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WHEN ARE SINGULAR INTEGRAL OPERATORS BOUNDED?
Alan McIntosh

The aim of this talk is to survey some results concerning the
La—boundedness>of singular integral operators, and in particular to

present the T(b) theorem.

Let us consider one-dimensional singular integral operators T of

the following type:

(Tu)(x) = p.v. I K(x,y)u(y)dy

—~&3

where, for x,y € R with x #y ,

IR(x,y)1 < cglxmyl

2

1A

(1) S| = oy ixyi”

2

3K -
hafiiy < -
L ay(X.y)l < czlx vi

Such T are called Calderon-Zygmund operators if HT¢H2 < CH¢H2
for all ¢ e C:(R) . We note first that an Lz—estimate of this type is

sufficient to prove a variety of bounds.

THEOREM 1 (Calderdén, Zygmund, Cotlar, Stein) Suppose T is a
Calderén-Zygmund operator. If u € Lp , 1 <p <o, then Tu(x) is

defined for almost all x , and HTqu < cpHqu , 1 <p<e .  If
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uel , then INTully < c/Mull_, where |-l denotes the BMO norm
a8 -]

and Tu is only defined modulo the constant functions.
In addition one has maximal-function estimates.

It has been a long-term program, initiated by Calderdn, to
determine whether certain classes of naturally occurring singulaf
integral operators are Calderdn-Zygmund operators. The best known case
is when K(x,y) = k(x-y) with ﬁle L (R}, where k denotes the
Fourier transform of k . 1In this case, T = ﬁ(D) where D = —ié% and

WTull, < KN juil, . In particular, if K(x,y) = in Y(x-y)™} , then T =

sgn(D) , which is the Hilbert transform on R , appropriately scaled.

Another well-known class of kernels Kj give rise to the

commutator integrals Tj . These are defined by

(g(X)-g(y))j

K.(x,y) = i :
J " (x—y)J+1

where g is a Lipschitz function. It was shown by Calderdn that T1
is bounded, and then by Coifman and Meyer that Tj is bounded for

j > 1 . Subsequently the bound
T ul, < c(1+3) g n Jnun
j 2~ L] 2
was obtained by Coifman, McIntosh and Meyer [1].

It follows from these estimates for Tj that Th is bounded,

where Th has kernel
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K (x,y) = (h(x)-h(y)) ",

with h a Lipschitz function such that ®Re h'(x) 2 A > 0 almost

everywhere. For we can write h(x) = p(x-g(x)) with p > 0 and

fig*ll < 1, and then
[+
1 -]
R (x,y) =p " 3 Ki(xy)
J=0
So
1 a8
< <
IT ull, < o jgo IT ull, < il

The operator Th arises as follows. |[The Cauchy integral on the

Lipschitz curve % parametrized by z = h(x) is

pov. [ ()7 ute)ag
v

R

CVU(Z) =

On writing U(z(x)) = u(x) , we get

@
i '
Cyu(x) == p.v. J_m Ky (x,y)uly)h’ (yidy .
i.e.
C7 = ThB
where B denotes multiplication by b =h' . So C7 is Lz—bounded

{(though not itself a Calderdn-Zygmund operator).
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The original (unpublished) proof of the Lz—boundedness of 01 was

quite different from that indicated above. It was shown that
s s
<
WD} Cy un2 < Cs D} uII2
when 0 < s < 1 , and hence that
NDIST, ult, < ¢ D18 tull, .
h 2 s 2

Also, taking the dual of the above estimate with b replaced by b,

we have

-s -s
<
WD} BT ulI2 < CSHIDl uN2

h

It was then shown that Th is L2—bounded by interpolating these

inequalities. This interpolation was achieved via a theorem of Kato
which states that the domains of fractional powers of maximal accretive
operators interpolate [4], and by proving a variant of the Kato square

7

root problem, namely that

1

1 s,2 s
<
IDIT) uH2 < clliD} uM2

T IN:D

Once the square root problem was solved, however, it was realized
that the estimates used in its proof gave directly the boundedness of

T, and hence of T and C_ .
J h Y

"
w
|
o

4
dz

Let us make some remarks about CV . Let D7 =
Y

e | b

Then DV has spectrum in the double sector
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Sw = {zet | larg z| £ w or |arg(-z)| < w}

where © is large enough that Sw = {gl-gz | gl,gz € v} . If the

signum function is defined on Sw by

1 , Rez > O
sgn z = 0 s z =0
-1 ) Rez < 0 ,

th Cc = D
en v sgn( 1)

o
We remark that, for analytic functions @ on Sw+e (the interior

of Sw+e ) which decay suitably at ® , w(Dv) can be defined using
resolvent integrals. On the other hand, if @ has inverse Fourier
transform % which extends analytically to S;+e and decays suitably

at o , then
@(D,)U(2) - L $(2-¢)U(¢)d¢

Let us go on. Subsequently to the operators Tj and Th having
been shown to be Lz—bounded, David and Journé proved an intriguing
theorem. We see from theorem 1 that if T is a Calderdn-Zygmund

operator then T(1) € BMO and T*(1) € BMO. It is also clear that T

satisfies the following weak boundedness property:

(2) there exists m 20 and c¢ 2 0 such that

<
|<Tu1,u2>| < cd
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for all u, , u, € C:(R) such that u

(-]
1 2 u, € CO(R) where u, and u

17 72 2
have support in an interval of length d and satisfy |u;r)l < d_r for

all r<m.

THEOREM 2.[2] Suppose K satisfies (1). Then T is a
Calderén-Zygmund operator if and only if T(1) € BMO , T*(1) € BMO and

T satisfies (2).

As noted above, the "only if" part of this result is
straightforward. But the "if" part is quite striking. We note that if
K(x,y) = -K(y,x) and (1) is satisfied, then (2) holds automatically.

So in this case the L2—boundedness is equivalent to T(1) e BMO.

Theorem 2 can be used inductively to show that the commutator
operators Tj are bounded, but the bounds are not strong enough to

imply that T and C7 are bounded except when h has a small

h

Lipschitz constant.

Another interesting recent result is that of Lemarié. He proved a

more general version of the following:

THEOREM 3.[5] Suppose that (1) is satisfied and that T(b) = 0 (€ BMO)
for some function b € Lw(m) Define W by W(u) = T(bu) , and
suppose that (2) holds with T replaced by W . Then, for each

s € (0,1) , there exists cs such that

S s
<
D} Wull2 < CSHID] uﬂz .
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As a corollary of this, Meyer and the author proved the following

variant of David and Journé's theorem [6].

THEOREM 4. Suppose that bl,b2 € LQ(R) with Re bj(x) > &g >0, that
T(bl) = 0 and T*(Eg) =0 , that (1) holds, and that (2) holds with T
replaced by both TB1 and BzT (where Bj is multiplication by bj)'
Then T is a Calderdn-Zygmund operator.

This was proved by appealing to the square root problem in the same

way as was originally done for the Cauchy integral.

Theorem 4 is a general theorem which includes the boundedness of
the Cauchy integral as a special case, since Th(h') = 07(1) = 0 (e BMO)
and C7 satisfies (2). A more general result again, which includes
both theorem 4 and theorem 2 as special cases, was subsequently proved

by David, Journé and Semmes [3].

THEOREM 5. If the hypotheses of theorem 4 are weakened by replacing
T(b;) = 0 and T*(E;) =0 by T(b,) € BMO and T*(E;) € BMO , then

the conclusion remains valid.

Theorem 5 can be reduced to theorem 4 if, given ﬁl’ﬁ2 € BMO , we

can find Calderdn-Zygmund opereators L and M such that L(bl) = 51 R
L*(E;) =0, M(b))=0 and M*(E;) =B, . Todo this, let ¥ and 3

be the curves parametrized by z = hl(x) and z = hz(x) , where

hj' = bj . Then define L by

L=+]
Lu = 2 f W(tDs)(w(tDa)ﬁ1}¢(tD7)b;1u%;
0
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and define M* similarly. In this formula, ¢ and V¥ denote the

following functions:

?(r) = (1+/\2)_1 and ¥(A) = A(1+A2)—1 .

So, if ¢ e Sw , where Sw was defined previously, then
1 -4/t
5 57 © , Re ¢ > 0
°t(€) =
1 ¢/t
57 © , Re ¢ < O,
and

o(tD,)0(z) - f7 ¢ (2-0)U(6)dS

or

#(D)ux) = [ F (h )by (v)by (1u(v)dy .

The operator W(tDa) is defined similarly. Square function estimates
for w(tDB) can be obtained from the expansion for

W(tDs) = w(th_lD) = w(tp_l(I—F)_lD) in powers of F wusing the
techniques of [1], where p is choéen so that IIFl < 1 . Proceeding in
this way it can be shown that L is a Calderdn-Zygmund operator. In

doing this, we are generalizing the proof of the T(1) theorem given in

[2] rather than following [3].

We conclude with the remark that theorems 1-5 remain valid in

higher dimensions if the appropriate dependence on the dimension is
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included in (1) and (2). However many of the intervening comments are

specifically one-dimensional.
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