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RIGIDITY, VON NEUMANN ALGEBRAS, 
AND SEMISIMPLE GROUPS 

by Michael Cowling 

The material described bel.ow is largely contained in three papers, by U. 

Haagerup [H], M. Cowling and U. Haagerup [CH], and by M. Cowling and R.J. 

Zimmer [CZ]. 

1 WHAT IS RIGIDITY? G. Mostow, with a little help from his friends, 

proved the foHowing result, known as Mostow's rigidity theorem. 

THEOREM. Let r1 and r2 be lattices in the centreless semisimple Lie groups 

Gland G2 respectively (i. e. ri is a discrete subgroup 0/ Gi and the homogeneous 

space Gil ri has finite Gi-invariant measure, for i = 1,2). Any isomorphism 

r1 -+ r2 extends to an isomorphism G 1 -+ G2 • 

This theorem tells us lattices in nonisomorphic semisimple Lie groups cannot be 

isomorphic. Subsequently, G. Margulis extended this theorem to show that any 

homomorphism r1 -> extends to a homomorphism G1 -+ G2 , provided that 

G1 and G2 are of real rank at least 2, and r1 and r2 are irreducible lattices. 

This extension, known as Margulis' super-rigidity theorem, gives more information 

about how difl'erent r 1 and r2 must be for different G 1 and G 2 • The geometric 

interest of such theorems lies in the fact that the groups r arise naturally as the 

fundamental groups of certain locally symmetric spaces (of the form K\ G I r); 
one deduces that if the spaces are locally different, in their differential geometric 

structure, then they are globally different, topologically. 

A rigidity theorem, then, is one which tens us that objects - in particular 

lattices - are different. 

There are several ways to look at the question of how groups differ, including 

the von Neumann algebraic and the ergodic theoretic viewpoints. 

In studying groups, one frequently encounters the von Neumann algebra 

VN( G) of the group G. This is the algebra of all bounded operators on L2 (G) (rel­

ative to a left-invariant Haar measure) which commute with right translations. If 

G is abelian, then VN(G) is isomorphic to Loo(6), where 6 is the Pontryagin dual 

group of Go Since there are nonisomorphic groups with the same von Neumann al­

gebras (for instance, C" and C2 X C 2 , where Cn is the cyclic group of order n), but 
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isomorphic groups do have isomorphic von Neumann algebras, the statement that 

VN(rd and VN(r2) are nonisomorphic is stronger than the statement that r l 

and r2 are nonisomorphic. It is believed that lattices in nonisomorphic centreless 
semisimple Lie groups have nonisomorphic von Neumann algebras, except perhaps 

if the Lie groups are of real rank one, but only a few proofs in this direction have 
been found. 

The first significant rigidity theorem for von Neumann algebras was estab­

lished by A. Connes (unpublished, but a more general version of the ideas appears 
in Connes and V.F.R. Jones [CJ]). D.A. Kazhdan had already introduced "prop­

erty T" for groups, and Connes translated property T into von Neumann algebraic 

terms. By dividing von Neumann algebras into those with property T, and those 

without it, Connes showed that, for instance, the von Neumann algebras of lattices 
in S L(2, R) and in S L(3, R) are nonisomorphic, as only the second lattice has a 
von Neumann algebra with property T. 

The next work in this direction is by U. Haagerup [II] and M. Cowling and U. 
Haagerup [CH]. In these papers, which will be discussed in some detail below, it is 

established for instance that the von Neumann algebras of lattices ro in S L(2, R), 

rl in SL(3,R) and rn in Sp(n, I) (n 2:: 2) are all nonisomorphic. 

An alternative approach to differences between groups is through ergodic 

theory. We say that groups GI and G2 have orbit equivalent finite ergodic theory 
if there exist finite measure spaces Xl and X 2 on which Gl and G2 act freely and 

ergodically (by measurable transformations), together with a measure-preserving 
bijection q, : Xl -+ X2 which maps Gl-orbits onto G2-orbits. It is known that 
countably infinite discrete amenable groups have orbit equivalent finite ergodic 

theory, so that not having orbit equivalent finite ergodic theory is another strong 

expression of the difference of two groups. R.J. Zimmer, extending the ideas 
of Margulis, has proved such assertions about lattices in distinct semisimple Lie 

groups of higher rank. (See Zimmer's book [Z] for a useful discussion of semisimple 

gtO'ifpsahdefgoalctlfeory'). In Cowfiiig arrd Zimmer" fez] ; 'W'e W sl1ow'einter alia) 
that lattices in Sp(n, I), for different values of n, do not have orbit equivalent finite 
ergodic theory. 

2 MAIN RESULTS. Most of the results of Haagerup {H], Cowling and 

Haagerup [CH], and Cowling and Zimmer [CZ] CM be summarized as follows: 

numbers A(G), M(M), and N(r,X) ~an be associated to a locally compact group 
G, a von Neumann algebra M, and an ergodic action of a discrete group r on a 
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measure space X. These numbers are invariant under group isomorphisms, von 

Neumann algebra isomorphisms, and orbit equivalence respectively. They can be 

computed by harmonic analysis for semisimple Lie groups, and hence derived for 

lattices, for von Neumann algebras of lattices, and for finite ergodic actions of 

lattices. 

The number A(G) is defined in terms of approximate identities on G. Before 

defining A(G), let us first recall that the Fourier algebra A(G) of G is defined to 

be the set of all coefficients of the left regular representation A of G on L2 (G): u 

is in A( G) if and only if there exist hand k in L2 (G) such that 

(1) u(x) = (A{x)h, k) VxE G, 

and 

(2) IluliA = min{ll h I1 2 1I k ll z : (1) holds }. 

It is known that A(G) is a Banach algebra under pointwise operations, and A(G) 
has an identity if and only if G is compact, while A( G) contains an approximate 

identity if and only if G is amenable. Here by approximate identity we mean a 

net {u;} of A(G)-funtions such that, for some constant C, 

(3) IluillA ::; C Vi, 

and 

(4) Ui --Jo 1 locally uniformly 

(or Iluiv - vilA -,' 0 Vv E A(G)). 

It turns out that, if there exists such a net, then we may take C equal to 1, and we 

may also suppose that each Ui has compad support. The concept of approximate 

identity can be weakened, by replacing the condition (3) by the condition 

(5) IIUillMo ::; C Vi. 

Here II liMo denotes the completely bounded multiplier norm, which will be de­

scribed below. If this rela..'{ation of condition (3) is made, then more groups have 

approximate identities than before; further, the values of C become critical. In 

fact, 

A(G) = inf{C E [1,00): (4) and (5) hold for some net {u;}}. 
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We still suppose that the functions '11; have compact support. 

Before we define M(M), we need to discuss completely bounded operators. If 
.M is a von Neumann algebra, and T : M -+ .M is a continuous linear operator, 

then it may be possible to extend T to a bounded operator T ® I on .M ® N 

where N is another von Neumann algebra, and M ® N denotes the spatial tensor 

product of .M and N. If this is possible, when N is the set of an bounded linear 

operators on a separable Hilbert space, then T is caned completely bounded, and 

IITllcB, its completely bounded norm, is the usual norm of T ® I on .M ® N. A 

completely bounded multiplier of A( G) is defined to be a multiplier operator on 

A(G) whose adjoint operator, which acts on VN(G), is completely bounded, and 
the completely bounded multiplier norm is the completely bounded norm ef this 

adjoint operator. 

Let .M be a von Neumann algebra. It may be possible to find a net {Ti} of 

operators on .M such that, for some constant C, 

(6) 1lTilicB ::; C Vi, 

Tim -+ m weak-star Vm E M, 

and 

(8) is :/inite dimensional Vi. 

The first of these conditions is related to (5), and the second is linked to (4). 

The last condition is the analogue, for von Neumann algebras, of the condition 

that each Ui have compact support, at least for discrete groups. We define 

M(M) = inf{C E [1, (6), (7) and (8) hold for some net {Ti}}. 

These definiticfls of and are from Cowling aT.!d Haagerup [eH], 
though they are implicit in Haagerup [II]. In these two papers mest of the following 

results are obtained. 

THEOREM. Let G be a locally compact (JI'OUp, and let 11.( G) be as defined 

above. Then 

(i) #/ Gl and G2 are isomorphic, A(G1 } = A{G:!}; 

if G1 is a dosed subgroup of G'J" :; A(G2); 
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(iii) if G = G1 X G2 , A(G) = A(Gd x A(Gz); 

(iv) if r is a lattice in G, A(G) = A(r); 

(v) if Z is central in G, A(GjZ) = A(G). 

THEOREM. If G is an amenable group, A( G) = 1. If G is a connected 

noncompact simple Lie group, then A( G) is equal to 1 #J G is locally isomorphic to 

80(11,,1) or SU(n,1), to 211, - 1 if G is locally isomorphic to Sp(n,l), to 21 if G 

is locally isomorphic to F4( -20), and to +00 if G is of real rank at least two. 

These two theorems permit the computation of A( G) for any connected semi-simple 

Lie group G, and for any la.ttice in such a group. 

THEOREM. Let M be a von Neumann algebra, and let M(jA) be defined I1S 

above. Then 

(i) £I,tl.h and M2 aI'e isomorph2'c, M(Md = MU"b),. 

(ii) if M 1 eM:;: and there is a conditional expectation from .M:I to .M b 

M(.Ml) :::; M(.M 2 ),. 

(iii) M(Jvh ® M:.) = M(Md.M(J.'b); 

(iv) if r is a discrete group, M(VN(r)) = A(r). 

This theorem allows us to compute M(M) for certai.n .M - -the von Neumann 

algebras of lattices in semisimple Lie groups. It is worth noting explicitly that 

(iv) fails for connected groups. Indeed, if G is Sp(n, 1), then VN(G) is a direct 

integral of IfX) factors, associated to the irreducible unitary representations of G, 

and it is easy to show M(VN(G)) = 1, although A(G) = 2n - 1. The point is 

that operators on VN(G) with finite-dimensional nmge spaces need not give rise 

to pointwise multiplier operators on VN(G) or on A(G), and it is rather surprising 

that (iv) holds at aU. 

It will be dear how to combine these theorems to obtain the following corol­

lary. 

COROLLARY. Let r 1 and 1'2 be lattices in Sp(nl' 1) and Sp(n:h 1) respec­

tively, where nl t n2. Then VN(rt} and VN(Tz) are nonisomorphic. 

The generalisation of these ideas to the ergodic theoretic context requires 

some more notation and definitions. Suppose that G is a locally compact group, 

acting ergodicaHy on the measure space X. Then we consider the Hilbert space 

L2(G x X), on which G acts by the formula 

(1I'(g)f) ($1', x) = f(g-l!/ ,$1-1 x) Vx EX, Vg,g' E G, 



56 

for any f in L2(G x X), and on which LOO(X) acts by the rule 

(1r(a)f)(g, x) = a(x)f(g, x) '<Ix E X, Vg E G, 

for any a in LOO(X) and any f in L2(G x X) . We denote by JI the commutative 
algebra of operators on L2(G x X) generated by 1I"(LOO (X)), and by .M the larger 

algebra generated by JI together with the operators 1I"(g) with g in G. In ergodic 

theory, it is natural to deal with the pair (.M, JI). Unfortunately, we have difficulty 
in doing this, and we deal with the pair (r,X), where r is discrete and X has 
finite invariant measure; however, we also need to use .M and JI. 

The definition of N(r, X) is related to the existence of nets of completely 

bounded operators {Ti} on .M, having the properties that 

(9) IlTilicB ::; C Vi, 

(10) Tim --+ m weak-star "1m E .M, 

and for each i, there exists a finite subset So of r such that 

(11) Ti(.M) ~ L 1I"b)JI· 
'YES. 

These three conditions are analogues of conditions (6), (7) and (8) for von Neu­
mann algebras. We define 

N(r,X) = inf{C E [1,00): (9), (10) and (11) hold for some net {Ti}}. 

It is quite easy to modify the techniques developed for von Neumann algebras to 

deal. withe N·cr,X)'and. prove the following f.esult. 

THEOREM. Let r be a discrete group acting on a finite measure space X. 
Then 

(i) i/ (rl , Xl) and (r2,X2) are orbit equivalent, N(rloXt} = N(r2,X2); 

(ii) A(r) = N(r,X). 

This theorem, combined with the previous ones, proves the statements made earlier 
about the nonorbit equivalence of the finite ergodic theories of lattices in different 
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groups S p( 11.,1). This, and other rigidity results on actions of lattices in S p( 11., 1), 

will appear in [CZ]. 
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