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SPECTRAL PROPERTIES OF CERTAIN STIFF PROBLEMS
IN ELASTICITY AND ACOUSTICS, PART II

G. Geymonat and E. Sanchez-Palencia

ABSTRACT

We consider the vibration problem for an elastic bounded body
with small compressibility, which is associated with a small parameter €.
As €.+ 0 _this is a stiff perturbation problem with non-analytic
character, (in particular, the domain of the operator for € = 0 is not
dense in a standard space, whereas for € # 0 it is). Nevertheless,
analytic perturbation theory applies and we prove that the solution
corresponding to each point of the resolvent set of the € =0 probiem
may be expanded as a series convergent for small [8[ ; moreover,
eigenvalues and eigenvectors have holomorphic expansions fo? small |€|.
Explicit computation of the first terxms of the perturbation'is given.
‘The asymptotic behaviour of eigenvalues for large values of the spectral
parameter is also given, and we show that it is not holomorphic in € .
The preceding techniques are applied to the éroblem of vibratiohs of
a slightly viscous compressiblé fluid in a bounaed vessel; an implicit
function argument allows us to prove that infinitely many real eigenvalues
converge as € ¥ O in an analytic way to the origin which is an eigenvalue

of infinite multiplicity of the problem for € = 0.
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1. INTRODUCTION

The vibration problem for a) an elastic, slightly compressible
body, b) a compressible slightly viscous fluid, were considered from
the point of view of spectral perturbation in [3], where results in
terms of continuity and convergence of the eigenvalues and eigenvectors
were given. The present paper'may be considered as an improved version
of [3] by using analytic perturbation theory. In fact, the problem
a) is a stiff problem for € + 0 (where € 1s a parameter associated
with the compressibility) as shown in Lions [7] and Pelissier [9].
If a standard LZ(Q) framework is taken the corresponding operators
are densely defined for € # 0, but not for € = 0 (where the domain
is submitted to the constraint div U = 0 associated with the incom-
pressibility condition). Nevertheless, the solution corresponding to
any point of the resolvent set of the € = 0 problem may be expanded
as a series convergent for small |€[ ; by constructing appropriate
"transformation functions" [6] for the projections associated with the
singularities, the perturbation problem is analogous to an analytic
perturbation in a finite-dimensional space. Moreover, a standard
argument [6] based on the self-adjoint character for real € shows that |
branching of eigenvalues does not occur, and the eigenvalues are branches

of holomorphic functions for small IEI.

After the preceeding study (which is performed in section 3), we
give in section 4 some explicit computations for the eigenvalues and
eigenvectors for small |eg| . For fixed € , the asymptotic distribution
of eigenvalues (which may be seen in Grubb [5] for € # 0 and in
Metivier [8] for € = 0) is given ; the non-analytic character of the
perturbation € - 0 is shown in section 5 with some comments about
this fact. Section 6 is devoted to the application of the preceeding

techniques to the problem b) via a re-scaling z = € of the spectral
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parameter and an application of the implicit function theorem in the
framework of real analytic functions. It is shown that there are
infinitely many real eigenvalues analytic in € in the ¢ variable,
and consequently, in the standard spectral parameter z , converging
to zexo, which is an gigenvalue of infinite multiplicity of the € = 0

problem.

As we already said, this paper contains sharper results than those
of [3]; in order to be self-contained, we give in section 2 some
results of [3] (with slight modifications); more explicit developments,
as well as the case of mixed (Dirichlet and Neumann) boundary conditions

may be seen in [3].

We now give some generalities about notation. The superscript
denotes the complex conjugate. Bold-face letters denote vectors in

N-dimensional space:

2 2
U= (ug,uy,eeee,uy) L% = (%)

. . . . . . -1
< , > denotes duality in the sense of distributions(or between H

and Hi , Or even between LZ(Q) and itself). The symbols

Hl(Q), Hi(Q) denote the standard Sobolev spaces. Index L is often
used for the limit problem. For instance, V, H (respectively VL' HL)
are spaces used in the study of the Dirichlet problem for

€ # 0 (respectively € = 0).

2. SETTING OF THE PROBLEM AND EXPANSION OF SOLUTIONS

We consider a slightly compressible elastic body filling a

bounded open region § of RN(N Z 2) with smooth boundary 0f2.

It is submitted to the action of the volume forces f = (f_,f £)

1’7277 N
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and is clamped at O£ . 1In the framework of linear elasticity, the
displacement vector U = (ul,u2 ces uN) is the unique solution of

the elasticity system

—uAu—%grad divu =f in Q
(2.1)
u= 20 on 9f

The Lamé's constants of the solid are W >0 and A = (1/g) - U ,
with Y fixed and € small (real positive in physical applications)

parameter tending to zero (€ 1is associated with the small compressibility).

As proven by Lions [7], the solution uE of (2.1) converges as

€ - 0 to the solution of

-uAu +grad p=TFf in Q

(2.2) div u 0 in Q

u

0 on 99

We consider the spaces V Hi(@), H = L2(Q) and the sesquilinear

hermitian and coercive form on V x V :

du, oV

N
i 1 .. -
ae(U,V) = C]J E a—xl' —3;—1- + : div u diV'V,')dX
r

Q i,r=1

We denote A8 the linear bounded operator from V to V' = H_l(Q)
associated with the form a® , as well as the corresponding unbounded

operator in H with domain D(Ae) C V. It is a self-adjoint positive

definite operator with compact resolvent, and its spectrum is formed

by the sequence of eigenvalues with finite multiplicity
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which are considered repeated according to their multiplicity.

As for the limit problem (2.2), let VL be
v ={u-u€H1(Q) div u = o}
L ! o] !

and let HL be its closure in Lz(Q). We consider the sesquilinear

hermitian and coercive form on VL b4 VL

L N Bui BGi
a (u,v) =y 2 e 5;"‘dx.
. r
g bik=1

We denote AL the bounded linear operator from VL into VEJ
associated with the form aL, as well as the unbounded self-adjoint

operator in HL associated with the form aL, and let
o<l s stz vt
L L

be the sequence of the corresponding eigenvalues.

We now consider the problem of finding (U,p) éHé(Q) x L2(Q)/R

satisfying

-uyAu +grad p=zu+f in Q

(2.3) div U in @

1]
Q

Uu=20 on 99
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for given (f,q) € H_l(Q) % LZ(Q)/R; here LZ(Q)/R denotes the subspace

of LZ(Q) made of the functions whose mean value is zero.

If ¢ € G(AL), the spectrum of A,, then (2.3) admits a

L

solution if and only if the data (f,g) satisfy the compatibility

condition

(2.4) <f,v> = gqdx
Q

for only solution (V,q) of the homogeneous problem.

We let us point out the following estimate of the solution

of (2.3) :

PROPOSITION 2.1 - Let [ € p(AL), the resolvent set of A then,

the solution of (2.3) satisfies:
(2.5) hullyr + el 2es c@yIflly-a+ [l all 24
0

where

(2.6) c(z) = (a + —B—il‘ﬂ-—) ® + Flz])

- dist(z,0(a.))

with A, B, D, E, F depending only on Q and u .

PROOF : The solution U,p can be taken under the form
Uu=v+w , pP=p

where V 1is a continuous 1lift of div v = g (which exists and is

continuous from L2/R into Hé [121); then the problem becomes



-uAw + grad p -zw = + puAv + gv

divw =20
and we obtain (W,p) with

©

vl = smeeany 1T + v o,

L

and’

lell2 g <c,llgred plly-2 =

Now, for given f€ H! ana C€ p(AL) we consider the problem:

€ 1
u- € HO(Q)

(2.7)

-uAu® - %: gr'addivu8 =f +z;u€

The following result completes those of Pelissier [9]:

PROPOSITION 2.2 - For given T € p(A)), feH?Y, 2.7 has a unique

solution ut for o#ccc and |e| sufficiently small. It is a
holomorphic function of € with values in H; () . Moreover,
when  defined for € =0 by u® , where (uo, po) is the
solution of the hereafter given problem (2.9), it is a holomorphic

function for |t| sufficiently small.

PROOF: As As - CI has index = 0 it suffices to prove the

surjectivity. We search for uE under the form:

(2.8) u€ = w0 + eut + e2ul+.... s ut € Hé



where the series converges for lgl sufficiently small. In a standard
way we insert (2.8) into (2.7) and we annihilate the coefficients of

the powers of €,

At order 5—1 we have:

grad div u®

]
[=]

and because u0 € Hé we have:

div uo

[l
o

so that uO € VL. For EO we have

—uAuO - grad div ul = F 4+ i;uo

and by writing div ul = - po, (2.7), (2.8) becomes

-uAu0+ grad p0=1=+§u0 in @

(2.9) div uo

0 in @

uo =0 on 99

and by proposition 2.1 we have

0 0
Nullyr + llell2,, =c@lfll,-1.
H0 L°/R H

. 1
Then, for terms in € we have:

--uAul - grad div u2 =zu

and by writing

we have:
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-pAul+ grad pt = zul in  Q 1
div u1 = —po in
ul = o on 3R J

Nutfle + o'l sc@ll®ll , =C@lf] _, .
Ho L2/R /R Bt

It is then a straightforward matter to go on to all terms in (2.6)

and proving that it is a convergent series for |E| <C (E,.)_l and
ue satisfies the estimate
€ < _C (o)
and the conclusions follow. B
If we denote by [ the projection of L2(Q) on H (or of

L
H_l(Q) on V&), uo in (2.9) may be obviously written

(2.11) (AL - C)UO = IIf

and the obtained results may be described by writing

(2.12) W@ = a0 @z o TS

in Hé strongly for any f € HL. Moreover the convergence is

uniform for (€ K compact of D(AL) (see (2.6) and the proof

. -1
of proposition 2.2) and for f in a bounded set of H .
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3. HOLOMORPHIC BEHAVIOUR OF EIGENVALUES AND EIGENVECTORS FOR SMALL €.

Let us consider a simple closed path <Y contained in a compact

*
set K of p(AL) enclosing an eigenvalue CL of AL (i.e. one of

the eigenvalues C;). The corresponding (orthogonal) eigenprojection

-1

-1
e (AL-C) ag

Y

of HL may also be considered, when acting after the projection I ,

*
as an eigenprojectioén in L2(Q) ; we shall denote it by PL :

(3.1) Pl ==2| @-0‘Ia
: L 2mi T G .
Y

We also consider (if YEp(Ae)) the projection

-1 I
(3.2) Po=5g | @nTdt
Y

and we have :

PROPOSITION 3.1 - If Yep(a) is chosen as above, then, for
sufficiently small |e|, y<p (a) and the projection p_ of (3.2) is a
holomorphic function of € with values in £(L2(Q)) taking for € =0
the value P: of (3.1). In consequence, the dimension of the range

of P, tis independent of e for small |e| (and then equal to the
dimension of the range of P;) .

PROOF : From proposition 2.2 and thé remark at the end of section 2

about uniform convergence for ({CK compact set of p(AL) the projection

P€ is defined for small |€l. The convergence of the integrals is
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obvious from the uniform convergence in (2.12) when applied to a fixed
f € L2 and is a holomorphic function of ¢ with values in |_2 .
According to a classical property (cf. Kato [6] section VII.1.1), P,

is holomorphic with values in L(LZ). Finally, the property about

the dimension of the range is classical. ]

At the present state, it is to be noticed that the operators
As are self-adjoint only for real € , and the range of Pe has not

necessarily a basis formed by eigenvalues. We have :

THEOREM 3.1 - [Let c* be an eigenvalue of A (i.e. one of the

ci) of multiplicity m Z1. Then, for the sufficiently small |g|
(complex in general) the operator A has in the vieinity of c* m
eitgenvalues (not necessarily distinet) which are holomorphic functions

of € , real for real € :

(vy _ . * (1) 2.(1)

Cs = C +€2;1 +ec2 +eooe
(3.3)

(m) _ * (m) 2 _(m)

Ee C +z—:¢:1 +€r,2 Feooe

and for real € there are m associated linearly independent eigenvectors
(which are analytic functions of € such that for e= 0 they span

*

Ker (AL -z )).

PROOF : Let us construct the "transformation functions" U(€) and
U(E)_l associated with the projections P in the vicinity of € =0
(cf. Kato [6] p. 33, 56, 99, 102, 369) :

3

B * 2 - * *
(3.4) U(e) = [I—(Pg—PL) 1 [PSPL-F(I—PE)(I—PL)]
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which are holomorphic functions of € for small [€| with values
in L(H) satisfying:
(3.5) ue)e ue)t =p ue) e ue ¥

. ( L ( =P €) €U( ) = PL.
Moreover, for € real, Pe is orthogonal and U(g), U(e)—1 are
unitary. We then consider the operators
(3.6) CA=u(e) tauce)

. 8 E =
which are image of A8 under the transformation U(€). They are
self-adjoint for real € . Of course, the eigenvalue problem for AE
is the same as for Ae' Moreover, the projection Pa commutes with

* ~

A and PL commutes with Ae : consequently the spectral problem

€

for Ae in PEH is analogous to the spectral problem for ge in

* * ~ *
P H, i.e. the m ri P A P_.
LHe e e x m matrix L B¢ By,
Now we have :
3 * ~ * o o
LEMMA 3.1 - The m x m matrix P A P s holomorphic for

e o * ~ *
syfficiently small |e| and takes for € =0 the value P A P -
In order to prove this lemma, we see from proposition 2.2

that Agl is a holomorphic function of ¢ for small Ia| with values

in £(H), taking the value A£1H for ¢ =0 , Thus

1 1

- -1 -1
= A
Ae U(e) c u(e)
is .a holomorphic function of ¢ for small ]g| with values in £ (H)

and taking the value A;lﬂ for € = 0. Let us consider
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. * *
if we take ¢ EPLH we see that u8 EPLH and consequently the operator

* ~a] K * ~ L

P AP =
L € L (PLAEPL)

is an operator (in fact a m x m matrix) which is holomorphic and

S K
take the value PLAL PIJ for € = 0. As a consequence, the matrix

PL €PL is holomorphic for small € and take the value P;ALP;

for € = 0. Lemma 3.1 is proven. At the present state the eigenvalue
problem is analogous to the classical -one for a holomorphic m x m

matrix which is self-adjoint for real € . (cf. Kato [6] chap.2) and

the conclusions follow. Let us recall in this connection that without
the self-adjointness hypothesis, the eigenvalue C* splits into m
branches as an algebraic singularity; the fact that the branches are
holomorphic is a consequence of the fact that the partial eigenérojections

for the branches are orthogonal (and then bounded) for real €

(see Kato [6] section 2.1.6). L

4. EXPLICIT COMPUTATION OF EXPANSION (3.3)

. . . . *
Let us consider as in the preceeding section that ¢ is an
eigenvalue of AL with multiplicity m = 1. We consider the expansion
of the m analytic eigenvectors associated with the expansion (3.3)

for the eigenvalues.

(4.1) u® =y By B2 0,

N N N 5 eee £ =1,2,...m,

where uiﬂ) <2

1
€ HO(Q) and the uO

*
span Ker (AL— C). The eigenvectors

and eigenvalues of (3.3), (4.1) satisfy
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) 0 _ @ W

u

1 .
-z grad div ug c e -

(4.2) —uAu€

After inserting (3.3), (4.1) into (4.2) we proceed as in the proof

of proposition 2.2. At oxder 8-1 and EO we have respectively:

div uéz) = 0 in @
and by denoting :
A BN (3
div u1 = po
(€O A . .
we see that (uo y PO ) are solutions of the eigenvalue problem for AL:

*
-pAv+grad g =z Vv in Q

(4.3) divvs= 0 in @

v 0 on 90 .

are defined later (partially at

We shall see that the (uéz), p(E))

0
*
least) as eigenvectors of some eigenvalue problem in Ker(AL—C ). For

the time being, we denote (V(J), q(J)) a basis satisfying the

orthgonality conditions

(4.4) §.. = (v (3 D 1,5=1,2,....m ,

| ) '
ij HL LZ(Q)

' Y
and determining ué ), Péﬂ) amounts to determining a;z) £,5 =1,2,...m)

with

m

u(ﬂ) _

. m .
¢ @G, D g G

L o. i Py o

(4.5) =
j=1 j=1
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Now the expansion of (4.2) at order El gives

_uAul(z)+ gradpl(b—;*uiz)= r,i!')uéﬂ) n @
(4.6) div uiﬂ) = —pét) in Q
Hiz) =0 on 9§
where
piz) = - div.uéz),
We consider (4.6) as a system with unknowns uiz), p{ﬂ) ; according

to (2.4), the compatibility condition is

(j)) = —(péﬂ), q(J)) 2

[COIPNEO)
(g™, v Hy L

&1

which, with (4.4), (4.5) becomes

m . .
(4.7) -;{"—’afb -5 o® ¢ M3 Pax, 5,£ =1,2,...m
J i=1
Q
and conseguently —Cit) and (aiz), e a;z)) are the eigenvalues

and the corresponding eigenvectors of the m x m self-adjoint non-

negative matrix M with coefficients

M. = q(l)ﬁ(])dx,
1]
Q
Consequently the coefficients Ciz) are well determined real = 0

numbers. If they are distinct we are in the case of maximum splitting

u(z)

of the eigenvalue (3.3) and the o

are also well determined
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(up to a constant factor for each one). If there are multiple eigenvalues,

the corresponding uéz) are only subject to be a basis of the corresponding
eigenspace.

At this stage, (4.6) are compatible and uiz) are defined up to
an additive eigenvector which is determined at the same time that Qéz)

in order to satisfy the compatibility condition for the terms of order

82 in (4.2) and so on.

il) = 0 and consequently, for real €, the

REMARK 4.1 : We saw that ¢
etgenvalues decrease as € increase. This result is natural from a
physical point of view : as € ¥ 0 the rigidity of the system increases

and the eigen-frequencies must increase. 8

5. ASYMPTOTIC DISTRIBUTION OF THE n-TH EIGENVALUE AS n-®.

It is worthwhile comparing formula (3.3), associated with a

o * n s K
fixed eigenvalue ¢  of AL with the formula giving the asymptotic
distribution of eigenvalues. System (2.1) is elliptic in the sense

of Agmon, Douglis, Nirenberg [1] for complex € with

1 -1
(5.1) e ¢ {-11'211'0}
and consequently it has index O (either as a bounded operator from
V into V' or as an unbounded operator in H) for all € satisfying
(5.1). According to general results on asymptotic distribution of
eigenvalues of elliptic systems (see for instance Grubb [5] for a

presentation of these results), we define:



and we have (with arbitrary § >0)
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v(e,a) = ¢, 20 NHO/2) s e
€
(5.2)
w N/2
o, =N ML N2 s+ (4 TV
A N N N -1
€ (2m)

(wN is the measure of the unit sphere of RN).

On the other hand, for

€ = 0, -the asymptotic distribution

of eigenvalues for a class of systems containing (2.3) is given in

Metivier [8].

v(t,AL)

(5.3)

and we see that :

(5.4)

@’

From (5.2) and (5.3) we deduce

The result for our system is

_N

w
(N=1) u N/2

N meas ()

en¥

lim CA

€>0 €

an asymptotic behaviour of the n-th

eigenvalue

CZ ~ C;2/N n2/N as n > ©
(5.5) €

n -2/N _2/N

;L ~ CA n as n > «
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where from (5.2), (5.3)

-2/N _ _-2/N [ 2 N/2 ]
(5.6) c =cC R (T R A S
A A N(N-1)

This formula is consistent with the physical considerations of remark
4.1 and shows that (for N # 2) in general, the analytic dependence of

gz on € does not hold for the asymptotic behaviour n - ®,

This phenomenon may be explained by the following considerations.
According to theorem 3.1, each eigenvalue C: of AL is approached

analytically by eigenvalues Cz of A€ , but there is no reason
for obtaining all eigenvalues of A8 in this way. There may perhaps
exist other eigenvalues of A8 not depending analytically on €.

We show this with an example inspirated by the considerations of

Metivier [8], section 6:

EXAMPLE : Let § = ]O,ZN[N. We consider problems analogous to (2.1),
(2.2) with periodicity conditions. A Fourier expansion easily shows

that eigenvalues of A and A are

L, = u|v12 with multiplicity N - 1
CE = ulvlz with multiplicity N = 1
Ae = (u+g)|\)|2 simple

for vez™.

The eigenvalues A€ are not analytic in €. B

6. APPLICATION TO THE VIBRATIONS OF A FLUID WITH SMALL VISCOSITY

We consider a bounded domain § of RN as in the preceeding

sections. If U and p denote the velocity vector and pressure
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perturbation of a slightly viscous barotropic fluid, the linearized

vibration in a vessel with rigid boundary satisfies the system:

v
Ezi = _op +€ afiiigl in 1
ot %, dx,
1 J
dp _ .. .
Fra div u in
(6.1) U =0if € >0 (
} on 92
u-n =0if € =0
v Bui ou,
ij(u) = X(dlvlJBij+u(5§5-+§§i)

where €0 is the viscosity tensor and €A,el are the viscosity

coefficients, which satisfy

u>0, 3X+2u>0,

The spectral properties of system (6.1) were considered in [4].
For € >0 the spectrum consists of isolated eigenvalues with finite
multiplicity and of the essential spectrum formed by the points

1

fe2m1™t , re+sm1t,

For € = 0, the spectrum consists of the sequences of eigenvalues * iwk

(where —wﬁ are the eigenvalues of the laplacian with Neumann boundary
condition in ) and the eigenvalue O with infinite multiplicity

(essential spectrum).

The spectral problem associated with (6.1) is
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Bc‘i’, 3
T ox. * Bxi ]
(6.2) J
div U = zp .

We now study the eigenvalues of (6.2) in the vicinity of z =0
as € > 0. After eliminating p between the two equations of (6.2)

and under the re-scaling =z = €, the problem becomes:
(6.3) —pAu - (\+pu-1/(ze?) ) grad div u = gu

with of course the Dirichlet boundary condition for U . Under this
form we have an implicit eigenvalue problem (the spectral parameter [
appears in the left hand side) for a perturbation of the form of that

of section 2. We introduce the new small parameter 1 defined by:

2o 0w -
ze
or equivalently
2
(6.4) F(n,e) = n- —E—— =0,
(M) ze™-1

The problem of finding the eigenvalue [ as a function of the parameter n
is exactly the problem of section 3, (where the parameter is denoted n

instead of €). Consequently, if we replace  in (6.4) by the functions

(&)

on of theorem 3.1, equation (6.1) becomes an implicit equation to find
L)

n

(and the corresponding eigenvector) gives a solution of the eigenvalue

n = n(e) such that as replaced into (6.3) with the corresponding [

problem.
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*
In order to perform this program, let ¢ be an eigenvector with
multiplicity m of the limit operator AL. Accoxding to theorem 3.1

let us take :

W

(6.5) z=1cm n

for small real n in (6.4), which becomes an implicit equation to be

*
studied in the vicinity of € 0, n =0 (and consequently ¢ =17 ).

]

One sees that

]
-

Fn(0,0)

and consequently there exists n(€), ¢(€) real-analytic for small
real ¢ associated with each of the analytic branches (£ = 1,.;.m)
of (3.3). We have proved the following theorem, which improves

theorem 3.1 of [3].

THEOREM 6.1 Let [ be an eigenvalue with multiplicity m of A .

Then, for real € with sufficiently small |e| the eigenvalue problem

(6.2) has the m real analytic eigenvalues (not necessarily distinct)

(1)+e3z (l)+ .....

%*
er + €222 3

N
I

(6.6)  Li....

*
€C + €zz;nn +€3z30n)+ .....

N
]

and m assoctated linearly independent eigenvectors which are real

analytic functions of € such that for € = 0 they span Ker(AL—g*).
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7. A COMPLEMENTARY REMARK

Barry Simon has kindly pointed out to us that the results of
section 3 can be viewed in the following more general setting. The
foxrm aL(u,v), that we shall now denote ao(u,v), with domain
v, = {usu € Hé () ,divu = 0} can be considered as a non-densely
defined closed form in the space H = Lz(Q). Now, as is remarked in
[11,section 4] << the extension of the usual theory of densely
defined closed forms to the general case is quite elementary >>.
The notions of closed, closability and closure are unchanged; there
is a one to one correspondence between closed positive quadratic forms
t on H and operators T which are self-adjoint on 5?5)=closure of D(T)
in H. If the form 1 with eventually non dense domain D(t) CH
is closed its resolvent is defined as the operator which is (T--;)_1
on B?f) and zero on D(t)l; i.e. if 7™ denotes the orthogonal
projection of H onto BYE) we define the resolvent as ('I‘—Z;)_1 .
We can then say that the forms tnﬁi as in the strong resolvent sense
(s.r.s.) if (Tn+1)_1 converges to (Too+l)-1 strongly. The convergence
of the u8 solution of (2.1) to uo solution of (2.2) proved by
Lions [7], can also be obtained as a consequence of a theorem of Kato
and B, Simon [10], [111.

With the convention that (AO-Q)—I

= (AL—C)_l]T, proposition 2.2
means that (Ae—t‘;)—1 is for Isl small a bounded holomorphic family
of operators for [ in a compact set of p(AL). But the previous
considerations suggest that one can use the defintion of Kato [6],
Chap.VII,§4.2 saying that the family ée(u,v) is for IE’ small an
holomorphic family of type (a) of eventually non-densely defined
closed forms on H. Then theorem 3.1 means that the results on the

perturbations of eigenvalues and eigenvectors can be extended to this

more general situation.
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