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THE NEUMANN PROBLEM FOR EQUATIONS OF MONGE-AMPERE TYPE

P-L. Lions
N.S. Trudinger

J.I.E. Urbas

In the paper [10] we are concerned with the existence of classical
solutions to the semilinear Neumann problem for equations of

Monge-Ampere type
2
(1) det D"u = f(x,u,Du)

in convex domains £ in Euclidean n-space, Rn, where f is a
prescribed positive function on ﬁxRan. In conjunction with (1), we

treat Neumann boundary conditions of the form
(2) Duu = @¢(x,u)

on the boundary a2, where p denotes the unit inner normal on 3R
and ¢ is a given function on JaxR. For the main existence theorem,
whose statement follows, we assume that € is uniformly convex with
3,1 1,1 = n . s s .
boundary oz € C , fecC (@xRxR) 1is positive and non-decreasing

in z, for all (x,z,p) € ﬁxmxm", and ¢ € cz’l(anxm) is

non-decreasing in 2z with

(3) ‘PZ(x.Z) >
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for all (x,z) € axR ,  for some positive constant 70. Furthermore we

assume the structural inequality
(4) f(x,N,p) < g(x)/h(p)

for all (x,p) € o®R® , where N is a constant and g e Ll(a),

h e L}OC(RH) are positive functions satisfying

(5) ‘ jﬂg<J

ho.
R

THEOREM 1 Under the above hypotheses on the domain @ and functions
f,¢, the boundary value problem (1),(2) has a unique convex solution

3’“(6) for all « < 1.

ue€cC
When the domain £ and functions f and ¢ are Cm. then
the solution u € Cw(ﬁ). Two special cases embraced by Theorem 1 are

-~

the standard Monge-Ampere equation,

(6) det D%u = f(x) ,

and the equation of prescribed Gauss curvature

(1) det D% = K(x) (1+|puj?)(P*2)/2

Theorem 1 yields a unique cohvex solution of the boundary value problem
(6),(2) for arbitrary positive f € Cl’l(ﬁ) while a unique convex

solution of the boundary value problem (7),(2) is obtained provided
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(8) Iﬂ K<w.

Condition (8) is also necessary for the existence of a classical
solution; (see [2],[15]). It is interesting to compare Theorem 1 with

the known results for the Dirichlet problem,
(9) u=9(x) on a3a ;

(see for example [1],[31,[4],[61,[7],[9],[12],[14]). Here the problem
(7),(9) is solvable classically for arbitrary ¢ e Cl'l(an)

if and only if the function K also vanishes on a@ [14] and we
cannot then necessarily infer further global regularity of the solution

0’l(s_z). Corresponding necessary conditions also hold

u beyond u e C
for the general Dirichlet problem (1),(9); {(see [14]). Note that in the

extremal case, j K = W the equation (7) has a bounded classical
Q

solution in & which is unique up to additive constants but satisfies
Duu = -« on 3a [15].

The proof of Theorem 1 depends on the method of continuity which
requires the a priori estimation of solutions in the Schauder space

2’0{(5) for some « > 0. The main concern here is the estimation of

Cc
the second derivatives for which we have had to introduce techniques
somewhat different from those associated with the Dirichlet problem
[31.i8]. Second derivative Holder estimates are already provided in
[14]; (see also [8],[13]). Our maximum modulus estimates are obtained
through an interesting extension of the Aleksandrov ﬁakel'man maximum

principle to oblique boundary conditions, while gradient estimates

result from convexity.
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As an application of Theorem 1 we derive the following existence

result pertaining to the case when f and ® are independent of =z.

THEOREM 2 Suppose that the hypotheses of Theorem 1 hold except that f
and ¢ are independent of z. Then there exisls a unique number A

3,a,=

and convex function u € C () for all a <1 , unique up to

additive constants, solving the boundary value problem
2 .
(10) ~ det D™u = f(x,Du) in @ ,
(11) Dvu = A + ®(x) on an .
The vanishing of the functional A thus provides the necessary
compatibility condition for the given Neumann problem to be solvable.

However such a condition cannot be made explicit as is the case with

linear operators. In this connection, for functions f of the form
(12) f(x,p) = g(x)/h(p)
it would be more interesting to consider, instead of (2), the

prescription of Du(f2), because then the compatability condition

becomes

(13) jh=J‘f

Du(f) 2

In particular for the boundary condition,
2
(14) |Duj]®™ =1 on a2,

Du(2) is the unit ball. We remark that (14) becomes an oblique
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condition, that is wv-Du < 0 on a2 , through imposition of the

convexity of the solution u
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