s) )ds 
s 

(MP ) subject to f (x-;)a.ds = 0 , i = l, ... ,n, 
n S 1 

Various functions <1> have been tried, including the classical 'maximum 

entropy' approach where <!>(u) = u log u , (see [Mead and Papanicolaou, 1984] 

and the references therein), other measures of entropy such as 

q,(u) =-log u (for example [Johnson and Shore, 1984]), and more recently 

norm objectives such as $(u) = .l u2 [Goodrich and Steinhardt, 1986]. 
2 
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A survey of objective functions, along with solution techniques based on 

duality, may be found in [Ben-Tal, Borwein and Teboulle, 1988], and these 

techniques, together with the question of the existence of optimal 

solutions for (MPn), are studied further in [Borwein and Lewis, i988(a)]. 

For this approach to the moment problem to be practically useful we 

would hope that as the number of known moments increases, our estimate 

converges in some sense to x. Further conditions on the ai's will be 

necessary to ensure this. Suppose therefore that S is a compact 

Hausdorff space, ds a regular Borel measure, and that the ai's are densely 

spanning in C(S) . As essentially observed in [Mead and Papanicolaou, 

1984], if xn is feasible for (MP n) then xnds ~ x ds weak* in M(S) . 

However, it need not be the case that xn ~ x weakly in L1 (S) . Indeed, 

the following result appears in [Borwein and Lewis, 1988(b)]. 

Theorem i .1. Suppose S is a compact metric space, ds a non-negative 

00 

regular Borel measure, cl(span(a.) ) = C(S) , and for some K,8 > 0, 
I i 

8:::; x(s) :::; K a.e. For a given y E loo(S) ' a necessary and sufficient 

condition that f (x _;) y ds ~ 0 for every sequence (x ) with x 
S n n n 

feasible for (MPn) is that y = z a.e. for some function z, continuous a.e. 

It follows from this that in order to guarantee the weak convergence 

of optimal solutions of (M P nl to x we will need further conditions on 

the objective function. One possibility is to require it to have weakly 

D 
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compact level sets. When (S,ds) is complete and totally a-finite, and <1> 

is a closed, convex, proper function with conjugate <j>* everywhere finite, 

a result of Rockafellar shows that the objective function in (MP n) has 

weakly compact level sets. Under the further conditions on S , ds and the 

ai's above, this will ensure that if xn is optimal for (MP n) then xn ~ x 

weakly in L1 (S) (see [Borwein and Lewis, 1988(a)]). This will apply in 

particular to the Boltzmann-Shannon entropy defined by 

{ 
u log u , u > 0 , 

$(U) = 0 , U = 0 , 

+oo , U < 0 . 

For this objective function in the special case where S = [0, 1] , ds is 

Lebesgue measure, and ai(s) = si-1 , the weak convergence of xn to x 

was shown in [Forte, Hughes and Pales, 1988]. 

However, in the case of the logarithmic entropy, 

{ 
-log u , u > 0 , 

<j>(u) = 
+oo , U::;; 0 , 

<!>* is not everywhere finite, so the objective function typically will not 

have weakly compact level sets [Borwein and Lewis, 1988(b)], and this 

technique cannot be applied. The results presented in this paper will adopt 

a different approach to show, under suitable conditions, that if xn is 

optimal for (MPn) then <P'(xn(·)) ~ <P'(x(·)) weakly in L1 (S). 
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§2. Minimizing Sequences 

Throughout this paper the finite-dimensional convex analytic 

terminology used will be that of [Rockafellar, 1970]. Suppose (S,ds) 

is a finite measure space. For a closed, convex, proper function 

8: 1R ~ (-oo,=], define 18 : Li (S) ~ (-=,=] by 18(v): = f e(v(s))ds. Using 
s 

the theory of normal convex integrands in [Rockafellar, 197 4], 18 is a 

well-defined convex functional with conjugate (1 8)* : L=(S) ~ ( -oo,oo] 

given by (I )*(z) = I (z) = f 8*(z(s))ds. 
8 8* s 

For a given y E L00(S) we shall be interested in the function 

f : L1 (S) ~ ( -=,=] defined by f(v) : = 18(v) - <V,y> . It is easy to check 

that the conjugate function f*: L00(S) ~ (-oo,oo] is given by 

f*(z) = le*(Z+y) . We shall make the 

and y: 

assumptions about 8 

{ 
8'' is twice continuously differentiable on int(dom 8*) , 

(2.1) 
[ess inf y, ess sup y] c int(dom 8*) . 

Proposition 2.2. The infimum of f is attained uniquely 

where v(s): = (8*)'(y(s)) a.e., and inf f = -1 8*(Y) . 
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Proof. By [Rockafellar, "1970, 23.5], 

8(v(s))-

with equality a.e. il' and only if a.e. The result follows 

integrating over S . The fact that v E follows from the 

continuity of (8*)" and the compactness of tr1e essential range of y (2.1). 

Lemma ?.3. For wE and bE !R 

sup{b/c- I 0 ::; A E [R} . 

Proof. For <V,W>::::: b and 'A::::: 0 , 

b'A- f*(/.J!V) ::; - f* (lew) ::; f(v) , 

and the result follows, taking inf over v and sup over 'A . 

00 

Theorem 2.4. Suppose iLl c L1 and ---> inf I . Then 

(the unique minimizer for f) weakly in 

.D:Q.Qf. Suppose so for some wE L=(S) , 

f [vi(s) - (8*)'(y(s))]w(s)ds::::: i , each i . 
s 

i'l.pplying Lemma 2.3 with b: = i + f (S*)'(y(s) (s)ds it follows that 
s 

for all 0 ::; "A E lR , 

(2.5) b'A- f*('Aw) ::; inf f . 

D 

D 
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Now pick ci> 0 such that 

[(ess inf y)-8 , (ess sup y) + o] c int(dom 8*) . 

By the continuity of (8*)" , there exists M such that for all 

u E [(ess inf y)-8, (ess sup y)+o], 0:::; (8*)"(u):::; M. Since wE L"JS), for 

all A sufficiently small 

y(s) + Aw(s) E [(ess inf y)-o, (ess sup y)+8] a.e. , 

so by the mean value theorem, 

8*(y(s)+AW(s)) :::; 8*(y(s)) + AW(s)(8*)'(y(s)) + ~ M(Aw(s)) 2 , a.e. 

Integrating over S gives 

t•(Aw)'- int t +A(b-1) + ,_2 (; MJ w(s) 2ds), 

for all A sufficiently small. But then (2.5), for all A~ 0 sufficiently 

small 

which is a contradiction for small A > 0 . 

A similar, less direct approach to this result uses the results on 

minimizing sequences in [Rockafellar, 197 4] . 

D 
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§3. Weak Convergence 

We are now ready to return to the original problem. 

inf f ¢(x(s))ds 
s 

(P ) subject to f (x- ;')a.ds = 0 , i = 1 , ... ,n, 
n S 1 

X E (S) . 

Notice we have removed the constraint x :2: 0 , assuming it to be implicit 

in the function <jl . We make the following assumptions: 

(S is a compact Hausdorff space, 

\ds is a non-negative regular Borel measure on S , 

cl(span(a 1 )~) = C(S), 

(3. i) <jl : [R ---? ( -=,=] is closed, convex, proper, essentially smooth 

\ and essentially strictly convex, and twice continuously 

lA differentiable on int(dom <I>), 

X E C(S) with [min X, max x] c int(dom ¢) . 

A closed, convex, proper function <P : IR ---? (-=,=] is essentially strictly 

convex if and only if it is strictly convex on dom ¢(see [Borwein and 

Lewis, 1988(a)]), and is essentially smooth if it is differentiable on 

int(dom ¢>) and I<P'(u)i---? += if u approaches a point in the boundary of 

dom <P . Functions which are both essentially smooth and essentially 
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strictly convex are said to be 'of Legendre type', and have the following 

property. 

Theorem 3.2. [Rockafellar, 1970, 26.5] The function <J> is of Legendre type 

if and only if <j>* is. In this case the gradient map $' : int(dom <jl) --t 

int(dom <)>*) is i -1 , onto, continuous, and with continuous inverse ($*)'. 

The dual problem for (MP n) , from [Borwein and Lewis, i 988(a)], is 

(DP ) 
n 

{
maximize 

subject to 

A n ( n l ( x , I, A.a.) - I L A.a. 
i=i I I <)>* i=1 I I 

n 
A E lR . 

Theorem 3.3. The values of (P n) and (DP n) are equal, with attainment in 

Proof. This follows from the duality theorem [Borwein and lewis, 

1988(a), 2.4], since x e qri(dom (or in other words cl cone(dom lq,- X) 

is a subspace) so the required constraint qualification is satisfied. To see 

this, observe that from 3.1, x E ll·lloo- int(dom(lq,ILoo(S))) (restricting 1<1> 

to Loo(S) c l1 (S)), so certainly cone(dom l(jl- x) :::> L00(S). Since L00(S) 

is dense in L1 (S) [Rudin, 1966, 3.13], the result follows. 

D 

D 



109 

The question of attainment in the primal probiem (P n) is harder" We 

have the following result from [Borwein and Lewis, i 988(a)]" 

Theorem 3.4. Suppose assumptions (3. i) hold for the 

Suppose further that S = [a,~] c IR with ds Lebesgue measure, that the 

are locally Lipschitz in particular differentiable), 

and that ¢(u) = += for u < 0 . Define two numbers, 

d : = lim ~ , and if d < += , 
U-7+= u 

(d- ¢'(u))u 
U-7+= 

Suppose either d = +oo, or c > 0 , and there exists ~L E IR 11 with 

1-L.a.(s) < d for all 
I I 

s E [a,p] (which holds in particular for all 

sufficiently large n , or if a1 = 1) . Then there exists an optimal solution 

It is easy to check for example that the conditions on (jl are satisfied 

in particular for the two entropies in the introduction. 

When we know the existence of an optimal solution, it is easy to 

identify it. 

Theorem 3.5. Suppose xn is optimal for (P n) and 'An is optimal for 

(DPnl· Then 

D 
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f A~a.(s) = $'(x (s)) , a.e., and 
i=i I I n 

x (s) = ($*)·(f A~a.(s)] , a.e. 
n i=1 I I 

Proof. If xn and An are both optimal then 

I (x ) = ( ~ , f A~ a.) -I *(fA~ a.] 
<jl n i=1 I I <jl i= 1 I I 

= ( x , f A~ a. ) - I ( f A~ a. J , 
n i= 1 I I <jl* i=i I I 

so it follows that 

J[ $(x (s)) + $*( f A~a.(s)]- x (s)f A~a.(s)] ds = 0 
S n i= 1 I I n i=1 I I 

Thus by [Rockafellar, 1970, 23.5], 

n 
L A~ a.(s) e d$(x (s)) , a.e., 
i=i I I n 

and the result follows by Theorem 3.2. D 

This result shows in particular that primal optimal solutions, if they 

exist, are unique. This is clear alternatively from the strict convexity of 

Let us denote the value of a problem by V(·) . 
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Theorem 3.6. V(DP 11 ) t as n ~ =. 

Proof. Clearly V(DP 11 ) is increasing in n . Since 

[min x, max X] c and (jl is continuously differentiable on 

int(dom <jJ), <jl'ox e and Theorem 3.2, 

¢'ox, max <!J'ox] c int(dom . Pick £ > 0 such that 

[min(¢' - £, max(<j)'oX) + £] c int(dom ¢*) , 

so is uniformly continuous on - E, + e]. Since 

span (a 
1
) ~ is dense in C(S) it 'follows given 8 > 0, there exists N 

and lc E fR N such that 

and 

We then have 

N 

IIWoX) - L"'· !c.a.ll-~ < o, I i ~ 
i= 1 

tl1e uniform continuity of we can also ensure that 
N 

ffi' A ';, ~~· 0 ~ II " 
o ~' o x - (jl o 1c.a. 00 < o . 

" I I 

lc.a.> -
I I 

i=i 

N 
( '\.' lc.a.) L II 

i=1 

= Jr [x(s) I /c.a.(s)- <)l*( I A-.a.(s)} ]ds 
I l . I I s i=i l=i 

;::: f[x(s)¢'(x(s)) - 8Jx(s)l - <P*(<P'()Z(s))) - o]ds 

s 



= f <P(x(s)) -

s 
+I 
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I )ds 

= 1 (x) - [1 + 1 !]ds , 
<P 

by [Rockafellar, 1970, 23.5], so V(DPN):?: l<jl(x)- of [1 + jx j]ds. However 

s 
A 

since x is feasible for (PN) . Since 8 was 

arbitrary, the result now follows. D 

Notice that the strong duality theorem (3.3) is not in fact necessary 

to prove this result: it is sufficient to obsen1e weak that 

We are finally to deduce our main result We include in the 

statement a summary of the above results. 

Theorem 3.7. assumptions (3.1) hold for the problem (P nl . Then 

= V(DPnl I as n --+ oo, witll attainment in (DP nl . If is 
11 

is optimal for (DP 11 ) then L i ai--+ <jl'(x( • )) weakly in L1 (S) . If there 
i= 1 

exists an optimal solution of (Pnl then it is 

xn(s) :" [ ~ l.~ ai(s) J, a.e. , and 

uniquely by 
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Proot Consider the function g : L1 (S)-+ (-oo,=] defined by 

g(v) := l(jl''(v) - <V,X>. By Proposition 2.2, inf g = , and is attained 

uniquely by v E L00(S), where v(s) := <!J'(x(s)) a.e. By Theorem 3.6, 
n n 

v /~,~a. is a minimizing sequence for g , so by Theorem 2.4 "' i'c~a.-+ v 
L_; II LJ II 
i= 1 i=i 

weakly in L1 (S) . The remaining assertions follow from Theorem 3.5. 

Examples 

Consider the special case 

inf 

subject to 

i 

J <jJ(x(s))ds 

0 
1 

J si(x(s)-x(s))ds = o, i = o, ... ,n, 

0 

where ds is Lebesgue measure, for three different measures of entropy: 

(i) 

(ii) 

{ 

ulogu- u, 

¢(u) = 0 , 

+oo 

{
-logu , 

¢(u) = 
+= 

u > 0' 

u = 0' 

u < 0, 

u > 0, 

D 



114 

{

ulogu - (i+u)log(1+u) , u > 0, 

(iii) <Jl(u) = 0 u = 0 , 

+= U<O. 

In all three cases (assuming x is continuous and strictly positive) 

Theorems 3.4 and 3.7 apply. Suppose in each case is dual optimal, and 

let x11 denote the unique optimal solution of 

(i) 

(ii) 

n 
xn(s) = exp ( L 

i=O 

i s) , a.e. , 

and log xn(·) ~log x(·) weakly in L1 . 

n n · i 
(s) =-(""'A. s 1)- , a.e., 

~ I 
1=0 

and 1 i in L1 -- --j> --

xn(·) x(·) 

x (s) ~ [ exp(- f i) - ir ' n . 0 
I= 

a.e., 

and log(1 + - 1--) --j> 

xn (.) 
+ ~-) weakly in L1 . 

x(.) 

Further examples may be found in and Lewis, 1988(a)]. Clearly 

we could replace ai(s) = s1- 1 in the above with trigonometric 

cos i8 and sin ie (alternating). 

In case (i) the theory in [Borwein and Lewis, 1988(b)] shows that in 

fact xn ~x weakly in L; . Whether or not this is necessarily the case in 

the other examples remains unclear. 
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