
65 

THE MOTION OF A WETTING FRONT FOR A GREEN-AMPT MODEL 

OF INFILTRATION INTO A CRACKED SOIL 

MaZaoZm Ro Davidson 

1. INTRODUCTION 

The presence of worm holes, root holes or cracks in soils can have an 

important effect on the vertical transfer of water from the surface (Bevan 

and Germann [2]). Here, a t·wo-dimensional homogeneous soil containing 

regularly spaced vertical cracks which are open to the surface and have 

length a and spacing 2b (Figure 1), is considered. Because of symmetry, we 

consider only the shaded region bounded by a single crack. Rectangular 

coordinates (x,z are chosen with the positive z axis directed downward. 

Initially, the mois turecontent is taken to be uniform. From time 

t = 0 onward, it is assumed that free water is supplied to the surf ace and 

that the crack is completely filled with. water, the pressure therein being 

hydrostatic. The front (assumed to be sharp in the Green-Ampt model) 

separating the wetted from the unwetted region, advances away from the top 

surface and the crack. 

A numerical procedure (similar to that used by Longuet-Higgins and 

Cokelet [6J, and more recently by Davidson [3]) is described which traces 

the motion of the front by progressively solving an integral equation for 

the velocity at points on the front at each time step. A detailed account 

of the modelling assumptior.s and the physics of the problem is given 

elsewhere (Davidson [4J). 

2. GOVERNING EQUATIONS 

In terms of potential~ (the sum of the pressure (~) and 

gravitational potentials), Darcy's law for flow in the wetted region is 
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(2.1) u = -KV~ 

where ~ = V - z (see e.g. Philip [7]), ~ is the flow velocity, and K is the 

hydraulic conductivity. In the Green-Ampt model, both the pressure Vc 

just behind the front and K are assumed to be constant. 

At any instant, flow within the wetted region is given by the 

solution of 

(2.2) 

subject to 

(2.3) 

(2.4) 

o (by continuity) 

v - z on the front (C), 
c 

o for z o and x - 0, 0 ~ z ~.a, 

(2.5) ~ = 0 for x = b and x= 0, z > a (symmetry) 

A point (x,z) on C moves according to 

(2.6) 

where UN 

dx 
dt -UN sin X 

dz 
dt = UN cos X , 

K a~ -I aN is the normal velocity of the front assuming that the 

velocity ahead of it is small. Here, N is the normal to C directed from 

the wetted to the dry region, X is the angle between N and the positive z 

axis, and f is the difference in moisture contents behind and ahead of the 

front. 

It is convenient to transform the flow region by considering the 
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following transformation linking the complex variables Q 

w = p + iq: 

(2.7) 

i'O (1 ( cos'ifw/2d -- og 
'if \sin1T /2d 

1 ( cosrrw/2d 
- og ----

sin ll/2d 

where sin li/2d tanh lla/2b. 

x + iz and 

In each case, the square root and log are interpreted as that branch of the 

function obtained by cutting the plane of its argument along the negative 

real axis. In the w plane, the transformed flow region is periodic with 

the shaded region in Figure 2 corresponding to that in Figure 1, and the 

boundary sections A'I1'H'D'E' mapping onto A13HDE. The transformed wetting 

region and front are denoted by R' and C', respectively. 

The flow equation remains 

(2.8) o in R' 

and the transformed boundary conditions are 

(2.9) o on q o , 

(2.10) ~c - z(p,q) on C' 

(2.11) o when p o or p d 



Fi gure 1. 

Figure 2. 
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Representation in the physical (n) plane of a soil containing 
regularly spaced vertical cracks of depth a and spacing 2b. 
The broken lines are lines of symmetry and the width of the 
shaded region is half a period. 
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Representation in the transformed (w) plane of a soil which 
contains regularly spaced vertical cracks in the physical plane. 
The broken lines are line of symmetry and the width of the 
shaded region is half a period. 
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Equations (2.6) become 

dp -U sin 6 
dt n 

(2.12) 
dq U cos 8 
dt n 

(2.13) where U 
-K ~I 1M2 12 

n f an dw ' 

n is the outward normal (from R') to C' and 8 denotes the angle between n 

and the positive q axis, When C' is described by a single valued function 

q(p,t), the kinematic condition (2.12) may be expressed equivalently as 

(2.14) 3q/ at 

along lines of constant p. 

3. THE INTEGRAL EQUATION 

The Green's function 

G(p,q;l;,n) '" !If log (COSh i (q-n)-cos -j<P+I;)) (COSh-j<q-n)-cos i- (p-n) 
(3.1) - Zlf log (COSh i (q+ll)-COS i(p+I;») 00S~(q+T)-COS ~ (P-O) 

satisfies the homogeneous boundary conditions (2.9) and (2.11). By 

applying Green's theorem over the region R' together with equations 

(2. 8)~(2. 11), Davidson [4] derived the following integral equation for 



(3.2) 
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'¥ 
c 

where points P ~ (p,q) and Q "" (t;, n) both lie on C', and S is are length. 

An alternative form, which avoids computational difficulties associated 

with the singularity in the kernel at P ; Q, is 

Cl<jl / <lG 
'dn(h ( J (n-q) 

. \ C" 
dS(Q) - 'I)'" J (eos6(Q)d(Pl, .~ eose 

/ C' dn(O 
G dS(Q) 

(3.3) + cos8(P) (z(P) 

The integrands in equation (3.3) are now zero when P Q. 

4. TIME STEPPING 

Equations (2.14) and (3.3) are solved along equally spaced Hnes 

p '" Pj '" jllp (j '" O,l, ••• ,N). On each line p '" Pj , the Adall1s-11ashforth­

Moulton scheme (see Hamming [5]) is applied to equation (2.14), to advance 

through time with local errors of the order (6t)5, where lit is the time 

step. Thus, 

ilt , , I 

9 q~3) q", qo + 24 (55 q - 59 '1-1 + 37 '1- 2 -0 

6t , , , 
<2) and '1** '10 + 24 (9 'I", + 19 q - 5 q 

-1 + 
0 

where' denotes a/ot, qk denotes q(P j , t~~At) and q"" '1",* denote predicted 

and corrected values of '110 A fourth order Runge-Kutta formula is used 

to start the process. 
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At each time step, quadrature of the integral in equation (3.3) (in 

terms of variable p) using Simpson's rule followed by collocation at 

p = p. gives a set of simultaneous linear algebraic equations having 
J 

error of the order (~p)4 for the values of a~l/an and hence U. In 
n 

this evaluation, the slopes of C' are required; these are calculated at 

each time step by cubic spline fitting q(p.) (Ahlberg et a1. [1]). 
J 

At time t = 0, the front corresponds with the p axis and its velocity 

is infinite. Thus we need to begin the numerical calculation from a 

frontal configuration corresponding to some non-zero time. This point may 

be derived by approximating the front at small times. On C' 

a .. ° and ~ an 

'i' -z 
c 

q 

for small t. Thus, from equations (2.13) and (2.14) 

(4.1) / 
o 

_ dO 2 &1 dw d-
z p,q)- c q 

which may be solved (Newton iteration) for the displacement q of the front 

at given p and t. The displacement and hence the error in the 

approximation increases as p approaches 0 (i.e. the tip of the crack). 

From Green's theorem and the boundary conditions, it can be shown that 

(4.2) f (q ~: + cos a (z-'i'c» dS 
C' ° 

This provides a useful check on the accuracy of the calculation at each 

time step. 
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At small times, some resolution of the front is lost in the corner 

region of the Q plane near the origin, corresponding to the point (l, 0) in 

the W plane, because is large there; in that case, small 

distances in the w plane correspond to !1lI.u::h larger ones in the II plane. 

Since an accurate resolution of the corner at small times would require 

prohibitively sm.all values of the interval spacing IIp, the curve in this 

region is simply interpolated :i.n the. U) plane in preparation for. plotting in 

the physical (&1) plane. 

~ . . Kt 
The starting position for. the calcuLal:lOn was tak,en at t:I.me al" 

and the p axis was subdivided 40 times. Reducing the dillJ.ensionless 

starting time to 10- 5 to improve the iaitial approximation had a 

negligible effect on the calculated front In a test caseo Similarly, 

doubling the number of subdivis:tOIlS of the p 1IX1.S prod.uced little effect, 

other than increasing the resolution in the corner. 

In the absence of any theory on which to base our choice of time step 

At (ideally it should be the maximum permitted by accuracy and! stab:Uity 

considerations), we adopt the practical criterion of requiring that the 

distance moved by the front along lines of constant p :'-n time LIt be less 

than Ap. If the distance moved is greater than ilp, then llt is halved; i:1: 

for example, it is less than 0.2 ilp, then Ilt is doubled. 

Results of a typical calculation are shown in Figure 3. The time 

dependence of cumulative infiltration and infiltration rate can also be 

calculated; if the model is to be useful, it must be able to predict these 

integral properties accurately. 

Acknowledgement: The author wishes to thank Adrian Peck, Colin ,Johnston 

and David Williamson (CSIRO Division of Groundwater Research) for 

introducing him to this problem area. 
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Figure 3. Development of the wetting front with dimensionless 
time Kt/af when ~ /a = -1.0 and b/a = 1.0. c 
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