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Gar•y M. Lieberman 

The natural setting for the theory of nondivergence form second order 

elliptic equations is in the HlHder spaces k a 
C ' , To explain this statement, 

consider the elliptic operator !!., the Laplacian. Then, the map u + AU is 

a bijection of cz ,a(n) onto Ca(O) provided the boundary values of u are 

fixed and ()Q € cz ,a. 
' 

however, this msp is not a bijection of C2(Q) onto 

c0 (n) because it is never surjective. (We do not consider the mapping from 

w2'P(n) to LP(Q) because the appropriate boundary conditions cannot be 

described intrinsically via the same sort of spaces.) 

To pin do•m the boundary values, we consider the Dirichlet boundary 

condition, 

(l) on an 

for soms ,a(an), and the oblique boundary condition 

(2a) g on an 

for some vector field B € c1 ,a.(ill1) satisfying 

(2b) 

where y is the inner normal, and g € c1 'a.(an). With these boundary 

conditions, we ask how much the regularity of u0 , B, g, and an can be 

relaxed without losing the desirable feature that the boundary condition still 
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be satisfied classically. The relaxed conditions will be called ''bad'" for the 

reasons previously mentioned even though fairly strong regularity results are 

known for "bad" boundary conditions. 

We first suppose that ::JO € Kellogg [8] showed 

that harmonic functions vJith such boundary values are globally c1 ,ll. Giraud 

[5] extended this result to solutions of more general ,elliptic equations. For 

a slightly different class of equations, Gilbarg and Hl:lrmander [3] proved not 

only that the solution are Cl,a but also that the operators set up a bijec-

tion between suitable weighted Holder spaces involving second derivatives. 

Previously Wiener [20] had studied the question of regularity for the 

Dirichlet problem for harmonic functions and provided a complete answer by 

introducing the capacity of a set E (which is the infillliJ!il over all compactly 

2 supported functions v with v = on I: of f lnvl dx). For "~oE an 

and A. > 0, let C/A. ,x0 ) denote the capacity of the set of points not in 

n but within a distance Aj of Wiener proved that the continuity of a 

certain generalized solution of the Dirichlet problem at x0 is equivalent to 

the divergence of the sum When this generalized solution 

(which is a classical solution of the elliptic equation) is continuous at 

x0 , ;,re call x0 a regular point. Herv~ [7] verified Wiener's criterion for 

equations with Lipschitz coefficients; Krylov [9] showed that the coefficients 

need only be Dini. 

When the coefficients of the equation are not Dini, the situation becomes 

more complicated. Miller [16], [17] showed that the divergence of Wiener's 

sum may be neither necessary nor sufficient for a point to be regular in this 
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case; however. Alkhutov [lJ introduc.ed an ellipticity function whose Dini 

continuity implies this equivalence even if the coefficients themselves are 

discontinuous. Other conditions are known which guarantee the regularity of a 

boundary point for any equation with bounded coefficients. The first of these 

conditions is the well-known exterior sphere condition. In 1927, Zaremba [21] 

proved that an exterior cone condition gives regular boundary points, and 

Pucci [19] and Miller [15] extended this result to arbitrary operators. 

Ladyzhenskaya and Ural'tseva's condition A [10, p. 6], which requires n to 

have Lebesque upper density less than one at x0 , also suffices" Although 

this result is not stated explicitly, it follows easily from Gilbarg and 

Trudinger's Theorem 9.30 of [4]. Condition A is a measure theoretic version 

of the geometric cone condition; a geometric generalization of the cone 

condition is the flat cone condition, which w·as shown by Lieberman [13] to 

imply regularity of boundary points. 

Landis [11] provided another sufficient condiHon for regular:l.l;y polnts 

via a generalized capacity. Proceeding in part from Landis's work, Bauman [2] 

developed an analog of the Wiener criterion for elliptic equations with 

bounded coefficients. Her criterion is both necessary and sufficient for 

regularity of boundary points. but it has the drawback that the capacity she 

constructs is determi.ned by the Green's function of the operator in question. 
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Boundary condition (2) has not received nearly as much attention as 

( 1). Nonetheless some results are kno~m for "bad" domains. 

Suppose first that ;m E: c1•o; and that !3 and g are in Ca(an). 

Giraud [6] showed that solutions of a large class of elliptic equations with 

boundary condition ( 2) are in ,a.(n). Analogs of Gilbarg and l:llirw.ander's 

results have been established for the oblique derivative problem by Lieberman 

[12]. 

Now suppose Q is merely Lipschitz, and write 

Lu 
i 

+ b Diu + cu • 

(Here we follow the convention that repeated :tndic:es are to be summed from 

to no) Suppose also that the coefficients of L are sufficiently smooth, 

that c ~ 0, and that the vector B(x0 ) points into the interior of a cone 

lying in r. with vertex for all Nadirashvili [18] asserted 

that the problem 

(3) Lu g on an 

has a unique. solution for 8 € c2((H?.) and g € C(an) if c ~ 0; however, 

there is a fla-.r in his proof. Under slightly stronger smoothness hypotheses 

em the coefficients of L 
' 

this f1a1.r has been corrected by Lieberman [ 14]. 

In case c = 0 Nadirashvili also inferred (correctly) from his basic result 

that solutions of (3) are unique up to constants and that there is 

ljJ E. L 2 ( ()~,!) sueh that (3) is solvable if and only if 

f glj! ds 0. 
;m 
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He also concluded that g£ C0 (3Q) implies u€ c1•0 (fi) for small enough 

o > 0, This final result is also proved, with 13 €. c6 , in [!.4]. 
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