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On the transference theorem
of Coifman and Weiss

Christopher Meaney

Suppose G is a unimodular locally compact group with a compact subgroup K
and a polar decomposition with respect to K and a closed unimodular subgroup H.
That is, we are assuming that the map K x H x K — G, with (ky, h, ky) — kyhk,,
is surjective and there is a measurable function w on H such that

Lfdme = [ [ [ skinbaye(h)dme () dmu (ko) (k)

for all f € C.(G). From Fubini’s theorem we see that if f is a bi—K —invariant
function on G then wf|y is an integrable function on H. We let Cv,(G) denote the
Banach space of all bounded linear operators on the Lebesgue space LP(G) which
commute with right translation by elements of G and we denote by ||T||co,(q) the
norm of such an operator T'. An integrable function f on G gives rise to a bounded,
right-translation invariant operator Aa(f)e := f * ¢ on each of the Lebesgue spaces
L?(G). The norm of Ag(f) is determined by testing f against elements of the
Herz-Figa-Talamanca algebra A,(G),

136 llow@ = sup{|[, fadme| = g € 4,(G) and lglay < 1}

The space A,(G) is defined in the following manner. Fix 1 < p < oo and consider the

projective tensor product LP(G)®L” (G), where 1/p+ 1/p/ = 1. There is a bounded
linear map

P LP(G)RLF(G) — Co(G),

given by P(f ® g) = g * f¥. The image of P is called A,(G) and is equipped with
the quotient norm. That is, a function ¢ € A4,(G) has a series expansion

[oe]
¢ =2 gixf;
7=0

with 3= ||lg;ll» || fll, < o0, and the norm of ¢ is the infimum of all these sums. Every
bounded linear operator T' : L?(G) — LP(QR) can be considered to be a bounded
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linear functional on L?(G)®L¥(G), using the formula

(T,2_fi®gi) = 3 g;*(Tf;)¥(1).
3=0 j=0
Herz has shown that A,(G)* can be identified with PM,(G), the weak*-closure of
Aa(C(@)) in (LP(G)RL?(G)) . In general, PM,(G) is a subspace of Cv,(G), but
Cv,(G) = PM,(G) when p =2 or when G is amenable.

In order to find the norm of the operator Ag(f) when f is bi-K-invariant, it is
enough to test against ¥4,(G)¥, the subalgebra of bi-K-invariant elements. Using
Herz’s theorem on the restrictions of elements of A,(G) to H, we can give a simple
proof of the following version of the transference theorem of Coifman and Weiss

(3]
Theorem 1 (Coifman and Weiss) Let G,K,H, and p be as above.
1. If f is a bi-K -invariant integrable function on G then

I Aa(Hllcusie) < IAu(w-flalovs-

2. Suppose that {p,}, is a net in XC,(G)¥. If there is an operator T € PM,(H)
such that (T, g) = lim, (Ag (w.4lH),9), for every g in A,(H), then there ez-
ists T' € KPM,(G)X such that

(TI, ")b) = lif’n ()‘G (‘P’Y) 3 ¢) ;

for every ¢ in A)(G), and || T' ”ou,,(a) <lT "Cv,(H)'
We adopt the approach we used in the paper [8]. Firstly, denote by mg the Haar
measure on K and let Z : Co(G) — Co(G) be the operator

Zo = mgxpxmyg, Vo € Co(G).

Lemma 1 If f € A, (G) then Zf € Ay(G) and |Zf||a,6) < | fllap) Further-

’ K4,(GY¥ = P((KL(G)B(L (G)).

We also let *Cv,(G)¥ denote the space of those elements T of Cv,(G) which satisfy
the equation

Tf = mg+(T(mg * f))) Vf e L(G).
Clearly, *LY(G)* C ¥Cv,(G)X. We can identify ¥Cv,(G)¥ with the space of
bounded linear operators on LP(K\G) which commute with the action of G. Let
KPM,(G)X = PM,(G)N¥ Cu,(G)¥.

The following lemma is based on Theorem 5 in [5].
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Lemma 2 The space KPM,(G)X is the weak*-closure of Ag (KCC(G)K) in PM,(G).
If G is amenable and if S € ¥Cv,(G)X then there is a net {p,}, contained in
KC(GYX and satisfying:

1. |Ae(@llcuc) < I1Sllova;

£ (S,9) = lim, [ybpydme, Vi € 4(G).

In the beginning of this note we arranged the Haar measures on G and H in
such a way that

[ fdme = [ (ZH(Byo(h) dmu(h), Vh € CLE).
We will combine this with Theorem 8.7 in [5]. '

Theorem 2 (Herz) If G, H, and p are as above and if f € A,(G), then flg €
Ay(G) and

Ve laym < Ifllane)-
The proof of the Theorem 1 depends on the following observation. For a bi-K-
invariant function f on G, its norm as a convolution operator on L?(G) is found by
testing against all elements ¢ € A,(G) of norm one. That is, we need to estimate

[ odma| =| [ lu(Zo)mw dma

Lemma 1 and Theorem 2 combine to show that the right-hand side is dominated
by

12 e WF e cupeny N ZO)allapen < 1AE (WF B copian -]l 45(0)-
Part (b) follows in a similar manner, using Lemma 2.

As an example of the application of Theorem 1, there is the result of Coifman and
Weiss [2] on central multipliers on LP-spaces on compact semisimple Lie groups. In
that paper the transference from the whole group to the maximal torus is achieved
by using the Weyl character formula and the Weyl integration formula. Using an
identity of Harish-Chandra for Fourier transforms on Lie algebras, we can prove a
similar result for Ad(G)-invariant multipliers on L?-spaces on the Lie algebra of a
compact simple Lie group G, viewed as a Euclidean space.

Let g denote this Lie algebra. Fix a maximal torus T in G and denote its Lie
algebra by ¢ The symbol Fg denotes the Fourier transform on the Euclidean space
g, equipped with the Euclidean structure produced by the Killing form, and F;
denotes that on t There is the Cartan motion group M given by the semidirect
product of G and g, where G acts by the adjoint action on its Lie algebra. In M,
let K =G x {0}.
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Lemma 3 For 1 < p < oo, the map f +— f|{1}xg provides an isomelric isomor-
- phism -
KA (MK 2 %4,(g),

where €A,(g) is the set of adjoint invariant elements of A,(g).

See [9], Lemma 3.6. Combining this with the fact that the dual of ¥A4,(M)¥ is
-equal to ¥Cv,(M)K, we see that this last space is isometrically isomorphic with the
Ad(G)—invariant elements of Cv,(g), as defined in [8],section 3. It is known that
C’v,,(g) is equal to Mp(g), the space of multipliers of fgL”(g_). Now we can identify

GM,,(é) with ¥Cv,(M)¥, noting that M is amenable.
Lemma 4 For 1 < p < oo there are isometric isomorphisms

KCv (MK = CM,(g) = {the space of M — invariant operators on L?(g)}.
See section 3 of [8].

Lemma 5 Suppose 1 < p < co and h is an Ad(G)—invariant, essentially bounded
measurable function on g. Then h is in CM,(g) if and only if there is a positive
constant C such that B

< C||¢”A,(§)

&) Fihe) dmg(e)

for all ¢ € GAp(g) nCe(g).

Fix an ordering of the root system for (G,T) and denote by R, the system
of positive roots on § Let d =dim(G) and r =rank(G). For each root o denote
by H, the element of { which satisfies the equation a(H) = i(H,|H), for all H € 1.
In addition, denote by 0, the directional derivative in direction H,. If f is an
Ad(G@)—invariant function in the Schwartz space S(g) then

[ fdmg = ¢ [£(&) T (HIE.) dmy).
§ - L a€Ry

Let ®(H) = Tlaer, (H|H,), so that @ is a polynomial of degree 3(d —r) on g -
When we identify Ad(G)—invariant functions on g with bi—K —invariant functions
on the motion group M, then the integration formula above matches that at the
beginning of this note, with w = |®|? and H equal to {1} Xt Harish-Chandra
proved the following formula relating Fourier transforms on g and ¢ for all Ad(G)
invariant functions f in the Schwartz space on g, B

(H)Fgf (H) = cF( fI@)H), VH ey
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Theorem 3 Suppose that h is an essentially bounded, Ad(G)—invariant, measur-
able function on g. If the distributional derivative

(L) ()

belongs to M,(y), then h € GMP(_g_), There is a constant £ > 0 depending on g such

that .
X (ﬁ (( I Ba)(@hlg)))
a€Ry v Cup(l)

< k
Cup(g)

Pe (722

One could then use various Euclidean space multiplier theorems to provide multi-
plier theorems for Ad(G)—invariant operators on L?(g), for example Theorem A in

[7].

Corollary 1 Suppose that h is an essentially bounded Ad(G)—invariant measurable
function on g, that ¢ > 2, and r* is the least integer greater than r/q . Furthermore,
suppose that

( I ac.) (hl@) € L=(
a€R4

and for each r—tuple of non-negative integers n, with |n| < (d —r)/2 + r*, the dis-
tributional derivative O"(hly) satisfies

1/q
- In| an q
550 (S /S<|H|525l5 9 (hli)l dm;) < 00.

5>0
Then h € My(g) for all p satisfying |(1/2) — (1/p)| <1/q.

This can be compared with the Theorem in [10]. In the case when G =SU(2), so
that we are actually dealing with radial functions on R3, it is not as strong as the
result of [6]. '
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