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SPECTRAL PROPERTIES OF CERTAIN STIFF PROBLEMS 

IN ELASTICITY ll.ND P,COUSTICS, PART II 

G. Geymonat and E, S'anchez-Paleneia 

We consider i:he vibration problem for an elastic bounded body 

1-lith small compressibilii:y, ,,,hich is associated with a small parameter s, 

As s '~ this is a stiff perturbation problem with non-analytic 

character, (in particular, the domain of ·the operator for s = 0 is not 

dense in a standard space, rdhereas for s '# 0 it is)~ Nevertheless". 

analytic perturba:tion ·theory applies and we pro-ve ·that i:he solui:ion 

corresponding ·to each point of ·the resolvent. set of ·the E = 0 problem 

may be expanded as a series convergent: for small jsj moreover I! 

eigemvalues and eigenvectors have holomorphic expansions for small Jsj, 

Explici·t comp1.rtat.ion of t:he firs·t ·tenus of the perturbation is given. 

The asympto·tic behaviour of eigenvalues for large values of the spec·tral 

parame-ter is also given, and '"e show tha·t i·t is rio·t holomorphic in 2 

The preceding 'cechniques are applied to l:he problem of vibra'cions of 

·3. slight.ly viscous compressible fluid in a bounded vessel; an implicit 

function argumen·t allovm us ·to prove tha·t infinitely many real eigenvalues 

converge as s + 0 in an analytic way 'co the origin v<hich is an eigenvalue 

of infinite multiplicity of 'che problem for 2 ~ 0. 
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1. INTRODUCTION 

The vibration problem for a) an elastic, slightly compressible 

body, b) a compressible slightly viscous fluid, .were considered from 

the point of view of spectral perturbation in [3], where results in 

terms of continuity and convergence of the eigenvalues and eigenvectors 

were given. The present paper may be considered as an improved version 

of [3] by using analytic perturbation theory. In fact, the problem 

a) is a stiff problem for s + 0 (where s is a parameter associated 

with the compressib~lity) as shown in Lions [7] and Pelissier [9]. 

If a standard L2 (Q) framework is taken the corresponding operators 

are densely defined for s ~ 0, but not for s = 0 (where the domain 

is submitted to the constraint div U = 0 associated with the incom-

pressibility condition). Nevertheless, the solution corresponding to 

any point of the resolvent set of the s = 0 problem may be expanded 

as a series convergent for small lsi ; by constructing appropriate 

"transformation functions" [6] for the projections associated with the 

singularities, the perturbation problem is analogous to an analytic 

perturbation in a finite-dimensional space. Moreover, a standard 

argument [6] based on the self-adjoint character for real s shows that 

branching of eigenvalues does not occur, and the eigenvalues are branches 

of holomorphic functions for small lsi. 
After the preceeding study (which is performed in section 3), we 

give in section 4 some explicit computations for the eigenvalues and 

eigenvectors for small lsi . For fixed £ , the asymptotic distribution 

of eigenvalues (which may be seen in Grubb [5] for s ~ 0 and in 

Metivier [8] for s 0) is given ; the non-analytic character of the 

perturbation s + 0 is shown in section 5 with some comments about 

this fact. Section 6 is devoted to the application of the preceeding 

techniques to the problem b) via a re-scaling z = Ss of the spectral 
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parameter and an application of the implicit function theorem in the 

framework of real analytic functions. It is shown that there are 

infinitely many real eigenvalues analytic in s in the ~ variable, 

and consequently, in the standard spectral parameter z , converging 

to zero, which is an eigenvalue of infinite multiplicity of the s = 0 

problem. 

As we already said, ·this paper con'ca.ins sharper results than those 

of [3]; in order to be self-contained, we give in section 2 some 

results of [3] (with slight modifications); more explicit developments, 

as 111ell as the case of mixed (Dirichlet and Neumann) boundary conditions 

may be seen in [3]. 

We now give some generalities abou·t not.ation. The superscript 

denotes the complex conjugate. Bold-face letters deno·te vectors in 

N-dimensional space: 

u 
2 N 

(L ) . 

< , > denotes duality in the sense of distributions (or betv1een 

and H1 , or even between L2 (Q) and itself). The symbols 
0 

-1 
H 

H1 (Q), H1 (Q) denote the standard Sobolev spaces. Index L is often 
0 

used for the limit problem. For instance, V, H (respec'cively V L, HL) 

are spaces used in the s·tudy of the Dirichlet problem for 

s f 0 (respec·tively s = 0) • 

2. SETTING OF THE PROBLEM AND EXPANSION OF SOLUTIONS 

We consider a slig-htly compressible elastic body filling a 

bounded open reg-ion Q of RN (N ~ 2) with smooth boundary ()Q. 

It is submitted to the action of the volume forces f = (f1 ,f2 .•. fN) 
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and is clamped at 3~ • In the framework of linear elasticity, the 

displacement vector U (u1 ,u2 ... ~) is the unique solution of 

the elastici·ty system 

(2 .1) 
- 11 ~ u - ~ grad div u 

u = 0 

f in 

} on 

The Lame's constants of the solid are J1 > 0 and A = (1/£) - p , 

with Jl fixed and £ small (real positive in physical applications) 

parameter tending to zero (£ is associated ~od.th the small compressibility) • 

As proven by Lions [7], the solution UE of (2.1) converges as 

£ + 0 to the solution of 

-11 ~ u + grad p f 

(2.2) div u 0 

u 0 

We consider t;he spaces 

hermitian and coercive form on V x V : 

in 

in 

on 

n 

) Q 

d~ 

and 'che sesquilinear 

3u. av. 
:l. :l. 

ax- dX­
r r 

+ 1 div u divv)cJ.x 
£ 

we denote A£ the linear bounded operator from v to V' = H-1 (~) 

associated with the form a£ , as well as ·the corresponding unbounded 

operator in H with domain D(A£) c V. It is a self-adjoint positive 

definite operator ~vi'ch compact resolvent, and i·ts spectrum is formed 

by the sequence of eigenvalues with finite multiplicity 
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0 < z:;! ::: z:;~ ::: •••••• ::: z:;~ ::: •••••• + 00 

which are considered repeated according to their multiplicity. 

As for the limit problem (2.2) 1 let be 

1 {u ; u E H0 (n} 1 div u o} 

and let HL be its closure in L2 (Q). We consider the sesquilinear 

hermitian and coercive form on VL x VL 

We denote the bounded linear operator from VL into V' 
L 

associated with the form aL 1 as well as the unbounded self-adjoint 

operator in associated with the form L 
a I and let 

0 < z:;~ ::: z:;~ ::: ••••• ::: z:;~ ::: ••••• + + 00 

be the sequence of the corresponding eigenvalues. 

We now consider the problem of finding (U 1 p) E H~(Q) x L2 (Q)/R 

satisfying 

1l /:;. u + grad p z:; u + f in n 

l (2.3) div u g in n 

u 0 on an 



2G 

for given -1 2 2 (f ,g) E H (Q} x L (!J) /R; here L (Q) /R denotes the subspace 

of L2 (S1) made of the functions whose mean value is zero. 

If ~ E O(AL), the spectrum of AL' then (2.3) admits a 

solution if and only if the data (f,g) satisfy the compatibility 

condition 

(2 .4) <f, v> 

for only solution (V,q) of the homogeneous problem. 

We let us point out the following estimate of the solution 

of (2.3) 

PROPOSITION 2.1- Let ~ E p(~), the Pesolvent set of AL; then, 

the solution of (2.3) satisfies: 

(2. 5) 

where: 

(2.6) c (~) (A + B + D I~ I ) (E + F I~ I) 
dist(~,O(~)) 

with A, B, D, E, F depending only on n and ~ . 

PROOF : The solution U ,p can be taken under the form 

u v + w p = p 

where V is a continuous lift of div v = g (which exists and is 

continuous from L2/R into H~ [12]); then the problem becomes 
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-]1 t:. w + gr·ad p - ~;; w 
f + u6v + '' ) 

div w 0 

and we obtain (W,p) with 

< 

and 

Now, for given f E l-r1 and 1;: E p (ALl we consider the problem: 

UE E H~{rl) 

1 
(2 0 7) 

- ]:lLlUE -
1 grad div tl f + 1;: UE 
E J • 

The following resul·t completes those of Pelissier [9]: 

PROPOSITION 2.2 - For given -1 
I;; E p (AL) , f E H , (2. 7) has a unique 

solution uE for o ¥ E E c and IE I sufficiently small. It is a 

holomorphic function of E v;ith values in H~ (S1) Moreover, 

when defined for E = o by is the 

solution of the hereafter given problem (2.9), it is a holomorphic 

function for 11:! sufficiently small. 

PROOF: As A - I;;I has index ~ 0 it suffices to prove the 
E 

surjectivity. We search for UE under the form: 

(2 .8) 
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where the series converges for \EI sufficiently small. In a standard 

way we insert (2.8) in·to (2.7) and we annihila·te the coefficients of 

the powers of E. 

At order E-l we have: 

and because uo E Hl 
0 

we 

so that For 

grad div uo 

have: 

div uo 

0 
E we have 

0 

0 

and by writing div u1 =- p 0 , (2.7), (2.8) becomes 

-]lLIU0 + grad 

(2. 9) div 0 

uo 0 

and by proposition 2.1 we have 

Then, for terms in E1 we have: 

and by writing 

we have: 

0 f + p i;;uo 

1 -p 

in 

in 

on 

n 

1 Q 

an J 
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- ]JL1 u1+ grad p 1 = ~;;ul in Q 

l div ul 0 in Q -p 

ul 0 on ()Q 

II IIHl + IIP1 11 2 :::c (/;;) IIP0 II 2 ::: c2 (sJ II f II 1 • 
0 L /R L /R w 

It is then a straightforward matter ·to go on to all terms in (2 .6) 

and proving that it is a convergen·t series for Is! < C (i:;) -l and 

.us satisfies the estima·te 

(2.10) 

and ·the conclusions follow. !Ill 

If ••e denote by II the projec·tion of l 2 (Q) on H 
L 

on V' ) u0 
L , in (2.9) may be obviously written 

(2 .11) ITf 

and the obtained results may be described by writing 

(2.12) 

(or of 

in H 1 strongly for any f E H-1 . Moreover the convergence is 
0 

uniform for (; E K compac·t of P (AL) (see ( 2 . 6) and the proof 

of proposition 2.2) and for f in a bounded set of H-1 . 
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3. HOLOMORPHIC BEHAVIOUR OF EIGENVALUES AND EIGENVECTORS FOR SMALL €. 

Let us consider a simple closed path y contained in a compact 

* set K of p(~) enclosing an eigenvalue l;L of (i.e. one of 

the eigenvalues The corresponding (orthogonal) eigenprojection 

of HL may also be considered, when acting after the projection TI , 

as an eigenprojection in L 2 (n) ; we shall denote it by * p • 
L • 

(3.1) 

We also consider 

(3.2) 

and we have 

(if yEp (A ) ) the projection 
€ 

PROPOSITION 3.1 - If yep(~) is chosen as above, then, for 

sufficiently smaU lsi, yc p (As) and the projection Ps of (3.2) is a 

holomorphic function of s with values in C(L 2 (Q)) taking for s = o 

the value * PL of (3.1). In consequence, the dimension of the range 

of P~ is independent of s for small lsi (and then equal to the 

* dimension of the range of PL). 

PROOF From proposition 2.2 and the remark at the end of section 2 

about uniform convergence for z;cK compact set of p(AL) the projection 

p is defined for small I si. The convergence of the integrals .is 
€ 
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obvious from the uniform convergence in (2.12) when applied to a fixed 

f E L 2 and is. a holomorphic function of E with values in 

According to a classical property (cf. Kato [6] sec·t.ion VII.l.l), PE 

.is holomorphic with values in £ Finally, the proper-ty about 

'che dimension of the range is classical. 1111 

At the present state, it is to be noticed that the operators 

are self-adjoint only for real E , and the range of P has not 
E 

necessarily a basis formed by eigenvalues. We have : 

* THEOREM 3.1 - Let I;; be an eigenvalue of AL (i.e. one of the 

l;;il of multiplicity m =:: 1 • Then~ for the sufficiently small / E I 
L 

* (complex 1:n general) the operator A 
E 

has in the vicinity of I;; m. 

eigenvalues (not necessarily dis-tinct) which are holomorphic functions 

of E , 1'eal for l"eal E : 

'1) •. (1' 2 (1) 

l 
!;;'- /;; .. + E/;; )+ E 1;;2 +··· 

E 1 

(3 .3) 

l;;(m) * lm) 2 (m) 
/;; + E/;;' + E 1;;2 +· .. 

E 1 

and for real E there are m associated linearly independent eigenvectors 

(LJhich are analytic functions of E such that for s = o they span 

* Ker (AL-I;;)). 

PROOF : Let us construct the "transformation functions" U(E) and 

U(E) - 1 associated v1i·th the projections PE in the vicinity of E = 0 

(cf. Kato [6] p. 33, 56, 99, 102, 369) 

(3.4) U(E) 
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which are holomorphic functions of s for small \s\ with values 

in L{H) satisfying: 

* -1 
U(S)PL U(S) p 

s 

Horeover, for real, is orthogonal and 

uni·tary" We then consider the opera·tors 

(3. 6) 

-1 
U(S), U(E) are 

which are image of A s 
under the transformation U (E)" They are 

self-adjoint for real E. Of course, the eigenvalue problem for A 
E 

is ·the same as for AE Moreover, the projection Ps commutes with 

and * p 
I. 

conunutes with AE : consequen·tly ·the spectr·al problem 

for A 
E 

in is analogous to the spectral problem for AE 

* PLH, i.e. the m x m matrix 

Now we have : 

* - * LE~~ 3.1 - The m x m matrix PL AE PL is hotomorphic for 

sufficiently small Is I and takes for s o ·the value 

In order to prove this lem.ma, we see from proposition 2.2 

that A-1 is a holomorphic function of E for small IE I with 
E: 

in £(H)' taking the value A -lTI 
L 

for E: 0 Thus 

in 

values 

is_a holomorphic function of E: for small jEj with values in ((H) 

and taking ·the value 
-1 

A TI 
L 

for E = 0. Let us consider 



if we 'cake * ¢ EPLH we see that 

* --v-1 * p A p 
L E L 
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and consequently the operator 

is an operator (in fact a m x m matrix) which is holomorphic and 

* take the value p 
L 

for As a consequence, the matrix 

* * PLAEPL is holomorphic for small E and take the value PLALPL 

for E = 0. Lem.111a 3.1 is proven. At the present state the eigenvalue 

problem is analogous to ·the classical ·one for a holomorphic m x m 

matrix which is self-adjoint for real E (cf. Kato [6] chap.2) and 

the conclusions follow. Le'c us recall in ·this connection that withou·t 

* the self-adjointness hypothesis, the eigenvalue s splits into m 

branches as an algebraic singularity; the fact that the branches are 

holomorphic is a consequence of the fact that the partial eigenprojections 

for ·the branches are orthogonal (and then bounded) for real E 

(see Kato [6] section 2.1.6). ~ 

4. EXPLICIT COMPUTATION OF EXPANSION (3.3) 

Let us consider as in the preceeding section that is an 

eigenvalue of AL with multiplicity m ~ 1. We consider the expansion 

of the m analytic eigenvectors associated with the expansion (3.3) 

for the eigenvalues. 

(4 .1) 

where U ~.f.) E 
l 

1 
H0 WJ and the * span Ker (AL- s ) . 

and eigenvalues of (3.3), (4.1) satisfy 

1,2, ... m, 

The eigenvectors 
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(4.2) 1;;(l) u (l) 
€ € • 

After inserting (3.3), (4.1) into (4.2) we proceed as in the proof 

of proposition 2.2. At order t:-1 and s0 we have respectively: 

and by denoting 

div u<ll 
0 

div IJ(.f.) 
1 

0 in f:2 

we see that are solutions of the eigenvalue problem for 

- p 11 v +grad * 

} 
q <;; v in f:2 

(4 .3) div v 0 in Q 

v 0 on ()f:2 

We shall see that the are defined later (partially at 

least) as eigenvectors of some eigenvalue problem in Ker(AL For 

the 'cime being, we denote (V (j), q (j)) a basis satisfying the 

orthgonality conditions 

A • 
L" 

(4.4) 0,. 
lJ 

(V (j) ,V (i) )H 

.L 

( j) ( i) 
(q ,q ) 2 (~l)'i,j=l,2, •.. ,m 

L 

and determining 

with 

(4.5) 

(!) 
amounts to determining a. (l,j 

J 
1,2,. ".m) 

~ A' (!) ( j) • 0 - 1 
'-' u., q 1 .-t..- "'2g"~m~ 

j=l J 
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Now the expansion of (4.2) at order E1 gives 

-jl•u(l)+ g~ad (l)_r*u(l)= r[l)u(l) . n 
0 1 ' pl ~ 1 ~1 0 ln " 

(4.6) 
in Q 

0 on 3fl 

where 

ll) - - div U (l) 
pl 2 

We consider (4.6) as a system with unknowns according 

to (2.4), ·the compatibili·ty condition is : 

which, with (4.4), (4.5) becomes 

(4. 7) 

and consequently -l;;(l) 
1 

and 

( (l) (j))) 
- Po ' q L~ 

(i)-(j)d . 0 q q x, J ,..__ 1,2, · · .m 

are the eigenvalues 

and the corresponding eigenvectors of the m x m self-adjoint non-

negative matrix M with coefficients 

Consequently the coefficients are v1ell determined real :S 0 

numbers. If they are distinct we are in the case of maximum splitting 

of the eigenvalue (3.3) and the are also well determined 
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(up to a constant factor for each one). If there are multiple eigenvalues, 

the corresponding are only subject to be a basis of the corresponding 

eigenspace. 

At this s·tage, (4.6) are compatible and are defined up to 

an addi·tive eigenvector which is determined at the same time that 
(-t) 

in order to satisfy the compatibility condition for the terms of order 

s 2 in (4.2) and so on. 

REMARK 4.1 : We saw that z:{i) ::0 o and consequently, for real s, the 

eigenvalues decrease as s increase. This result is natural from a 

physical point of view : as s + 0 the rigidity of the system increases 

and the eigen-frequencies must increase. ~ 

5. ASYMPTOTIC DISTRIBUTION OF THE n-TH EIGENVALUE AS n700, 

It is worthwhile comparing formula (3.3), associated with a 

fixed eigenvalue of AL with the fm:1llula giving ·the asymptotic 

distribution of eigenvalues. System (2.1) is elliptic in the sense 

of Agmon, Douglis, Nirenberg [1] for complex s with 

(5.1) 

and consequently it has index 0 (either as a bounded operator from 

V into V' or as an unbounded opera"tor in H) for all s satisfying 

(5.1). According to general results on asymptotic distribution of 

eigenvalues of elliptic sys·tems (see for instance Grubb [5] for a 

presenta-tion of these results) , we define: 
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and we have (with arbitrary & > 0) 

(5.2) 

c 
A s 

as t + + oo 

(N-1) -N/2 (Q) 1 (S]l) [ 
N/2 

~].1 meas + N _ 1 

(WN is the measure of the unit sphere of RN). 

On the other hand, for s = 0, -the asymptotic distribu-tion 

of eigenvalues for a class of systems containing (2.3) is given in 

Metivier [8]. The result for our system is: 

(5. 3) 

and we see that 

(5.4) 

w 
N (N-1) ll-N/2 meas (S"l) 

( 2 1J)N N 

lim C 
s+o As 

l 
j 

From (5.2) and (5.3) we deduce an asymptotic behaviour of ·the n-th 

eigenvalue 

n -2/N 2 1N 

I 1;; - CA n ' as n+oo 
s 

(5. 5) 
s 

n -2/N n2/N 
1;;_ - CA as n +"" 

L 
L 



where from (5.2), (5.3) 

(5.6) 
-2/N 

CA 
E 
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This formula is consistent with the physical considerations of remark 

4.1 and shows that (for N ~ 2) in general, the analytic dependence of 

r,n on E does not hold for the asymptotic behaviour n -+ 00 • 

E 

This phenomenon may be explained by the following considerations. 

According to theorem 3.1, each eigenvalue r,~ of ~ is approached 

analytically by eigenvalues r,~ of AE , but there is no reason 

for obtaining all eigenvalues of AE in this way. There may perhaps 

exist other eigenvalues of AE not depending analytically on E. 

We show this with an example inspirated by the considerations of 

Metivier [8], section 6: 

EXAMPLE: Let n = ]0,2~[N. We consider problems analogous to (2.1), 

(2.2) with periodicity conditions. A Fourier expansion easily shows 

that eigenvalues of ~ and A 
E 

are : 

r,L lliv1 2 with 

r,E llivl 2 with 

A 1 I 2 <ll+- > vI E E 

multiplicity 

multiplicity 

simple 

The eigenvalues AE are not analytic in E. • 

N - 1 

N - 1 

6. APPL!CATION TO THE VIBRATIONS OF A FLUID WITH SMALL VISCOSITY 

We consider a bounded domain n of RN as in the preceeding 

sections. If U and p denote the velocity vector and pressure 
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perturbation of a slightly viscous barotropic fluid, the linearized 

vibration in a vessel with rigid boundary satisfies the system: 

au. 
()p 

3cr:'.(u) 
l - l] in Q a;;- -k +E 

d X. 
l J 

()p 
div u in Q 

()t 

(6.1) 
u 0 if E > 0 

} on ()Q 

U•l'l 0 if E ~ 0 

o.~(U) 
dU. Clu. 

- A.(div u)6 .. +1J(8 l +~ l 
l] lJ X. X. 

J l 

where EO is the viscosity tensor and EA,Efl are the viscosity 

coefficients, which satisfy 

11 > o, 3A. + 211 > o. 

The spectral properties of system (6.1) were considered in [4]. 

For E > 0 the spectrum consists of isolated eigenvalues with finite 

multiplicity and of the essen-tial spectrum formed by the points 

-1 -1 
[E(A+21J)] , [E(A+3!1)] • 

For E = 0, the spectrum consists of the sequences of eigenvalues ± iwk 

(where are the eigenvalues of the laplacian with Neumann boundary 

condition in Sl) and the eigenvalue 0 \•lith infinite multiplicity 

(essential spectrum). 

The spectral problem associated with (6.1) is 
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ao':. Clp l -€___2:2 + zu. dX. 3X, = 
~ 

J ~ 

J 
(6. 2) 

div U zp 

we now study the eigenvalues of (6. 2) in the vicini·ty of z = 0 

as E + 0. After eliminating p between the two equations of (6.2) 

and under the re-scaling z = E~, the problem becomes: 

(6. 3) 

with of course the Dirichlet boundary condition for U • Under this 

form we have an implicit eigenvalue problem (the spectral parameter ~ 

appears in the left hand side) for a perturbation of the form of that 

of section 2. We introduce the new small parameter n defined by: 

or equivalently 

(6 .4) 

1 
n 

(A. + )1) -
1 

2 
?;:E 

o. 

The problem of finding the eigenvalue ~ as a function of the parameter n 

is exactly the problem of section 3, (where "che parameter is denoted n 

ins·tead of c:). Consequently, if we replace I; in (6.4) by the functions 

~A!) of theorem 3.1, equation (6.1) becomes an implicit equation to find 

n = n <El such that as replaced into (6.3) with the corresponding 

(and ·the corresponding eigenvector) gives a solution of the eigenvalue 

problem. 
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* In order ·to perform this program, let i;; be an eigenvector with 

multiplicity m of the limit operator AL. According to theorem 3.1 

let us take ' 

1;:( TJ) 

for small rea·l n in (6A), which becomes an implicit equation to be 

* s"cudied in the vicinity of s 0' 1l 0 (and consequently i;; i;; ) • 

One sees that 

F (0,0) 1 
1l 

and consequently there exists n(s), i;;(S) real-analytic for small 

real s associated with each of the analytic branches (f.= l, ... m) 

of (3.3). We have proved the following theorem, which improves 

theorem 3.1 of [3]. 

THEOREM 6.1 Let i;; be an eigenvalue with muUipUcity m of AL 

Then, for reaZ s uJith sufficiently smaU Is I the eigenvalue problem 

(6.2) has the rn reaZ analytic eigenvalues (not necessarily distinct) 

(1) * 2 (1) 3 (1) 

I z Ei:;: + s z2 +s z 3 + ..... 
s 

(6 .6) 

(m) * 2 (m) 3 (m) 
z Si;; + s z2 +s z 3 + •..•. 

s 

and m associated linearly independen·t eigenvectors which are real 

* analytic functions of s such that for s = 0 they span Ker (AL -1;; ) • 
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7. A COMPLEMENTARY REMARK 

Barry Simon has kindly pointed out to us that the results of 

section 3 can be viewed in the following more general setting< The 

form aL(u,v), that we shall now denote a 0 (u,v), with domain 

{u ;u E H~ (nJ, div u = o} can be considered as a non-densely 

defined closed form in ·the space H (rl) • Now, as is remarked in 

[ll,section 4] << ·the extension of the usual theory of densely 

defined closed forms 'co the general case is qui'ce elementary >>. 

The notions of closed, closabili·ty and closure are unchanged; there 

is a one to one correspondence between closed positive quadratic forms 

t on H and opera·tors T which are self-adjoint on D (T) =closure of D (T) 

in H. If the form t with eventually non dense domain D (t) c H 

is closed its resolvent is defined as the operator which is (T-1,;)-l 

on D(t) and zero on 
1 

D(t) ; i.e. if denotes the orthogonal 

projection of H onto D we define the resolvent as (T- £;;) -l II . 

We can then say that 

(s.r.s.) if (T +1) 
n 

-1 

of the 
E 

solu'cion u 

the fo:L'1ll.S 

converges 

of (2 .1) to 

to 

+t as in the strong resohent sense 

-1 
(T00+1) strongly, The convergence 

solution of (2.2) proved by 

Lions [7] , can also be obtained as a consequence of a ·theorem of Kate 

and B. Simon [10], [11]. 

With the convention that (A0-£;;)-l 
-1 

(AL-l,;) II, proposition 2.2 

means that. (AE -£;;) -l 1.s for IE\ small a bounded holomorphic family 

of operators for £;; in a compact se·t of p (AL). But the previous 

considerations suggest that one can use the defin·tion of Ka·to [6], 

Chap.VII,§4.2 saying that the family a (u.,v) is for \E\ small an 
.E 

holomorphic family of type (a) of eventually non-densely defined 

closed forms on H. Then theorem 3.1 means ·that the resu.l1:s on the 

perturba1:ions of eigenvalues and eigenvectors can be extended t.o 'chis 

more general si tua·tion. 
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