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SOME RECENT RESULTS ON THE EQUATION OF PRESCRIBED GAUSS CURVATURE
John I.E. Urbas

In this article we discuss some recently established results
. . 2 R .
concerning convex solutions u ¢ C () of the equation of prescribed Gauss
curvature

2

(1) det D%u = K(x) (1 + |pu|?) (*¥2)/2

Here §) is a domain in Hfl, Du and D2u denote the gra&ient and the
Hessian of the function u , and K(x) denotes the Gauss curvature of the
graph of u at (x,u(x)) , which we shall assume is positive in .

We start with a necessary condition for the existence of a convex
CZ(Q) solution of (1). If u is such a solution, then the gradient
mapping Du : ) + Rr" is one to one with Jacobian det Dzu ; SO by
integrating (1) we obtain

LZK

det Dzu
Q (1+|pu|?) (#¥2)/2

Du () (l'+|p|2)

dp
|2)(n+2)/2

A

r" (l-+|p

- dp
- (n+2) /2

where wn is the measure of the unit ball in Efl. Thus the condition

(2) Lz K < W,

. . . 2
is necessary for the existence of a convex solution u € C () of (1).
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The first problem we consider is the Dirichlet problem for (1), which
was recently studied by P.L. Lions [9], [10], Trudinger and Urbas [12] and

Ivochkina [5]. The following theorem was proved in [12].

THEOREM 1: Let Q bea C % uniformly convex domain in R, ¢ ¢ cl’l(ﬁ)

and ¥ e ctM@) a positive function such that

(3) J K< W
Q
and
(4) K(x) £ u dist(x,00)
for some positive constant W . Then the classical Dirichlet problem
(5) det D%u = k(=) (L+|pu]? /2 4 9, u=¢ om 3,

0,1

has a unique convex solution u e CZ(Q) necti .

Theorem 1 can be obtained from the results of Lions [9], [10] as in
[12], or directly from the results of Caffarelli, Nirenberg and Spruck [2],
Krylov [6], [7], [8] and Ivochkina [5] on the existence of globally smooth
solutions of the Dirichlet problem for equations of Monge-Ampére type, by
using the interior second derivative estimate established in [13]. The
existence of a convex solution u € Cz(Q) n Co(ﬁ) of (5) was proved under
the hypotheses of Theorem 1 by Lions [9], [10], and the case ¢ = O wés
also proved by Gilbarg and Trudinger [4]. The Dirichlet problem for convex
generalized solutions of (5) was studied by Bakelman [1], who proved a
generalized version of Theorem 1. Additional references to this work are
given in [1].

The condition (4) causes the equation (1) to become degenerate near
9l , which precludes us from obtaining globally smooth solutions of (5).
However, a partial result on the global regularity of convex solutions of

2,1

(5) is given in [12]. Specifically, if 0of0 € C , ® = 0 and
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1/n 2,n

K € CO’l(Q) nw (9) (modulo convex functions), then the convex

Llgy .

solution of (5) is in CZ(Q) ncC

The existence of globally smooth convex solutions of (5) was recently
established by Ivochkina [5]. Her hypotheses are different to the ones of
Theorem 1; in particular, K 1is assumed to be bounded away from zero in

) and a restriction on the size of is necessary.

I¢12;Q
The sharpness of the condition (4) for the classical solvability of

the Dirichlet problem (5) for arbitrary smooth boundary data, at least in

terms of power functions, is shown in [12] using a barrier argument.

Related to this is the following global HoOlder estimate which is proved in

[15], and which yields nonexistence results for the Dirichlet problem (5).

THEOREM 2: Let Q be a C-'' bounded domain in R® and u e C2(Q) a

convex solution of (1), where X satisfies

(6) K(x) =2 U dist(x,BQ)B
for some constants W >0 and B e [0,1) . Then
(7) sup |u(x) -uly) | SClx—yl(l_B)/zn .

x,vef

where C depends only on n , u, B and Q .

This result is an extension of the global oscillation estimate proved
in [14], and is proved by a careful application of the barrier technique
used there.

Although we cannot generally satisfy the boundary condition in (5) in
the classical sense if (4) is not satisfied, it is possible to satisfy it
in a certain optimal or generalized sense. This was proved by Bakelman [1]
for generalized solutions. In [15] we have established the following

result for smooth solutions.
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THEOREM 3: Let @ be a c 'l uniformly comvex domain in R, ¢  c' (B
and K € cl'l(Q) n LP(Q) , P > n, a positive function satisfying (3). Then
there is a unique convex function u e,_.cz(Q) 0 L7(Q) such that u solves

(1) in Q ,

(8) lim sup u(x) < ¢(y)  for all y € 3Q .,
Xy :

and if v € Cz(Q) n1(Q) ie another convex solution of (L), and

lim sup v(x) < ¢ly) for all y e 30 , then v <u in Q.
x>y

The function u is therefore the supremum of the convex subsolutions
of (1) which lie below ¢ on 030 , and the proof of the theorem shows that
is also the infimum of the convex supersolutions of (1) which lie above ¢
on 09 . To prove Theorem 3 we solve approximating Dirichlet problems with
boundary values ¢ and obtain a sequence of Cz(Q) convex functions
converging in CO(Q) to a convex generalized solution wu of (1), which
satisfies (8) and the final conclusion of the theorem. To deduce the
regularity of u we first use some measure theory to obtain information
about the behaviour of u near 9f) , and then use a standard method of
Pogorelov [1l] and Cheng and Yau [3]. If K satisfies (4) in Q n Bs(xo),
where xo e 30 , then u ¢ Co’l(Q n Be

2(xo)) and u=¢ on o nB_ (x)) ,

/
while if K satisfies (6) in Q n Be(xo) , then

€ COI (]_—6)/21‘1

/2

u (R nB =) -

€/2
The final theorem we mention summarizes the results we have proved in

[14], [15] in the case

(9) JQ K = wn .

THEOREM 4: Let Q be a uniformly convex domain in ®" and
K e cl’l(Q) n LF (@) » P >n , a positive function satisfying (9). Then
there is a convex solution u e C° () of the equation (1), and any two

such solutions differ by a constant.
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To prove Theorem 4, we first obtain a generalized solution u of (1),
which is done by solving approximating Dirichlet problems and passing to a
limit with the help of an interior oscillation estimate, for example,
Theorem 2 applied to smooth compactly contained subdomains of { . The
regularity proof is similar to that in Theorem 3, and the uniqueness
assertion follows from a comparison principle. If K satisfies (4) near a

point x_ € 9% , then

0

lim u(x) = o ,

X
R

while if K satisfies (6) near xO e 3 , and 0O is Cl’l near xO R
then u is Holder continuous there with exponent (1-8)/2n .
Finally, we mention that in [15], these results have been extended to

Monge-Ampére equations of the form

det D2u = £(x,u,Du) ,

under suitable hypotheses on £ .
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