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BOX ~1AXIf'ilAL FUNCTIONS* 

Alberto Torchinsky 

The theory of Hardy spaces is closely in·tertwined wi'ch the study of 

partial differential equations. Properties of analytic and harmonic functions, 

and temperatures, are key ingredients in proving basic results concerning 

Hardy spaces. 'I'hese results in turn establish new principles which can be 

used in the s·tudy of p.d.e. 's. It is also often ·the case that, in spite of 

their na~ne, hannonic analysts prefer proofs concerning the Hardy spaces 

independent of properties of analytic or harmonic functions. 

we will illustrate some of these remarks by presen·ting an elementary 

proof of an estimate involving box maximal functions. Our strategy will be 

to view this result as an imbedding inequali·ty of Hardy and Littlewood 'cype 

and adapt to ·this setting the techniques in·troduced by Calderon and 

Torchinsky [2, Lemma 2.6] and Jawerth and Torchinsky [7]. Our result will 

extend an estimate which a.ppears in recent work of Chanillo a_nd lllheeden [3], 

[4] as a step in obtaining weighted Poincare and Sobolev inequa.li·ties. 

First some background. While discussing a basic result in the theory 

of Hardy spaces of several real variables, namely the passage to arbitrary 

approximate iden'cities in the defini·tion of the Hp(R11 ) spaces, C. Fefferman 

and Stein [6] in-troduced 'che following box maximal function. Let 

T(x,y) = { (y' s) E Rn+l : lx-yj :": h 
' 0 < s :": h} denote the box over X 

+ 

height h and let f be defined on Rn and u its Poisson integral 

the upper half-space. Then set 
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N, (f,x) 
"'r 

p 
They proved that if f E L 0 (Rn) and 1 < p0 < r , r/p0 = 1 +A , then the 

mapping f + N 1 f 
"'r 

Po < P s"" . 

is of weak type and of type (p,p) if 

Muckenhoupt and Wheeden [9] used this result to complete the study 

initiated by C. Fefferman concerning the weak type behavior of the Littlewood-

Paley function Their work also covered some weighted Hardy spaces 

More recently Barker [1] and Torchinsky [11] gave a 

simple proof of all these results using the concept of Carleson measure. In 

fact the proof given in [11] holds for arbitrary, rather than harmonic, 

functions u(y,t) defined in the upper half-space and weights in the A00 

class. In this case one replaces f by the non-tangential maximal function 

M(u,x) of u , where 

M(u,x) supjx-yj S tju(y,t) I . 

Chanillo and Wheeden [3], [4] extended these results, removing the assumption 

that the weights be in A00 Their proof also relies on Carleson measures 

and because of the applications they had in mind (to weighted Poincare and 

Sobolev inequalities discussed by Fabes, Kenig and Serapioni [5]) they consider 

a "local" version as well. To.state their result we need some notations. We 

say that a measure w(x)dx is "doubling of order ]1 " 
w 

or 

]lw ~ 1 , if for balls B(x,s) {yERn: jx-yj<s} wehave 

w(B(x,h)) - J w(y)dy 

B(x,h) 
n]lw 

< c(h/s) w(B(x,s)) 

wE D , 
Jlw 



41 

where 0 < s ~ h and c is independent of x , s , h . When the order 

~w is unimportant we say that w is merely doubling, in this case 

w(B(x,2s)) ~ cw(B(x,s)) • The result of Chanillo and Wheeden [4, Lemma 2.4] 

is then: let w doubling , f(y,t) be measurable on R:+l 

A > 0 , s > 0 and o < p 0 ~ p < oo • If 

(ii) 
A o p/po 

(s/h) [v(B (y, s)) /v(B (y,h)] < c [w(B (y, s)) /w(B (y,h))] 

0 < s ~ h , y E B(x,2h) , -

then 

An 1 o ]l/p 
t--- v(B(y,t)) lf(y,t) lpdy dt 

<_ c ( 1 J (Mhf(y))Pow(y)dy)l/po 
w(B (x, (l+E:) h) 

B(x, (l+E:)h) 

where Mhf(y) = suply-zl~tShlf(z,t) I 
maximal function of f • 

is the truncated non-tangential 

It is the purpose of this note to show that for p0 < p the same 

conclusion holds under essentially no restrictions on v . Because the 

"local" result stated above readily follows from a "global" result we 

consider the case Rn first. Put v(B(y,s)) = v(y,s) , etc. 

PROPOSITION 1 Assume v , w are positive measures in Rn with w 

doubling. If A > o , o > o , p > p 0 > o , and 

A o PIPo 
s v(y,s) ~ kw(y,s) 

then 
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JJ A o ds )l/p 
s v(y,s) jf(y,s) JPdy n+l 

n+1 S 
R 

00 

S ck1/pi1Mfll 

LPo ('tl) 

Proof Let Ql; = {Mf > !;} . It is well known and readily verified, see [1, 

Lemma 1] for instance, that there exists a pairwise disjoint family of 

Whitney cubes Q~ 
J 

that 

with center x~ 
J 

and sidelength d~ 
J 

with the property 

(ii) there is a (dimensional) constant n1 so that 

{ (y' s) jf(y,s)j>i;} 

Since 

I If n+l 
A oJ jP ds s v(y,s) f(y,s) dy ----1 

R+ 
sn+ 

00 

J 
p-1 JJ A o ds p 1; s v(y,s) dy n+l dl; 

0 {jfj>l;} s 

00 

- p I l;p-1¢(i;)di; ' say , 

0 

it is enough to show that 

p/p 
¢(I;) < c k w({M>i;}) 0 

From (ii) above we see that it suffices to estimate terms of the form 



¢. (i;) 
J 
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and then sum over j Because j and i; are fixed for the time being -we 

drop them from the nota·tion, so we denote X~ ~ X , 
J 

etc. Since there is a 

constant D2 such ·that Q <; B (x,D 2d) , setting D ~ o1 + o2 1.;e readily 

see that Q x [O,o1d] <; T(x,Dd) . Thus each ¢j(i;) is dominated by 

o(l-p0/pl JJ 
v(x, 2Dd) 

T(x,Dd) 

. A (l-po/p) ds 
w(y,s)s dy n+l 

T(x,Dd) s 

PoiP o (1-po/p) f fJ A (1-p /p) 
k v(x,2Dd) w(z) J s 0 dy 8~=1 

B(x,2Dd) T(x,Dd)nB(z,s) 

PoiP o(l-po/pl A(l-po/p) 
< ck v(x,2Dd) (Dd) w(x,2Dd) 

PoiP 1-po/P p/po(l-po/Pl 
:S c k k w(x, 2Dd) w(x, 2Dd) 

PI Po 
ck w(x,2Dd) 

PI Po 
::: ckw(x,d) 

since w is doubling. Thus 

i; i; p/po 
:S c k I w(x.,d.) 

j J J 

[ i; i; )p/po 
:S c k I w(x.,d~l < 

j J J 

dz 

as we wanted to show. This proves the first inequality in the conclusion. 

Moreover since 
p 

::: IIMfll 0 
Po 

L 
'W 

we see that 
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p ··1 p (p-p ) /p 
~ 0 w({Mf>0)d~ sup (~ 0w({M>Oll 0 0 

0 

p 
< c k IIHfll 0 

Po 
L 

w 

p-p 
IIHfll 0 

Po 
L 

w 

~ 

which gives the second inequality of the conclusion and completes the proof. 

Now we consider the local version of the result. Let 

sup lf(y,t) J 

!x-yJsat,tSh 

denote the truncated non-tangential maximal function of f with opening a . 

We then have 

PROPOSITION 2 Assume v , w m~e positive measures and w doubling. If 

A > o , 8 > o , E > o , p > p 0 and 

A 8 PIPo 
(s/h) (v(y,s)/v(x,h)) S c(w(y,s)/w(x,h)) 0 < s ::: h [r 

then 

h-A If 
v(x,h) 8 

T(x,h) 

< c[ w(x, (~+E)h) f 
h ·]1/po 

(!'1 f) (y)w(y)dy 
) 

B(x, (l+E)h) 

Proof Le·t f 1 (y, t) = XI' (x,h) (y, t) f·(y, t) , v 1 (y) = v (y) /v(x,h) , w1 (y) = vl(y) /w(x,h) 

The assumption on the measures can be rewritten as 
A 8 

s v 1 (y,s) S k w1 (y,s) 

where lr = C hA • ll . h hf ( ) ·~ Now choose a sm2. enoug11 so t:. at Ma 1 y 0 unless 

Jx-yJ S (l+E)h . But Proposition 1 applied t:o f 1 , and 



gives 

1 
8 

v(x,h) 

rr 1) 
L 
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~-n-1 8 )l/p 
t v(y,t) lf(y,t) JPdy dt 

T(x,h) 

A/p( 1 J h Po Jl/po 
< c h w(;,h) (M~f) (y)w(y)dy 

B(x, (l+E:)h) 

:': c hA/p [ 1 
w(x, (l+E:) h) 

h Po )l/po 
J (M- f) (y) w(y) dy 

B (x, (l+E:) h) 

where ·the last inequali-ty follo'''s since w is doubling and a can be assumed 

to be :<: 1 . This completes the proof. 

In addi·tion to the appl-ica·tion of Proposition 1 given in [4], we point 

out another one along ·the lines of the original Hardy-Li·ttle"Jood imbedding 

resul-t, Le. fractional integrals. Some of the results of [10] concerning 

fractional integrals, as well as ex-tensions of those results, follow from 

Proposition l; see for inst.ance ·the work of Macias and Segovia [8]. 
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