4. SET FUNCTIONS

Given an additive set function, μ , on a semiring of sets, \mathcal{Q} , the problem arises naturally of finding a gauge which integrates for μ . (See Section 3A.) If there exists a finite non-negative σ -additive set function, ι , on \mathcal{Q} such that $|\mu(X)| \leq \iota(X)$, for every $X \in \mathcal{Q}$, then μ is said to have finite variation. In that case, ι is a gauge integrating for μ . This situation is classical.

The point of this chapter is that, even when μ does not have finite variation, there may exist gauges integrating for μ . For, there may exist a continuous, convex and increasing function, Φ , on $[0,\infty)$ such that $\Phi(0) = 0$ and a σ -additive set function $\iota: \mathcal{Q} \to [0,\infty)$ such that $\Phi(|\mu(X)|) \le \iota(X)$, for every $X \in \mathcal{Q}$. Then $|\mu(X)| \le \rho(X)$, where $\rho(X) = \varphi(\iota(X))$, for every $X \in \mathcal{Q}$, and φ is the inverse function to Φ . By Proposition 2.26, the gauge ρ is integrating.

So, we are led to the consideration of higher variations introduced by N. Wiener and L.C. Young. (See Example 4.1 in Section A below.)

A. Let $\mathcal Q$ be a multiplicative quasiring of sets in a space Ω . Recall that, by $\Sigma=\Sigma(\mathcal Q)$ is denoted the set of all families of pair-wise disjoint sets belonging to $\mathcal Q$. (See Section 1D.) An element, $\mathcal P$, of Σ such that its union is equal to Ω and, for every $X\in\mathcal Q$, the sub-family $\{Y\in\mathcal P:\,Y\cap X\neq\emptyset\}$ of $\mathcal P$ is finite, is called a partition. The set of all partitions is denoted by $\Pi=\Pi(\mathcal Q)$.

Let E be a Banach space and $\mu: \mathcal{Q} \to E$ an additive set function.

Given a Young function Φ (see Section 1G), a set X from $\mathcal Q$ and a partition $\mathcal P$, let

(A.1)
$$v_{\underline{\Phi}}(\mu, \mathcal{P}; X) = \sum_{Y \in \mathcal{P}} \underline{\Phi}(|\mu(X \cap Y)|).$$

Then, for the given $\,\Phi$, $\,X\,$ and a set of partitions $\,\Delta \in \Pi$, let

$$(A.2) v_{\overline{\Phi}}(\mu, \Delta; X) = \sup\{v_{\overline{\Phi}}(\mu, \mathcal{P}; X) : \mathcal{P} \in \Delta\} .$$

The possibility of $v_{\overline{\Phi}}(\mu,\Delta;X) = \infty$ is admitted. We write $v_{\overline{\Phi}}(\mu;X) = v_{\overline{\Phi}}(\mu,\Pi;X)$, for every $X \in \mathcal{Q}$.

The set function $v_{\Phi}(\mu, \Delta)$, that is, $X \mapsto v_{\Phi}(\mu, \Delta; X)$, $X \in \mathcal{Q}$, is called the Φ -variation of the set function μ with respect to the family of partitions Δ . The set function $v_{\Phi}(\mu) = v_{\Phi}(\mu, \Pi)$ is called simply the Φ -variation of μ . If $v_{\Phi}(\mu, \Delta; X) < \infty$ for every $X \in \mathcal{Q}$, the set function μ is said to have finite Φ -variation with respect to the set of partitions Δ .

In the case when $\Phi(s)=s^p$, or even when $\Phi(s)=cs^p$, for some constants c>0 and $p\geq 1$ and every $s\in [0,\infty)$, we shall write simply $v_p(\mu,\Delta)$ instead of $v_{\overline{\Phi}}(\mu,\Delta)$ and speak of the p-variation instead of the Φ -variation. Similar conventions are used without explicit mention in other symbols denoting objects depending on Φ , and in the corresponding terminology. The 1-variation, $v_1(\mu,\Delta)$, of the set function μ with respect to the family of partitions Δ is called simply the variation of μ with respect to Δ and denoted by $v(\mu,\Delta)$.

Formulas (A.1) and (A.2) have meaning as they stand for arbitrary quasirings, not only multiplicative ones. For, $X \cap Z = XZ \in \text{sim}(\mathcal{Q})$, whenever $X \in \mathcal{Q}$ and $Z \in \mathcal{Q}$, and so, by the convention introduced in Section 1B, $\mu(X \cap Z)$ is well-defined. However, in such wider context, useful pronouncements would require more complicated formulations and the gained generality would be of little value.

On the other hand, it is sometimes advantageous to define $v_{\Phi}(\mu, \mathcal{P}; X)$ and $v_{\Phi}(\mu, \Delta; X)$ by (A.1) and (A.2), respectively, for any set X belonging to the ring, $\mathcal{R} = \mathcal{R}(\mathcal{Q})$, generated by \mathcal{Q} , not only for $X \in \mathcal{Q}$. This represents no difficulty because every set belonging to \mathcal{R} is equal to the union of a finite family of pair-wise disjoint sets belonging to \mathcal{Q} .

EXAMPLE 4.1. Let a and b be real numbers such that a < b. Let $\Omega = (a,b]$ and $Q = \{(s,t]: a \le s \le t \le b\}$. Let d be a function on the interval [a,b] and let

$$\mu((s,t]) = d(t) - d(s) ,$$

for any $\,s\,$ and $\,t\,$ such that $\,a\leq\,s\leq\,t\leq\,b\,$.

Although not much attention seems to have been paid to Φ -variation of additive set functions in general, there is already considerable literature devoted to this case. To be sure, the Φ -variation of the set function μ is discussed in terms of the function d. In fact, if the partition $\mathcal P$ is determined by the points $a=s_0< s_1< s_2< \ldots < s_{n-1}< s_n=b$, that is, $\mathcal P=\{(s_{j-1},s_j]: j=1,2,\ldots,n\}$, then

$$v_{\overline{\Phi}}(\mu, \mathcal{P}; \Omega) = \sum_{j=1}^{n} \Phi(\mid d(s_{j}) - d(s_{j-1}) \mid) \ .$$

Actually, often the function d itself is the centre of interest, because some convergence properties of the Fourier series of d can be studied using the notion of the Φ -variation; see e.g. [66].

Besides $\Delta=\Pi$, the set of all dyadic partitions is often taken for Δ , especially when a=0 and b=1.

The variation (that is, 1-variation) is a classical concept dating back to C. Jordan. The notion of the p-variation was introduced in this case by N. Wiener in [67]. It was subsequently studied by several authors, notably by L.C. Young, who considered, in [69], Stieltjes integration with respect to functions of finite p-variation and introduced, in [70], the notion of a function of finite Φ -variation. Spaces of functions of finite Φ -variation were studied by W. Orlicz and his collaborators, [51], [42], and by M. Bruneau, [4].

The notation and terminology are not firmly established in the literature although they seem to converge to similar ones to those adopted here.

The introduction of the set of partitions, Δ , as an additional parameter on which the Φ -variation, $v_{\Phi}(\mu, \Delta)$, depends, genuinely increases the generality of this notion. It is illustrated by the following classical

EXAMPLE 4.2. In the situation of Example 4.1, let a = 0 and b = 1. For every $m = 1, 2, ..., let <math>\mathcal{P}_m$ be a partition, determined by the points

$$0 = s_{m,0} < s_{m,1} < \dots < s_{m,n_m} = 1 ,$$

such that $\mathcal{P}_m \prec \mathcal{P}_{m+1}$, that is, every point $s_{m,\ell}$, $\ell = 0,1,...,n_m$, is among the points determining the partition \mathcal{P}_{m+1} , and

$$\lim_{m \to \infty} \max \{ s_{m,\ell} - s_{m,\ell-1} : \ell = 1, 2, ..., n_m \} = 0 .$$

Let $\Delta = \{\mathcal{P}_m : m=1,2,...\}$. By a classical result of P. Lévy, [43], (see also [11], Theorem VIII.2.3) the limit

$$\lim_{m\to\infty} v_2(\mu, \mathcal{P}_m; \Omega)$$

exists for almost every, in the sense of the Wiener measure, continuous function d on [0,1] and, hence, $v_2(\mu,\Delta;\Omega)<\infty$. However, $v_2(\mu,\Pi;\Omega)=\infty$. See, e.g., [64], §4.

EXAMPLE 4.3. Let $\Omega = \mathbb{R}$. Let \mathcal{Q} be the family of all bounded Borel sets in Ω . Let ι be the Lebesgue measure on \mathbb{R} . Let $1 and let <math>E = L^p(\iota)$. If $X \in \mathcal{Q}$, let

$$(\mu(X))(t) = \lim_{u \to 0} \frac{1}{\pi} \left[\int_{-\infty}^{t-u} + \int_{t+u}^{\infty} \frac{X(s)}{t-s} \, \mathrm{d}s \right],$$

for every $t \in \mathbb{R}$ for which this limit exists. Then $\mu(X)$ represents an element of the space E. What is more, M. Riesz has proved, see [7], that there exists a constant, A, depending on p, such that

$$\|\mu(f)\|_{p,t}^p \le A \int_{-\infty}^{\infty} |f(s)|^p \mathrm{d}s$$

for every $f \in \text{sim}(\mathcal{Q})$. Consequently, the resulting additive set function $\mu: \mathcal{Q} \to E$ has finite p-variation.

The Riesz estimate was extended to a wide class of kernels in Euclidean spaces of arbitrary dimension by A.P. Calderón and A. Zygmund, [7]. Accordingly, such kernels give rise to similar vector valued set functions of finite p-variation on bounded Borel sets in \mathbb{R}^n , n = 1,2,....

EXAMPLE 4.4. Let $\Omega = \mathbb{R}$ and let \mathcal{Q} be the family of all bounded intervals (of all kinds) in Ω . Let

$$S_X f(s) = \int_X \hat{f}(\omega) \exp(2\pi i s\omega) d\omega$$
,

for any $s \in \mathbb{R}$, $X \in \mathcal{Q}$ and any function f on \mathbb{R} integrable with respect to the Lebesgue measure, where

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(s) \exp(2\pi \mathrm{i} s \omega) \mathrm{d} s \;,$$

for every $\omega \in \Omega$. J.L. Rubio de Francia, F.J. Ruiz and J.L. Torrea have proved, in [60], Corollary 2.4, that, for every $p \in [2,\infty)$, there exists a constant C_p such that

$$\sum_{X \in \mathcal{P}} \int_{\mathbb{R}} \left| S_X f(s) \right|^p \mathrm{d}s \le C_p \int_{\mathbb{R}} \left| f(x) \right|^p \mathrm{d}s ,$$

for any such function f and every family of intervals $\mathcal{P} \in \Sigma(\mathcal{Q})$.

Consequently, if $E = L^p(\iota)$, $f \in \mathcal{L}^1 \cap \mathcal{L}^p(\iota)$, where ι is the Lebesgue measure in \mathbb{R} , and if, for every $X \in \mathcal{Q}$, we define $\mu(X)$ to be the element of the space E determined by the function $S_X f$, we obtain an additive set function $\mu: \mathcal{Q} \to E$ having finite p-variation.

PROPOSITION 4.5. Let $\Delta \subset \Pi$, $\mathcal{P} \in \Delta$ and $X \in \mathcal{Q}$. Then

$$\sum_{Y \in \mathcal{P}} v_{\Phi}(\mu, \Delta; X \cap Y) \leq v_{\Phi}(\mu, \Delta; X) ,$$

for any additive set function $\mu: \mathcal{Q} \rightarrow E$ and a Young function Φ .

Proof. It is obvious.

It is worth-while to note explicitly that, if the Young function Φ is not a multiple of the identity function on $[0,\infty)$, then the Φ -variation is not necessarily additive.

EXAMPLE 4.6. In the situation of Example 4.1, let a=0, b=1 and d(s)=s for every $s\in [0,1]$. Then $v_2(\mu;(s,t])=(t-s)^2$, for every s and t such that $0\leq s\leq t\leq 1$.

B. Let $\mathcal Q$ be a multiplicative quasiring of sets in a space Ω . Let Φ be a Young function.

Recall that the set $\Pi = \Pi(Q)$ of all partitions is directed by the relation of refinement. (See Section 1D.) We refer to the same relation when we speak of directed subsets of Π .

To avoid some trivialities, we assume that, for every finite set $\mathcal{P}_0 \in \Sigma(\mathcal{Q})$, there exists a partition $\mathcal{P} \in \Pi$ such that $\mathcal{P}_0 \subset \mathcal{P}$.

Let E be a Banach space and $\mu: \mathcal{Q} \to E$ an additive set function.

PROPOSITION 4.7. The Φ -variation, $v_{\Phi}(\mu)$, of the set function μ is additive if and only if

$$(\mathrm{B.1}) \hspace{1cm} v_{\Phi}(\mu;X) = \sup \{v_{\Phi}(\mu,\mathcal{P};X): \mathcal{P}_0 \prec \mathcal{P} \in \Pi \} \ ,$$

for every $X \in \mathcal{Q}$ and $\mathcal{P}_0 \in \Pi$.

Proof. For any $X \in \mathcal{Q}$ and $\mathcal{P}_0 \in \Pi$,

$$\begin{split} \sum_{Y \in \mathcal{P}_0} v_{\Phi}(\mu; X \cap Y) &= \sum_{Y \in \mathcal{P}_0} \sup\{v_{\Phi}(\mu, \mathcal{P}; X \cap Y) : \mathcal{P} \in \Pi\} = \\ &= \sum_{Y \in \mathcal{P}_0} \sup\{v_{\Phi}(\mu, \mathcal{P}; X \cap Y) : \mathcal{P}_0 \prec \mathcal{P} \in \Pi\} = \\ &= \sup\Big\{\sum_{Y \in \mathcal{P}_0} v_{\Phi}(\mu, \mathcal{P}; X \cap Y) : \mathcal{P}_0 \prec \mathcal{P} \in \Pi\Big\} = \sup\{v_{\Phi}(\mu, \mathcal{P}; X) : \mathcal{P}_0 \prec \mathcal{P} \in \Pi\} \ . \end{split}$$

Therefore,

$$v_{\Phi}(\mu;X) = \sum_{Y \in \mathcal{P}_{\cap}} v_{\Phi}(\mu;X \cap Y)$$

if and only if (B.1) holds.

Let ι be a non-atomic measure in the space Ω such that every set $X \in \mathcal{Q}$ is ι -integrable. (See Section 3B.)

For a partition $\mathcal{P} \in \Pi$, the ι -mesh, $\|\mathcal{P}\|_{\iota}$, of \mathcal{P} is defined by

$$\|\mathcal{P}\|_{\iota} = \sup\{\iota(X) : X \in \mathcal{P}\}\ .$$

Because the cardinal number of \mathcal{P} may be infinite, the possibility that $\|\mathcal{P}\|_{L} = \infty$ may occur.

A set of partitions $\Delta \subset \Pi$ will be called ι -fine if,

$$\inf\{\|\mathcal{P}\|_{1}: \mathcal{P} \in \Delta\} = 0$$
.

We say that the Φ -variation, $v_{\Phi}(\mu, \Delta)$, of μ with respect to a set of partitions, Δ , is ι -continuous if, for every $\epsilon>0$, there is a $\delta>0$ such that $v_{\Phi}(\mu, \Delta; X) < \epsilon$, for every set X in the ring, $\mathcal{R} = \mathcal{R}(\mathcal{Q})$, generated by \mathcal{Q} such that $\iota(X) < \delta$. Recall that, by formula (A.2) in the previous section, $v_{\Phi}(\mu, \Delta; X)$ is indeed well-defined for any $X \in \mathcal{R}$.

Now, if $\Delta \in \Pi$ is a directed set of partitions, then the family

$$\mathcal{Q}_{\Delta} = \{\emptyset\} \cup \bigcup_{\mathcal{P} \in \Delta} \mathcal{P}$$

of all sets, X, for which there exists a partition, $\mathcal{P} \in \Delta$, such that $X \in \mathcal{P}$, augmented by \emptyset , is a quasiring.

PROPOSITION 4.8. Let Δ be a directed set of partitions. If

(B.3)
$$v_{\overline{\Phi}}(\mu, \Delta, X) = \lim_{\overline{P} \in \Lambda} v_{\overline{\Phi}}(\mu, \overline{P}; X) ,$$

for every $X \in \mathcal{Q}$, then the set function $v_{\Phi}(\mu, \Delta)$ is additive on the quasiring \mathcal{Q}_{Δ} . If, moreover, $v_{\Phi}(\mu, \Delta)$ is ι -continuous then $v_{\Phi}(\mu, \Delta)$ is σ -additive on the whole of \mathcal{R} .

Proof. The first statement is obvious. The second one follows from the fact that, for every set $X \in \mathcal{R}$ and $\epsilon > 0$, there is a set Y, which is the union of a finite family of pair-wise disjoint sets from \mathcal{Q}_{Δ} , such that $\iota(|X-Y|) < \epsilon$.

In some cases of great interest, instead of (B.3), the formula

$$(\mathrm{B.4}) \qquad \qquad v_{\Phi}(\mu, \Delta; X) = \lim_{r \to 0+} \sup \big\{ v_{\Phi}(\mu, \mathcal{P}; X) : \big\| \mathcal{P} \big\|_{\iota} < r \,, \, \mathcal{P} \in \Delta \big\}$$

holds for every $X\in\mathcal{Q}$. It might be expected that this formula too would imply the additivity of $v_{\Phi}(\mu,\Delta)$. However, this is not necessarily the case.

EXAMPLE 4.9. Let the set-up be as in Example 4.1 with a=0 and b=1. By a result of S.J. Taylor, [64], Theorem 1, if Φ is a Young function such that

$$2s^{-2}\Phi(s) \log \log s^{-1} \to 1$$
,

as $s \to 0+$, then, for almost every (in the sense of the Wiener measure) continuous function d on [0,1], (B.4) holds with $\Delta = \Pi$ and with the Lebesgue measure in the role of ι . On the other hand, M. Bruneau proved, [5], Théorème 1, that the set of points $t \in [0,1]$ such that

$$v_{\bar{\Phi}}(\mu,\Pi;(0,1]) = v_{\bar{\Phi}}(\mu,\Pi;(0,t]) + v_{\bar{\Phi}}(\mu,\Pi;(t,1]) \ ,$$

for almost every continuous function d, has empty interior.

Because $v_{\Phi}(\mu,\Delta)$ indeed, also in interesting cases, fails to be σ -additive, it is desirable to find a σ -additive set function $\sigma:\mathcal{Q}\to[0,\infty)$ such that $v_{\Phi}(\mu,\Delta;X)\leq \sigma(X)$, for every $X\in\mathcal{Q}$. Such a set function σ can be used together with the inverse function, to Φ , to produce a gauge integrating for μ .

EXAMPLE 4.10. Let the set-up be as in Example 4.1 with arbitrary $a \in \mathbb{R}$ and $b \in \mathbb{R}$, $a \leq b$. For some $\Delta \in \Pi$, assume that $v_{\overline{\Phi}}(\mu, \Delta; \Omega) < \infty$. Let

$$\sigma((s,t]) = v_{\bar{\Phi}}(\mu,\Delta;(a,t]) - v_{\bar{\Phi}}(\mu,\Delta;(a,s])$$

for any s and t such that $a \le s \le t \le b$.

Now, if Δ is a directed set of partitions, then σ is a non-negative and additive set function on the quasiring \mathcal{Q}_{Δ} such that $v_{\Phi}(\mu, \Delta; X) \leq \sigma(X)$, for every $X \in \mathcal{Q}_{\Delta}$. If, moreover, Δ is ι -fine, where ι is the one-dimensional Lebesgue measure, and the function d is continuous, then σ is σ -additive on the whole of \mathcal{Q} and the inequality $v_{\Phi}(\mu, \Delta; X) \leq \sigma(X)$ holds for every $X \in \mathcal{Q}$.

If $\Delta = \Pi$, then σ is σ -additive on $\mathcal Q$ and $v_{\overline\Phi}(\mu,\Delta;X) \leq \sigma(X)$, for every $X \in \mathcal Q$. This observation is due to L.C. Young, [71].

4B

PROPOSITION 4.11. Let $\mathcal{P}_n \in \Pi$ be a partition such that $\mathcal{P}_n \prec \mathcal{P}_{n+1}$, for every $n=1,2,...,\ and$

$$\lim_{n\to\infty} \|\mathcal{P}_n\|_{\iota} = 0.$$

Let $\Delta=\{\mathcal{P}_n:n=1,2,\ldots\}$ and assume that $\iota(X)>0$ for every non-empty set $X\in\mathcal{Q}_{\Delta}$.

Let Φ be a Young function such that μ has finite and ι -continuous Φ -variation with respect to the set of partitions Δ .

Then there exists a σ -additive set function $\sigma: \mathcal{Q} \to [0,\infty)$ such that

(B.5)
$$v_{\Phi}(\mu, \Delta; X) \leq \sigma(X)$$

for every $X \in \mathcal{Q}_{\bigwedge}$.

Proof. Let

$$\sigma_1(X) = \sum_{Y \in \mathcal{P}_1} v_{\Phi}(\mu, \Delta; Y) (\iota(Y))^{-1} \iota(X \cap Y)$$

for every $\,\iota\text{-measurable}$ set $\,X\,.\,$ Then $\,\sigma_1^{}\,$ is a measure in $\,\Omega\,$ such that

$$v_{\Phi}(\mu, \Delta; X) = \sigma_1(X)$$

for every $X \in \mathcal{P}_1$.

Now, if $n \ge 1$ is an integer and σ_n a measure in Ω such that

(B.6)
$$v_{\overline{\Phi}}(\mu, \Delta; X) \leq \sigma_n(X)$$

for every $X\in\mathcal{P}_n$, for every set $Y\in\mathcal{P}_{n+1}\cup\{\emptyset\}$, let w(Y) be a number such that $w(\emptyset)=0$, $v_{\overline{\Phi}}(\mu,\Delta;Y)\leq w(Y)$ and

$$\sum_{Y \in \mathcal{P}_{n+1}} w(X \cap Y) = \sigma_n(X)$$

for every $X \in \mathcal{P}_n$. By (B.6) and Proposition 4.5, such numbers w(Y), $Y \in \mathcal{P}_{n+1}$, do

exist. Then we put

$$\sigma_{n+1}(X) = \sum_{Y \in \mathcal{P}_{n+1}} w(Y) (\iota(Y))^{-1} \iota(X \cap Y)$$

for every ι -measurable set X. This defines a measure, σ_{n+1} , in Ω such that $\sigma_{n+1}(Y)$, for every $Y \in \mathcal{P}_{n+1}$, and $\sigma_{n+1}(X) = \sigma_n(X)$, for every $X \in \mathcal{P}_n$.

So, by induction, a sequence of measures, $\ \sigma_n$, $\ n$ = 1,2,..., is constructed such that, if we define

$$\sigma(X) = \lim_{n \to \infty} \sigma_n(X) ,$$

for every ι -measurable set X, we obtain a measure in Ω such that (B.5) holds for every $X \in \mathcal{Q}_{\Lambda}$.

C. Let ι be a measure in a space Ω . Let $\mathcal{R}(\iota)$ be the family of all ι -integrable sets. (See Section 3B.) Let \mathcal{Q} be a multiplicative quasiring of sets such that $\mathcal{Q} \subset \mathcal{R}(\iota)$. To avoid some trivialities, we assume that the measure ι is generated by its restriction to \mathcal{Q} . Let φ be a real valued, continuous, concave and strictly increasing function on $[0,\infty)$ such that $\varphi(0) = 0$. Let $\rho(X) = \varphi(\iota(X))$ for every $X \in \mathcal{Q}$. By Proposition 2.26, ρ is an integrating gauge on \mathcal{Q} .

The reason why we are interested in this situation is clear: If E is a Banach space, $\mu:\mathcal{Q}\to E$ an additive set function, Φ a Young function and $\Delta\in\Pi(\mathcal{Q})$ a set of partitions such that $v_{\overline{\Phi}}(\mu,\Delta;X)\leq\iota(X)$, for every $X\in\mathcal{Q}$, then, assuming that φ is the inverse function to Φ , the gauge ρ integrates for the set function μ . (See Section 3A.)

The purpose of this and the next section is to provide some information about the space $\mathcal{L}(\rho,\mathcal{Q})$, namely to present workable sufficient conditions for a function to belong to $\mathcal{L}(\rho,\mathcal{Q})$. In this section, we discuss the relation of the spaces $\mathcal{L}(\rho,\mathcal{Q})$ and $\mathcal{L}^{\Phi}(\iota)$, where Φ is the inverse function to φ . (See Section 3C.)

PROPOSITION 4.12. Let $p \in [1,\infty)$ and $\varphi(t) = t^{1/p}$ for every $t \in [0,\infty)$. Then $\mathcal{L}(\rho,\mathcal{Q}) \subset \mathcal{L}^p(\iota)$.

Proof. Let $f \in \mathcal{L}(\rho, \mathcal{Q})$. Let c_j be numbers and $X_j \in \mathcal{Q}$ sets, j = 1, 2, ..., such that

(C.1)
$$\sum_{j=1}^{\infty} |c_j| \rho(X_j) < \infty$$

and

(C.2)
$$f(\omega) = \sum_{j=1}^{\infty} c_j X_j(\omega)$$

for every $\omega \in \Omega$ for which

(C.3)
$$\sum_{j=1}^{\infty} |c_j| X_j(\omega) < \infty.$$

Denote $f_j = c_j X_j$, for every $j = 1, 2, \dots$. Then $\|f_j\|_{p,t} = \|c_j\| (\iota(X_j))^{1/p} = \|c_j\| \rho(X_j)$, for every $j = 1, 2, \dots$. (See Section 3C.) So, by (C.1),

$$\sum_{j=1}^{\infty} \|f_j\|_{p,\ell} < \infty.$$

Consequently, $f \in \mathcal{L}^p(\iota)$.

The following proposition extends the above result to more general functions φ . (For the notion of a Young function, see Section 1G; for the definition of the class $\mathcal{L}^{\Phi}(\iota)$, see Section 3C.)

PROPOSITION 4.13. Let φ be the inverse function to a Young function, Φ , and K a constant such that $0 < K < \varphi(t)\varphi(t^{-1})$ for every $t \in (0,\infty)$. Then $\mathcal{L}(\rho,\mathcal{Q}) \subset \mathcal{L}^{\Phi}(\iota)$.

Proof. First, let c be a number, X a set belonging to $\mathcal Q$ and g=cX. Assume that $c\neq 0$ and $\iota(X)>0$. Recall that the Luxemburg norm, $\|g\|_{\Phi,\iota}$, of the function g is defined by the formula

$$\|g\|_{\Phi,\iota} = \inf\{k: k > 0, \int_{\Omega} \Phi(k^{-1}|g(\omega)|)\iota(\mathrm{d}\omega) \le 1\}.$$

Hence, $\|g\|_{\Phi,\iota} = k$, where k is the number that satisfies the condition $\Phi(k^{-1}|c|)\iota(X) = 1$. It follows that $\|g\|_{\Phi,\iota} \leq K^{-1}|c|)\varphi(\iota(X)) = K^{-1}|c|\rho(X)$, where K is the constant mentioned in the statement of this proposition. This estimate is,

obviously, true also if c = 0 or $\iota(x) = 0$.

The proof is now finished as that of Proposition 4.12. Namely, if $f \in \mathcal{L}(\rho, \mathcal{Q})$ and c_j are numbers and $X_j \in \mathcal{Q}$ sets, $j=1,2,\ldots$, satisfying (C.1), such that (C.2) holds for every $\omega \in \Omega$ for which (C.3) does, we denote $f_j = c_j X_j$, for every $j=1,2,\ldots$. Then we use the obtained estimate of the Luxemburg norm to deduce from (C.1) that

$$\sum_{j=1}^{\infty} \|f_j\|_{\Phi, \iota} < \infty ,$$

which implies that $f \in \mathcal{L}^{\Phi}(\iota)$.

In the following proposition, no additional conditions are imposed on φ . (For the concepts used in its statement, see Section 1D.)

PROPOSITION 4.14. If Q is an algebra of sets, then every bounded function measurable with respect to the σ -algebra generated by Q belongs to $\mathcal{L}(\rho,Q)$.

Proof. Let $\mathcal S$ be the σ -algebra of sets generated by $\mathcal Q$. Because, for every set $Y\in\mathcal S$ and $\epsilon>0$, there is a set $X\in\mathcal Q$ such that $\iota(\mid Y\!-\!X\mid)<\epsilon$ and the function φ is continuous, it is obvious that $\mathcal S\subset\mathcal L(\rho,\mathcal Q)$. Then, by Proposition 2.7, $\mathcal L(q_\rho,\mathcal S)=\mathcal L(\rho,\mathcal Q)$ and, by continuity, $q_\rho(Y)=\varphi(\iota(Y))$, for every $Y\in\mathcal S$. Hence, without a loss of generality, we can assume that $\mathcal Q$ is a σ -algebra.

Now, let f be a \mathcal{Q} -measurable function such that $0 \leq f(\omega) \leq 1$, for every $\omega \in \Omega$. Assuming that $k \geq 1$ is an integer and the sets X_j , j=1,2,...,k-1, are already constructed, let

$$X_k = \left\{ \omega : f(\omega) - \sum_{j=1}^{k-1} 2^{-j} X_j(\omega) \ge 2^{-k} \right\}.$$

Then

$$\sum_{j=1}^{\infty} 2^{-j} \rho(X_j) \le \rho(\Omega) < \infty$$

and

$$f(\omega) = \sum_{j=1}^{\infty} 2^{-j} X_j(\omega)$$

for every $\omega \in \Omega$.

PROPOSITION 4.15. Let Q be an algebra of sets. Let $1 and let <math>\varphi(t) = t^{1/p}$, for every $t \ge 0$, so that $\rho(X) = (\iota(X))^{1/p}$, for every $X \in Q$. Then $\mathcal{L}^q(\iota) \subset \mathcal{L}(\rho, Q)$.

Proof. Without loss of generality, we shall assume, as in the proof of Proposition 4.14, that Q is the family of all ι -measurable sets.

Let f be a non-negative function belonging to $\mathcal{L}^q(\iota)$. Let $X_j=\{\omega:f(\omega)\geq j\}$, for every $j=1,2,\ldots$. Then

$$\textstyle \sum\limits_{j=1}^{\infty} \; q(j\!-\!1)^{q-1} \iota(X_j) \, \leq \, \sum\limits_{j=1}^{\infty} \; (j^q\!-\!(j\!-\!1)^q) \iota(X_j) \, \leq \, \int_{\Omega} \, f^q d\iota \, < \, \infty \; ,$$

so that

$$\sum_{j=1}^{\infty} j^{q-1}\iota(X_j) < \infty .$$

By the Hölder inequality,

$$\sum_{j=1}^{\infty} \rho(X_j) = \sum_{j=1}^{\infty} (\iota(X_j))^{1/p} = \sum_{j=1}^{\infty} j^{(1-q)/p} (j^{q-1}\iota(X_j))^{1/p}$$

$$\leq \left[\sum_{j=1}^{\infty} j^{(1-q)/(p-1)} \right]^{(p-1)/p} \left[\sum_{j=1}^{\infty} j^{q-1} \iota(X_j) \right]^{1/p} < \infty \; ,$$

because (q-1)/(p-1) > 1. So, if we let

$$g(\omega) = \sum_{i=1}^{\infty} X_i(\omega)$$
,

for every $\omega \in \Omega$, then $g \in \mathcal{L}(\rho, Q)$.

Now, let h = f - g. Then $0 \le h(\omega) \le 1$, for every $\omega \in \Omega$. By Proposition 4.14, h belongs to $\mathcal{L}(\rho, Q)$ and, therefore, f = g + h too belongs to $\mathcal{L}(\rho, Q)$.

The following examples settle some natural questions about the space $\mathcal{L}(\rho,Q)$. They were designed by Susumu Okada.

EXAMPLES 4.16. Let ι be the one-dimensional Lebesgue measure. Let $\Omega = (0,1]$, $\mathcal{Q} = \{(s,t]: 0 \leq s \leq t \leq 1\}$ and \mathcal{R} be the algebra of sets generated by \mathcal{Q} . Let 1 < p and let $\rho(X) = (\iota(X))^{1/p}$, for every $X \in \mathcal{R}$. Then, obviously $\mathcal{L}(\rho,\mathcal{Q}) \subset \mathcal{L}(\rho,\mathcal{R})$ and, by

Proposition 4.12, $\mathcal{L}(\rho,\mathcal{R}) \subset \mathcal{L}^p(\iota)$. We wish to show that $\mathcal{L}(\rho,\mathcal{Q}) \neq \mathcal{L}(\rho,\mathcal{R})$ and $\mathcal{L}(\rho,\mathcal{R}) \neq \mathcal{L}^p(\iota)$. Let us denote, for short, $\alpha = p^{-1}$.

(i) Let us note first that there exists a constant $c_1 > 0$ such that

$$|t^{2\alpha}\cos t^{-1} - s^{2\alpha}\cos s^{-1}| \le c_1|t-s|^{\alpha}$$

for every $s \in \Omega$ and $t \in \Omega$. Indeed, let 0 < s < t < 1. Let $n \ge 1$ be the integer such that $(n+1)^{-1} < t \le n^{-1}$. Assume first that $(n+2)^{-1} \le s$ and put $u = (n+2)^{-1}$ and $v = n^{-1}$, so that $v \le 3u$. By the Lagrange theorem,

$$|t^{2\alpha} \cos t^{-1} - s^{2\alpha} \cos s^{-1}||t-s|^{-\alpha} \le 3|t-s|^{1-\alpha} s^{2\alpha-2} \le 3(2uv)^{1-\alpha} u^{2\alpha-2} \le 3.6^{1-\alpha}$$

If $s < (n+2)^{-1}$, then

$$|t^{2\alpha} \cos t^{-1} - s^{2\alpha} \cos s^{-1}| |t-s|^{-\alpha} \le (n^{-2\alpha} + (n+2)^{-2\alpha})((n+1)^{-1} - (n+2)^{-1})^{-\alpha} \le 2.2^{\alpha}.$$

Integrating by parts, we then obtain that

$$\left| \int_{s}^{t} u^{2\alpha - 2} \sin u^{-1} du \right| \leq |t^{2\alpha} \cos t^{-1} - s^{2\alpha} \cos t^{-1}| + \int_{s}^{t} 2\alpha u^{2\alpha - 1} du \leq c |t - s|^{\alpha},$$

for some c>0 and every $s\in\Omega$ and $t\in\Omega$. So, if we put d(0)=0 and

$$d(t) = \lim_{s \to 0} \int_{s}^{t} u^{2\alpha - 2} \sin u^{-1} du,$$

for every $t \in (0,1]$, then d is a well–defined continuous function on [0,1].

Let $\mu((s,t]) = d(t) - d(s)$, for every s and t such that $0 \le s \le t \le 1$. Furthermore, given a point $s \in \Omega$, let $\mu^s(X) = \mu(X \cap (s,1])$, for every $X \in \mathcal{Q}$. We have noted that $|\mu^s(X)| < c(\iota(X))^{\alpha} = c\rho(X)$, for some c > 0 and every $X \in \mathcal{Q}$. Therefore, by Proposition 3.1,

$$\left| \int_{s}^{1} f(u) u^{2\alpha - 2} \sin u^{-1} du \right| = |\mu_{\rho}^{s}(f)| \le cq_{\rho}(f),$$

for every $f \in \mathcal{L}(\rho, Q)$.

4.16

4D

Let $g(t)=t^{1-2}\alpha \sin t^{-1}$, for every $t\in\Omega$. Then the function g does not belong to $\mathcal{L}(\rho,\mathcal{Q})$, because

121

$$\lim_{s \to 0} \int_{s}^{1} g(u)u^{2\alpha-2} \sin u^{-1} du = \infty.$$

None-the-less, g belongs to $\mathcal{L}(\rho,\mathcal{R})$. Indeed, if $p\geq 2$, that is, $\alpha\leq \frac{1}{2}$, this follows from Proposition 4.14. If p<2, we choose a number $q\in (p,p/(2-p))$. Then $g\in \mathcal{L}^q(\iota)$ and, by Proposition 4.15, $g\in \mathcal{L}^q(\rho,\mathcal{R})$.

Consequently, $\mathcal{L}(\rho, Q) \neq \mathcal{L}(\rho, R)$.

(ii) To show that $\mathcal{L}(\rho, \mathcal{R}) \neq \mathcal{L}^p(\iota)$, let $h(t) = t^{-\alpha} |\log t|^{-1}$, for $t \in (0, \frac{1}{2}]$, and h(t) = 0, for $t \in (\frac{1}{2}, 1]$. Then $h \in \mathcal{L}^p(\iota)$. However, the function h does not belong to $\mathcal{L}(\nu, \mathcal{R}) = \mathcal{L}(\nu)$, where

$$\nu(X) = \alpha \int_X u^{\alpha - 1} \mathrm{d}u ,$$

for every $X \in \mathcal{Q}$. Using the fact that every set in \mathcal{R} is the union of a finite collection of pair–wise disjoint intervals belonging to \mathcal{Q} , we can prove that $\nu(X) \leq \rho(X)$, for every $X \in \mathcal{R}$. Therefore, the function h does not belong to $\mathcal{L}(\rho,\mathcal{R})$ either.

D. We maintain the notation of Section C.

A function f on Ω will be called \mathcal{Q} -locally ι -integrable if it is integrable with respect to ι on every set belonging to \mathcal{Q} , that is, if $Xf \in \mathcal{L}(\iota)$ for every $X \in \mathcal{Q}$.

Now, assuming that f is a Q-locally ι -integrable function, let

$$M_{\iota}(f,X) = \frac{1}{\iota(X)} \int_{X} f \mathrm{d}\iota$$

for every set $X \in \mathcal{Q}$ such that $\iota(X) > 0$, and $M_{\iota}(f,X) = 0$ for every set X such that $\iota(X) = 0$. If $\iota(X) > 0$, then the number $M_{\iota}(f,X)$ is the mean value of the function f on the set X with respect to the measure ι .

Furthermore, if $\mathcal{P} \in \Pi(\mathcal{Q})$ is a partition, let

$$M_{\iota}(f,\mathcal{P}) = \sum_{X \in \mathcal{P}} M_{\iota}(f,X) X$$
 .

So, $M_{\iota}(f,\mathcal{P})$ is a function on Ω , constant on every set belonging to \mathcal{P} , having the same mean value as the function f on every set $X \in \mathcal{P}$ such that $\iota(X) > 0$.

Let ψ be a real valued, continuous, and strictly increasing function on $[0,\infty)$ such that $\psi(0)=0$.

We shall say that a function f on Ω satisfies the ψ -Hölder condition with respect to the quasiring $\mathcal Q$ and the measure ι if

$$|f(\omega) - f(v)| \leq \psi(\iota(X))$$
,

for every set $X \in \mathcal{Q}$ and any points $\omega \in X$ and $v \in X$.

PROPOSITION 4.17. Let f be a ι -measurable function satisfying the ψ -Hölder condition with respect to $\mathcal Q$ and ι . Then f is $\mathcal Q$ -locally ι -integrable.

Let $\mathcal{P}_n \in \Pi(\mathcal{Q})$ be a partition such that $\mathcal{P}_n \prec \mathcal{P}_{n+1}$, for every n=0,1,2,..., and $\|\mathcal{P}_n\|_L \to 0$ as $n \to \infty$. If

$$\sum_{X\in\mathcal{P}_0} M_\iota(f,X) \varphi(\iota(X)) + \sum_{j=1}^\infty \sum_{Z\in\mathcal{P}_{j-1}} \psi(\iota(Z)) \sum_{Y\in\mathcal{P}_j} \varphi(\iota(Y\cap Z)) < \infty \;,$$

then $f \in \mathcal{L}(\rho, Q)$.

Proof. The first statement is clear, because the function f is bounded on every set belonging to Q.

Let
$$f_0 = M_{\iota}(f, \mathcal{P}_0)$$
 and

$$f_j = M_{\iota}(f - M_{\iota}(f, \mathcal{P}_{j-1}), \mathcal{P}_j) \ ,$$

for every $j = 1, 2, \dots$ Then

$$\sum_{i=0}^{n} f_{i} = M_{l}(f, \mathcal{P}_{n}) ,$$

for n = 0, 1, 2, ... Now,

$$q_{\rho}(f_0) \leq \sum\limits_{X \in \mathcal{P}_0} M_{\iota}(f,X) \rho(X)$$
 .

(See Section 2A.) Furthermore, for every j = 1, 2, ...,

$$M_{_{L}}(f-M_{_{L}}(f,\mathcal{P}_{_{i-1}}),Y)=M_{_{L}}(f-M_{_{L}}(f,Z),Y)\ ,$$

for any $Y \in \mathcal{P}_j$, where Z is the set belonging to \mathcal{P}_{j-1} such that $Y \in Z$. Then $|f(\omega) - \mathrm{M}_{\iota}(f,Z)| | \leq \psi(\iota(Z))$, for every $\omega \in Z$, and, hence,

123

$$|M_{\iota}(f-M_{\iota}(f,Z),Y)| \leq \psi(\iota(Z))$$
.

Consequently,

$$q_{\rho}(f_j) \leq \sum_{Y \in \mathcal{P}_j} |\, M_{l}(f - M_{l}(f, \mathcal{P}_{j-1}), Y) \,|\, \rho(\, Y) \leq \sum_{Z \in \mathcal{P}_{j-1}} \psi(\iota(Z)) \, \sum_{Y \in \mathcal{P}_j} \varphi(\iota(\, Y \cap Z)) \,\,,$$

for every $j = 1, 2, \dots$ So, Proposition 2.1 applies.

 $\begin{aligned} & \textbf{COROLLARY 4.18.} \quad Let \quad \Omega \in \mathcal{Q} \;, \quad \mathcal{P}_0 = \left\{\Omega\right\} \;, \quad \mathcal{P}_j \prec \mathcal{P}_{j+1} \;, \quad \iota(X) = \left\|\mathcal{P}_j\right\|_{\iota} = \left(\frac{1}{2}\right)^{j} \iota(\Omega) \;, \quad \text{for every} \quad X \in \mathcal{P}_j \quad and \quad j = 0, 1, 2, \ldots, \quad and \quad \Delta = \left\{\mathcal{P}_j : j = 0, 1, 2, \ldots\right\} \;. \end{aligned}$

If f is an ι -measurable function satisfying the ψ -Hölder condition with respect to the quasiring \mathcal{Q}_{\bigwedge} and the measure ι , and

(D.1)
$$\int_{0}^{1} \frac{\varphi(t)\psi(t)}{t^{2}} dt < \infty,$$

then $f \in \mathcal{L}(\rho, Q)$.

Proof. Let $\alpha = \iota(\Omega)$. Because the functions φ and ψ are increasing,

$$\textstyle\sum\limits_{j=1}^{\infty}\;\sum\limits_{Z\in\mathcal{P}_{j-1}}\psi(\iota(Z))\quad\sum\limits_{Y\in\mathcal{P}_{j}}\varphi(\iota(\,Y\cap Z))=\sum\limits_{j=1}^{\infty}\;2^{j}\psi(2^{1-j}\alpha)\varphi(2^{-j}\alpha)\leq$$

$$\leq \sum_{j=1}^{\infty} 2^{2j} \psi(2^{1-j}\alpha) \varphi(2^{1-j}\alpha) 2^{-j} \leq 4 \int_0^1 \frac{\varphi(\alpha t) \psi(\alpha t)}{t^2} \, \mathrm{d}t = 4\alpha \int_0^\alpha \frac{\varphi(t) \psi(t)}{t^2} \, \mathrm{d}t \; .$$

COROLLARY 4.19. Let $\Omega = (a,b]$ with $a \in \mathbb{R}$, $b \in \mathbb{R}$ and a < b. Let $\mathcal{Q} = \{(s,t] : a \le s \le t \le b\}$. Let d be a function on [a,b] such that

$$|d(t) - d(s)| \le \varphi(t-s) ,$$

and let

$$\mu((s,t]) = d(t) - d(s)$$
 and $\rho((s,t]) = \varphi(t-s)$,

for every s and t such that $a \le s \le t \le b$. Then ρ is a gauge integrating for the additive set function μ .

If, moreover, f is a function on Ω such that

$$|f(t) - f(s)| \leq \psi(|t-s|),$$

for any $s \in \Omega$ and $t \in \Omega$, and (D.1) holds, then $f \in \mathcal{L}(\rho, Q)$.

Condition (D.1) is satisfied, in particular, when $\varphi(t)=c_1t^{1/p}$ and $\psi(t)=c_2t^{1/q}$, for every $t\geq 0$, where $c_1>0$, $c_2>0$ and $p^{-1}+q^{-1}>1$.

E. In some sense the notion of an additive set function with finite p-variation is analogous to the notion of a (point) function locally belonging to an L^p space. The analogy reverses the extension of these notions though, because, if p < q, to have finite p-variation is a more restrictive condition than one to have finite q-variation. In this section, we introduce additive set functions which are analogous to functions locally belonging to an L^∞ space.

Let $\mathcal Q$ be a multiplicative quasiring of sets in a space Ω . (See Section 1D.) Let E be a Banach space. Let $\mu:\mathcal Q\to E$ be an additive set function.

For any set $X \in \mathcal{Q}$, let

$$(\mathrm{E.1}) \hspace{1cm} v_{\infty}(\mu;X) = \sup \{ \, | \, \mu(X \cap Z) \, | \, : \, Z \in \mathcal{Q} \} \ .$$

The possibility $v_{\infty}(\mu;X) = \infty$ is admitted.

The set function $\ \mu$ will be called locally bounded if $\ v_{\infty}(\mu;X)<\infty$, for every $X\in\mathcal{Q}$.

A wealth of locally bounded additive set functions do not have finite Φ -variation for any Young function Φ is provided in Chapter 6. Here is a simple example of such a set function.

EXAMPLE 4.20. Let Ω and $\mathcal Q$ be as in Corollary 4.19. Let E be the Banach space of all bounded Borel measurable functions on Ω with the sup-norm. For every $X \in \mathcal Q$, let $\mu(X)$ be the characteristic function of X considered as an element of the

4Ε

space E. Then $\mu:\mathcal{Q}\to E$ is an additive set function such that $v_\infty(\mu;X)=1$, but $v_{\overline{\Phi}}(\mu;X)=\infty$, for every $X\in\mathcal{Q}$, $X\neq\emptyset$, no matter what the Young function Φ .

The set function μ will be called indeficient if it is locally bounded and the gauge, ρ , defined on $\mathcal Q$ by

(E.2)
$$\rho(X) = v_{\infty}(\mu; X) ,$$

for every $X \in \mathcal{Q}$, is integrating. (See Section 2D.)

So, if the set function μ is indeficient then this gauge integrates for it. (See Section 3A.)

PROPOSITION 4.21. The set function μ is indeficient if and only if it is locally bounded and

(E.3)
$$\sum_{j=1}^{\infty} c_j \mu(X_j) = 0 ,$$

for any numbers c_{j} and sets $X_{j} \in \mathcal{Q}$, j = 1, 2, ..., such that

(E.4)
$$\sum_{j=1}^{\infty} |c_j| v_{\infty}(\mu; X_j) < \infty$$

and

(E.5)
$$\sum_{j=1}^{\infty} c_j X_j(\omega) = 0$$

for every $\omega \in \Omega$ such that

(E.6)
$$\sum_{j=1}^{\infty} |c_j| X_j(\omega) < \infty.$$

Proof. Let us show first that, if the condition is satisfied, then the gauge , ρ , defined by (E.2) is integrating. Let $X \in \mathcal{Q}$. Let c_j be numbers and $X_j \in \mathcal{Q}$ sets, $j = 1, 2, \ldots$, satisfying condition (E.4), such that

(E.7)
$$X(\omega) = \sum_{j=1}^{\infty} c_j X_j(\omega)$$

for every ω satisfying the inequality (E.6). Let $\epsilon > 0$ and let $Z \in \mathcal{Q}$ be a set such that $\rho_{\mu}(X) < |\mu(X \cap Z)| + \epsilon$. Because

$$\lim_{n\to\infty} |\mu(X\cap Z) - \sum_{j=1}^n c_j \mu(X_j \cap Z)| = 0 ,$$

the inequality

$$\rho(X) - \epsilon < |\mu(X \cap Z)| \le \sum_{j=1}^{\infty} |c_j| |\mu(X_j \cap Z)| \le \sum_{j=1}^{\infty} |c_j| \rho(X_j)$$

holds. So, by Proposition 2.7, the gauge ρ is integrating.

Conversely, assume that μ is indeficient. That is, $v_{\infty}(\mu;X)<\infty$ for each $X\in\mathcal{Q}$ and the gauge (E.2) integrates for μ . So, if c_j are numbers and $X_j\in\mathcal{Q}$ sets, j=1,2,..., satisfying (E.4), such that (E.5) holds for every $\omega\in\Omega$ for which (E.6) does, then, by Proposition 2.1,

$$\lim_{n\to\infty} q_{\rho} \left[\sum_{j=1}^{n} c_{j} X_{j} \right] = 0.$$

Because

$$\left| \sum_{j=1}^{n} c_{j} \mu(X_{j}) \right| \leq c q_{\rho} \left[\sum_{j=1}^{n} c_{j} X_{j} \right] ,$$

for some number $c \ge 0$ and every n = 1, 2, ..., (E.3) follows.

The following proposition is a simple means for producing examples: it helps us to prove the indeficiency of some additive set functions which arise in connection with classical improper integrals and are not σ -additive.

PROPOSITION 4.22. Let the set function $\mu: \mathcal{Q} \to E$ be locally bounded. Let $\Omega_n \in \mathcal{Q}$ be sets such that $\Omega_n \subset \Omega_{n+1}$ and the restriction of μ to the quasiring $\mathcal{Q} \cap \Omega_n$ is indeficient, for every $n = 1, 2, \ldots$, and that

$$\lim_{n\to\infty} |\mu(X) - \mu(X \cap \Omega_n)| = 0 ,$$

for every $X \in Q$.

Then the set function μ is indeficient.

Proof. Let c_j be numbers and $X_j \in \mathcal{Q}$ sets, j = 1, 2, ..., satisfying condition (E.4) such that the equality (E.5) holds for every $\omega \in \Omega$ for which the inequality (E.6) does.

4.23 4E

Let $\epsilon > 0$. Let J be a positive integer such that

$$\sum_{j=J+1}^{\infty} \mid c_j \mid v_{\infty}(\mu; X_j) < \epsilon.$$

Let m be a positive integer such that

$$\label{eq:local_state} \left| \, \sum_{j=1}^J \, c_j \mu(X_j) \, - \, \sum_{j=1}^J \, c_j \mu(X_j \cap \Omega_m) \, \right| \, < \, \epsilon \, \, .$$

Let N be a positive integer such that

$$\left| \sum_{j=1}^{n} c_{j} \mu(X_{j} \cap \Omega_{m}) \right| < \epsilon$$

for every n > N. Such an integer N exists because, by the assumption, the restriction of μ to $\mathcal{Q} \cap \Omega_m$ is indeficient. Then

$$\begin{split} \left| \sum_{j=1}^n c_j \mu(X_j) \right| &\leq \left| \sum_{j=1}^n c_j \mu(X_j \cap \Omega_m) \right| + \left| \sum_{j=1}^n c_j \mu(X_j) - \sum_{j=1}^n c_j \mu(X_j \cap \Omega_m) \right| \leq \\ &\leq \epsilon + \left| \sum_{j=1}^J c_j \mu(X_j) - \sum_{j=1}^J c_j \mu(X_j \cap \Omega_m) \right| + \left| \sum_{j=J+1}^n c_j \mu(X_j) - \sum_{j=J+1}^n c_j \mu(X_j \cap \Omega_m) \right| \leq \\ &\leq 2\epsilon + 2 \sum_{j=J+1}^\infty \left| c_j \right| v_{\infty}(\mu; X_j) < 4\epsilon \;, \end{split}$$

for every $n > \max\{J, N\}$. Hence, by Proposition 4.21, the set function indeficient.

A non-negative real valued additive set function on a EXAMPLES 4.23. (i) quasiring of sets is indeficient if and only if it is σ -additive. This follows from Proposition 2.13 and Proposition 4.21. However, the argument establishing Proposition 2.13 can be simplified for the purpose of proving the indeficiency of such a set function directly.

So, let ι be a non-negative real valued additive set function on the quasiring Q. Then $v_{\infty}(\iota,X) = \iota(X)$, for every $X \in Q$.

If ι is not σ -additive, then, obviously, it is not an integrating gauge. Let us assume, therefore, that ι is σ -additive. We want to prove that

(E.8)
$$\iota(X) \le \sum_{j=1}^{\infty} |c_j| \iota(X_j)$$

for any set $X \in \mathcal{Q}$, numbers c_j and sets $X_j \in \mathcal{Q}$, j=1,2,..., such that the equality (E.7) holds for every $\omega \in \Omega$ for which the inequality (E.6) does. Let $\epsilon > 0$ and, for every n=1,2,..., let Z_n be the set of those points $\omega \in X$ for which

$$\sum_{j=1}^{n} |c_{j}| X_{j}(\omega) > 1 - \epsilon.$$

Then $Z_n \in sim(Q)$, $Z_n \subset Z_{n+1}$ and

$$\textstyle\sum\limits_{j=1}^{n}\;|\;c_{j}|\;\iota(X_{j}^{})\;\geq\;\sum\limits_{j=1}^{n}\;|\;c_{j}^{}|\;\iota(X_{j}^{}\cap Z_{n}^{})\;\geq\;(1-\epsilon)\iota(Z_{n}^{})\;,$$

for every $n=1,2,\ldots$. Because ι is σ -additive on the ring of sets whose characteristic functions belong to $\operatorname{sim}(\mathcal{Q})$, and the union of the sets Z_n , $n=1,2,\ldots$, is equal to X, there is an integer $n\geq 1$ such that $\iota(Z_n)>\iota(X)-\epsilon$. Hence,

$$\sum_{j=1}^{\infty} |c_j| \iota(X_j) \ge (1-\epsilon)(\iota(X)-\epsilon)$$

for every $\epsilon > 0$, and the inequality (E.8) follows. By Proposition 2.7, the gauge $X \mapsto v_{\infty}(\iota;X) = \iota(X)$ is integrating and, hence, ι is indeficient.

(ii) Let Q be a ring of sets and let μ be a locally bounded real valued σ -additive set function on Q. Then μ is indeficient.

In fact, let $\mu=\mu^+-\mu^-$ be the Jordan decomposition of μ . So μ^+ and μ^- are non-negative σ -additive set functions on $\mathcal Q$ such that $\rho_\mu(X) \leq \mu^+(X) + \mu^-(X)$ and $\mu^+(X) \leq \rho_\mu(X)$, $\mu^-(X) \leq \rho_\mu(X)$, for every $X \in \mathcal Q$. Hence, the indeficiency of μ follows from that of μ^+ and μ^- by Proposition 4.21.

(iii) Let Q be a ring of sets and let μ be a locally bounded complex valued σ -additive set function on Q. Then μ is indeficient. This follows from (ii) by

considering the real and imaginary parts of μ .

(iv) Let $\Omega = \{1,2,\ldots\}$ be the set of all positive integers. Let $\mathcal Q$ be the family of all intervals in Ω , that is, intersections of Ω with intervals of the real-line. Let E be a Banach space and let $\{a_j\}_{j=1}^\infty$ be a conditionally summable sequence of its elements. Let

$$\mu(X) = \lim_{n \to \infty} \sum_{j=1}^{n} X(j) a_{j}$$

for every $X \in \mathcal{Q}$.

If we choose $\Omega_n=\{1,2,...,n\}$, for n=1,2,..., in Proposition 4.22, we deduce easily that the set function μ is indeficient.

(v) Let $\Omega = \mathbb{R}$ and let Q be the family of all (bounded and unbounded) intervals of the real-line. Let $s \neq 0$ be a real number and let

$$\mu(X) = \lim_{u \to \infty} \int_{-u}^{u} X(t) \exp(ist^{2}) dt$$

for every $X \in \mathcal{Q}$. Then μ is an indeficient additive set function on \mathcal{Q} .

In fact, let $\Omega_n = (-n,n)$, for every n=1,2,.... The restriction of μ to $\mathcal{Q} \cap \Omega_n$ is indeficient for every n=1,2,.... This can be seen by considering the real and imaginary parts of μ separately and noting that each Ω_n can be divided into a finite number of intervals such that in each of them $\mathrm{Re}\mu$ and $\mathrm{Im}\mu$ are of constant sign. Proposition 4.22 then applies.

If the set function $\mu: \mathcal{Q} \to E$ is indeficient then the gauge ρ , defined by (E.1) and (E.2), integrates for μ . However, this is not necessarily the only gauge which integrates for μ . For example, if μ has finite and σ -additive variation it might be convenient to let the variation integrate for μ . But the resulting spaces of integrable functions could be very different even if E is just the space of scalars.

EXAMPLE 4.24. Let Ω and \mathcal{Q} be as in Example 4.23(iv). Let

$$\mu(X) = \sum_{j \in X} (-1)^j j^{-2}$$

for every $X \in \mathcal{Q}$. Then μ has finite and σ -additive variation, $v(\mu)$, and, by Example 4.23(ii), it is indeficient.

Let $e(\omega) = \omega$, for every $\omega \in \Omega$. Then

$$e(\omega) = \sum_{j=1}^{\infty} X_j(\omega)$$

for every $\ \omega \in \Omega$, where $\ X_{j} = \{j, j+1, \ldots\}$ for every $j = 1, 2, \ldots$. Because

$$\rho(X_j) = v_\infty(\mu; X_j) = \sup\big\{\,|\,\mu(X_j \cap Z)\,|\,:\, Z \in \mathcal{Q}\big\} = j^{-2} \ ,$$

for every j=1,2,..., the function e belongs to $\mathcal{L}(\rho,\mathcal{Q})$.

On the other hand, a function f belongs to $\mathcal{L}(v(\mu),Q)$ if and only if

$$\sum_{j=1}^{\infty} |f(j)| j^{-2} < \infty.$$

F. Roughly speaking, indeficiency is preserved by closed rather than continuous maps.

Let $\mathcal Q$ be a multiplicative quasiring of sets in a space Ω . Let E be a Banach space.

Let A be an index set and, for every $\alpha \in A$, let F_{α} be a Banach space and $T_{\alpha} \colon E \to F_{\alpha}$ a continuous linear map. We say that the family of maps $\{T_{\alpha} \colon \alpha \in A\}$ separates the points of the space E if the equality $T_{\alpha}(x) = 0$, for some $x \in E$ and every $\alpha \in A$, implies that x = 0.

For every $\alpha \in A$, let $\nu_{\alpha} : \mathcal{Q} \to F_{\alpha}$ be a locally bounded additive set function. The family of set functions $\{\nu_{\alpha} : \alpha \in A\}$ is said to be collectively indeficient if

(F.1)
$$\sum_{j=1}^{\infty} c_j \nu_{\alpha}(X_j) = 0 ,$$

for every $\alpha \in A$, whenever c_j are numbers and $X_j \in \mathcal{Q}$ sets, j = 1, 2, ..., such that

$$(\text{F.2}) \qquad \qquad \sum_{j=1}^{\infty} \; \mid c_{j} \mid v_{\infty}(\sigma_{\alpha}; X_{j}) < \infty \; , \label{eq:F.2}$$

for every $\alpha \in A$, and the equality (E.5) holds for every $\omega \in \Omega$ for which the inequality (E.6) does.

By Proposition 4.21, if each set function $\ \nu_{\alpha}$, $\alpha \in A$, is indeficient, then the family $\{\nu_{\alpha} : \alpha \in A\}$ is collectively indeficient.

PROPOSITION 4.25. Let $\mu: \mathcal{Q} \to E$ be a locally bounded additive set function. Let $\nu_{\alpha} = T_{\alpha} \circ \mu$, for every $\alpha \in A$.

If the family of maps $\{T_\alpha:\alpha\in A\}$ separates points of the space E and the family of set functions $\{\nu_\alpha:\alpha\in A\}$ is collectively indeficient, then the set function μ is indeficient.

Proof. Let us note first that the local boundedness of μ and the boundedness of T_{α} imply that each set function ν_{α} , $\alpha \in A$, is locally bounded.

Let c_j be numbers and $X_j \in \mathcal{Q}$ sets, j=1,2,..., satisfying condition (E.4), such that the equality (E.5) holds for every $\omega \in \Omega$ for which the inequality (E.6) does. Let

$$x = \sum_{j=1}^{\infty} c_j \mu(X_j) .$$

Condition (E.4) and the continuity of T_{α} imply that (F.2) holds for every $\alpha \in A$. Consequently, (F.1) holds for every $\alpha \in A$, because the family of set functions $\{\nu_{\alpha} : \alpha \in A\}$ is collectively indeficient. So, by the continuity of T_{α} , the equality

$$T_{\alpha}(x) = T_{\alpha} \left[\sum_{j=1}^{\infty} c_j \mu(X_j) \right] = \sum_{j=1}^{\infty} c_j \nu_{\alpha}(X_j) = 0$$

holds for every $\alpha \in A$. Then x = 0, that is, (E.3) holds, because the family of maps $\{T_{\alpha} : \alpha \in A\}$ separates points of the space E. So, by Proposition 4.21, the set function μ is indeficient.

COROLLARY 4.26. Let $\mu: \mathcal{Q} \rightarrow E$ be a locally bounded additive set function.

If the family of functionals $x' \in E'$, such that the scalar valued set function $x' \circ \mu$ is indeficient, separates points of the space E, then the set function μ is indeficient.

EXAMPLE 4.27. Let E be a Banach space. Let $\mathcal Q$ be a ring of sets in a space Ω and let $\mu:\mathcal Q\to E$ be a locally bounded additive set function. By Corollary 4.26 and Example 4.23(iii), if the set of functionals $x'\in E'$, such that the set function $x'\circ\mu$ is σ -additive, separates the space E, then the set function μ is indeficient. In particular, a locally bounded σ -additive set function $\mu:\mathcal Q\to E$ is indeficient. This fact opens another way to integration 'with respect to vector measures'.

So, let $\mu:\mathcal{Q}\to E$ be a locally bounded σ -additive set function. Let $\rho_{\mu}(X)=v_{\infty}(\mu;X)$, for every $X\in\mathcal{Q}$. Let ρ be the seminorm on $\sin(\mathcal{Q})$ defined by

$$\rho(f) = \sup \{ v(x' \circ \mu, |f|) : x' \in E', |x'| \le 1 \},$$

for every $f \in \text{sim}(\mathcal{Q})$. Then $\rho_{\mu}(X) \leq \rho(X) \leq C\rho_{\mu}(X)$, for some $C \geq 1$ and every $X \in \mathcal{Q}$. (See Proposition 3.13.) Therefore, $\mathcal{L}(\rho,\mathcal{Q}) = \mathcal{L}(\rho_{\mu},\mathcal{Q})$. But of course $\mathcal{L}(\rho,\mathcal{Q}) \in \mathcal{L}(\rho,\sin(\mathcal{Q}))$ and the inclusion may be strict.

In fact, let $\Omega=\{1,2,\ldots\}$ be the set of all positive integers and let $E=c_0$ be the space of all scalar valued sequences tending to 0 equipped with the usual sup norm. Let $\mathcal Q$ be the family of all subsets of Ω . For every $X\in\mathcal Q$, let

$$\mu(X) = \sum_{j \in X} j^{-1} e_j,$$

where $\ e_{j}$, $\ j$ = 1,2,..., are the elements of the standard base of the space $\ c_{0}$. Let

$$f = \sum_{j=2}^{\infty} j(\log j)^{-1} \{j\}$$
.

The function f is $v(x' \circ \mu)$ -integrable, for every $x' \in E'$. (See Section 3F and/or Section A of this chapter.) Moreover, if

$$\nu(X) = \sum_{j \in X, j \geq 2} \left(\log j \right)^{-1} e_j \;,$$

for every $X \in \mathcal{Q}$, then

$$(x'\circ\nu))(X)=\int_{\Omega}fX\mathrm{d}(x'\circ\mu)\ ,$$

for every $x' \in E'$ and $X \in \mathcal{Q}$. Hence, by Proposition 3.13, the function f belongs to $\mathcal{L}(\rho, \sin(\mathcal{Q}))$.

On the other hand, the function f does not belong to $\mathcal{L}(\rho_{{}_{I\!I}}\!,\!\mathcal{Q})$. In fact, let

$$\lambda(X) = \sum_{j \in X}^{\infty} j^{-2} ,$$

for every $X\in\mathcal{Q}$. Then $\lambda(X)\leq 2\rho_{\mu}(X)$, for every $X\in\mathcal{Q}$. Therefore, $\mathcal{L}(\rho_{\mu},\mathcal{Q})\subset\mathcal{L}(\lambda,\mathcal{Q})$. Because f does not belong to $\mathcal{L}(\lambda,\mathcal{Q})$, it does not belong to $\mathcal{L}(\rho_{\mu},\mathcal{Q})$ either.

EXAMPLE 4.28. Let $\Omega=(0,1]$ and let $\mathcal Q$ be the semiring of all intervals X=(s,t] such that $0\leq s\leq t\leq 1$. Let c be the space of all convergent sequences $x=\left\{x_n\right\}_{n=1}^\infty$ of scalars equipped with the standard sup norm. Let d be a continuous scalar valued function in the interval [0,1] and let $\nu((s,t])=d(t)-d(s)$ for every s and t such that 0< s< t<1. Let ι be the one-dimensional Lebesgue measure. Given an integer $n\geq 1$, let $Z_j=((j-1)n^{-1},jn^{-1}]$ for every j=1,2,...,n, and let

$$\mu_n(X) = \sum_{j=1}^n n\iota(X \cap Z_j) \nu(Z_j)$$

for every $X \in \mathcal{Q}$. Finally, let $\mu(X) = \{\mu_n(X)\}_{n=1}^{\infty}$ for every $X \in \mathcal{Q}$. This defines an additive set function $\mu: \mathcal{Q} \to c$.

The set function μ is locally bounded. Furthermore, by Proposition 2.23, each component of μ is indeficient because it is the direct sum of a finite collection of multiples of the Lebesgue measure. Since the coordinate functionals separate the space c, by Corollary 4.26, the set function μ is indeficient.

If the set function $\mu:\mathcal{Q}\to E$ is indeficient, then the set functions $x'\circ\mu$, $x'\in E'$, are not necessarily all indeficient.

EXAMPLE 4.29. Let Ω and $\mathcal Q$ be as in Example 4.28. Let E be the closure of $\operatorname{sim}(\mathcal Q)$ in the space of bounded functions on Ω equipped with the sup norm. For every $X \in \mathcal Q$, let $\mu(X) = X$, interpreted as an element of the space E.

To see that μ is indeficient, let c_j be numbers and $X_j \in \mathcal{Q}$ sets, j=1,2,..., satisfying condition (E.4), such that (E.5) holds for every $\omega \in \Omega$ for which (E.6) does. Then of course

$$\sum_{j=1}^{\infty} c_j \mu(X_j) = \sum_{j=1}^{\infty} c_j X_j = 0$$

in the space E.

4G

On the other hand, let

$$x'(x) = \lim_{\omega \to 0+} x(\omega)$$

for every $X \in E$. Then $x' \in E'$ and $x' \circ \mu$ is scalar valued additive set function which is not indeficient.

G. Proposition 4.25 and its consequence, Corollary 4.26, are only effective when the space E is infinite-dimensional. However, we describe now a device which makes it possible, at least in principle, to use these propositions also on scalar valued set functions.

Let $\mathcal Q$ be a multiplicative quasiring of sets in a space Ω . We assume that $\mathcal Q$ is directed upwards by inclusion. That is, the union of any finite collection of sets from $\mathcal Q$ is contained in a set belonging to $\mathcal Q$.

Let E be a Banach space. Let $\mathrm{BV}^\infty(\mathcal{Q},E)$ be the set of all bounded additive set functions $\xi:\mathcal{Q}\to E$. Then $\mathrm{BV}^\infty(\mathcal{Q},E)$ is a vector space with respect to the natural (set—wise) operations. Let

$$V_{\infty}(\xi) = \sup\{ |\xi(X)| : X \in \mathcal{Q} \}$$

for every $\xi \in \mathrm{BV}^\infty(\mathcal{Q}, E)$. Then $\xi \mapsto V_\infty(\xi)$, $\xi \in \mathrm{BV}^\infty(\mathcal{Q}, E)$, is a norm which makes of $\mathrm{BV}^\infty(\mathcal{Q}, E)$ a Banach space.

Let $\mu: \mathcal{Q} \to E$ be a locally bounded additive set function. For every $f \in \text{sim}(\mathcal{Q})$, let $f\mu$ be the element of $\text{BV}^{\infty}(\mathcal{Q}, E)$ such that $(f\mu)(X) = \mu(fX)$, for every $X \in \mathcal{Q}$. It is straightforward that the set function $f\mu$ so defined is indeed an element of $\text{BV}^{\infty}(\mathcal{Q}, E)$.

PROPOSITION 4.30. Let $\mu: \mathcal{Q} \to E$ be a locally bounded additive set function. Let $\mathring{\mu}: \mathcal{Q} \to \mathrm{BV}^\infty(\mathcal{Q}, E)$ be the set function defined by $\mathring{\mu}(X) = X\mu$, for every $X \in \mathcal{Q}$.

Then μ is indeficient if and only if $\hat{\mu}$ is indeficient.

Proof. The set function $\hat{\mu}$ is obviously additive and locally bounded.

Now, if μ is indeficient then it follows easily from Proposition 4.21 that μ is indeficient because

$$v_{\infty}(\stackrel{\wedge}{\mu};X) = \sup\{\,V_{\infty}(\stackrel{\wedge}{\mu}(X\cap Z))\,:\, Z\in\mathcal{Q}\} = \sup\{\,|\,\mu(X\cap Z)\,|\,:\, Z\in\mathcal{Q}\} = v_{\infty}(\mu;X)\ ,$$

for every $X \in \mathcal{Q}$. The multiplicativity of \mathcal{Q} is used.

Conversely, let μ be indeficient. Again, Proposition 4.21 implies that $\hat{\mu}$ is indeficient. Indeed, let c_j be some numbers and $X_j \in \mathcal{Q}$ sets, j = 1, 2, ..., such that

(G.1)
$$\sum_{j=1}^{\infty} |c_j| v_{\infty}(\hat{\mu}; X_j) < \infty$$

and the equality (E.5) holds for every $\omega \in \Omega$ for which the inequality (E.6) does. Then

$$\lim_{n\to\infty} \left| \sum_{j=1}^n c_j \mu(X_j \cap Z) \right| = 0 ,$$

for every $Z \in \mathcal{Q}$, by the indeficiency of μ . But then

$$\lim_{n\to\infty} V_{\infty} \left[\sum_{j=1}^{n} c_{j} \mathring{\mu}(X_{j}) \right] = 0 .$$

For a locally bounded additive set function $\mu: \mathcal{Q} \to E$, let $\mathrm{BV}^\infty(\mu, \mathcal{Q}, E)$ be the closure of the space $\{f\mu: f \in \mathrm{sim}(\mathcal{Q})\}$ in $\mathrm{BV}^\infty(\mathcal{Q}, E)$.

PROPOSITION 4.31. Let \mathcal{P} and \mathcal{Q} be multiplicative quasirings of sets in the space Ω such that $\mathcal{Q} \subset \mathcal{P}$. Let E and F be Banach spaces and $\mu: \mathcal{Q} \to E$ and $\nu: \mathcal{P} \to F$ locally bounded additive set functions. Assume that ν is indeficient and that there exists an injective continuous linear map $T: \mathrm{BV}^\infty(\mu, \mathcal{Q}, E) \to \mathrm{BV}^\infty(\nu, \mathcal{P}, F)$ such that $T(X\mu) = X\nu$, for every $X \in \mathcal{Q}$. Then the set function μ is indeficient.

Proof. Let c_j be numbers and $X_j \in \mathcal{Q}$ sets, j=1,2,..., satisfying condition (G.1), such that the equality (E.5) holds for every $\omega \in \Omega$ for which the inequality (E.6) does. Then the sequence $\{c_j X_j \mu\}_{j=1}^{\infty}$ is absolutely summable in the space $\mathrm{BV}^{\infty}(\mu,\mathcal{Q},E)$; let ξ be its sum. Because the map T is linear and continuous and $X_j \nu = T(X_j \mu)$, for every j=1,2,..., the sequence $\{c_j X_j \nu\}_{j=1}^{\infty}$ is absolutely summable in the space $\mathrm{BV}^{\infty}(\nu,\mathcal{P},E)$. By the indeficiency of ν and Proposition 4.30, the sum of the sequence $\{c_j X_j \nu\}_{j=1}^{\infty}$ is the zero-element of the space $\mathrm{BV}^{\infty}(\nu,\mathcal{P},E)$. Then $T(\xi)=0$, because the map T is continuous, and then $\xi=0$, because T is injective. Hence, by Proposition 4.30, the set function μ is indeficient.

The use of Proposition 4.31 is mainly in that it gives a sufficient condition for the preservation of indeficiency in passing to a sub-quasiring.

H. Let $\mathcal Q$ be a multiplicative quasiring of sets in a space Ω . Let E be a normed space and $\mu:\mathcal Q\to E$ an indeficient additive set function. Let the gauge ρ be defined by (E.1) and (E.2), for every $X\in\mathcal Q$. Then of course the gauge ρ integrates for the set function μ . But the usefulness of ρ is thereby not exhausted; the gauge ρ integrates possibly for many other, not necessarily indeficient, additive set functions on $\mathcal Q$. For instance, it does integrate for every set function of the form $T\circ\mu$, where T is a continuous map from E into another Banach space.

EXAMPLE 4.32. Let us adopt the notation of Example 4.28. Because

$$\nu(X) = \lim_{n \to \infty} \ \mu_n(X) \ ,$$

for every $X \in \mathcal{Q}$, and the limit is a continuous linear functional on the space c, the gauge ρ integrates for the scalar valued set function ν .

Such a gauge integrating for the set function ν is especially interesting if ν does not have finite variation in any interval.

EXAMPLE 4.33. Let $E = L^2(\mathbb{R})$. Let S(0) = I be the identity operator on the space E. For $t \neq 0$, let S(t) be the operator on E such that

$$(S(t)\varphi)(x) = \frac{1}{\sqrt{2\pi i}t} \int_{\mathbb{R}} \exp\left[-\frac{(x-y)^2}{2it}\right] \varphi(y) dy$$

for every $\varphi \in L^1 \cap L^2(\mathbb{R})$. It is well-known that by this a unitary operator $S(t): E \to E$ is defined and that the resulting one-parameter family of operators $t \mapsto S(t)$, $t \in (-\infty,\infty)$, is a unitary group.

For a Borel set B in \mathbb{R} , let P(B) be the operator of point-wise multiplication by the characteristic function of B on the space E.

Let t>0 be fixed and let Ω be the set of all continuous functions (paths) $\omega:[0,t]\to\mathbb{R}$. Let $\mathcal Q$ be the family of all sets

(H.1)
$$X = \{\omega \in \Omega : \omega(t_j) \in B_j, j = 1, 2, ..., n\}$$

for arbitrary $~n=1,2,...,~0\leq~t_1<~t_2<~...<~t_{n-1}<~t_n\leq~t~$ and Borel sets $~B_j~$ in $~\mathbb{R}$, j=1,2,...,n .

Let φ be a non-zero element of the space E. Let

$$\nu(X) = S(t - t_n) P(B_n) S(t_n - t_{n-1}) P(B_{n-1}) \ \dots \ P(B_2) S(t_2 - t_1) P(B_1) \varphi$$

for any set $X \in \mathcal{Q}$ written in the form (H.1).

Then $\nu: \mathcal{Q} \to E$ is an additive set function which has infinite variation on every set $X \in \mathcal{Q}$. A gauge integrating for ν can be constructed in a similar manner as a gauge for the set function of Example 4.28.

Indeed, let $\not \sim_n$ be partitions of the real-line into finite numbers of intervals such that $\not \sim_{n+1}$ is a refinement of $\not \sim_n$, $n=1,2,\ldots$. For every $n=1,2,\ldots$, let $\mathcal P_n$ be the family of all sets $X\in\mathcal Q$, which can be written in the form

$$X = \{\omega : \omega(j/2^n) \in B_j, \ j = 1, 2, ..., 2^n\},\$$

where the sets B_j , depending on X, belong to \mathcal{P}_n , $j=1,2,...,2^n$. Then $\mathcal{P}_n\in\Pi(\mathcal{Q})$ are partitions such that \mathcal{P}_{n+1} is a refinement of \mathcal{P}_n , for every n=1,2,.... Let ι be the Wiener measure in Ω with unit variance per unit of time and with the standard normal initial distribution, say. That is, ι is the measure such that

$$\begin{split} \iota(X) &= \left[(2\pi)^{n+1} \prod_{j=1}^{n} \ (t_{j} - t_{j-1}) \right]^{-\frac{1}{2}} \times \\ & \int_{\mathbf{B}_{n}} \int_{\mathbf{B}_{n-1}} \dots \int_{\mathbf{B}_{1}} \int_{\mathbb{R}} \exp \left[-\frac{x_{0}^{2}}{2} - \sum_{j=1}^{n} \frac{(x_{j} - x_{j-1})^{2}}{2(t_{j} - t_{j-1})} \right] \mathrm{d}x_{0} \mathrm{d}x_{1} \ \dots \ \mathrm{d}x_{n-1} \mathrm{d}x_{n} \ , \end{split}$$

for every set, X, of the form (H.1), where we put $t_0=0$. Assume that the partitions $\not \sim_n$ are so chosen that, for every n=1,2,..., there is a number $m_n>0$ such that $\iota(X)=m_n$ for every $X\in \mathcal{P}_n$ and that $m_n\to 0$ as $n\to \infty$. Partitions of Ω similar to \mathcal{P}_n were used by N. Wiener in the first constructions of the measure named after him; see, for example, [68].

Now, given an integer $n \ge 1$, let

$$\mu_n(X) = m_n^{-1} \sum_{Z \in \mathcal{P}_n} \iota(Z \cap X) \nu(Z)$$

for every $\ X \in \mathcal{Q}$. Then $\ \mu_n : \mathcal{Q} \to E$ is an indeficient additive set function.

Let c_E be the space of all convergent sequences of elements of the space E equipped with the usual sup norm. Let $\mu:\mathcal{Q}\to c_E$ be the set functions such that $\mu(X)=\{\mu_n(X)\}_{n=1}^\infty$, for every $X\in\mathcal{Q}$. Let $F_n=E$ and let $T_n:c_E\to F_n$ be the n-th coordinate map, for every $n=1,2,\ldots$. The set functions $T_n\circ\mu:\mathcal{Q}\to F_n$ are then indeficient because $T_n\circ\mu=\mu_n$, $n=1,2,\ldots$. Therefore, by Proposition 4.25, the set function μ is indeficient.

Because

$$\nu(X) = \lim_{n \to \infty} \mu_n(X) \ ,$$

for every $X \in \mathcal{Q}$, and the limit is a continuous linear map from the space c_E onto E, the gauge ρ , defined by (E.1) and (E.2) for every $X \in \mathcal{Q}$, integrates for ν .

J. Let \mathcal{Q} be a multiplicative quasiring of sets in a space Ω directed upward by inclusion. (See Section G.) Let $\Delta \in \Pi(\mathcal{Q})$ be a set of partitions. Let E be a Banach space.

Given a Young function, $\ \Phi$, the family of all additive set functions $\ \xi:\mathcal{Q} \to E$

such that

$$\sup \{ v_{\bar{\Phi}}(\xi,\!\Delta;\!X) : X \in \mathcal{Q} \} < \infty \;,$$

will be denoted by $\mathrm{BV}^\Phi(\Delta,E)$. We shall write $\mathrm{BV}^\Phi(\mathcal{Q},E)=\mathrm{BV}^\Phi(\Pi,E)$.

These notions are useful mainly in the case when $\mathcal Q$ is a quasialgebra, that is, $\Omega\in\mathcal Q$. In that case, the definitions can be simplified somewhat.

PROPOSITION 4.34. If Φ is a Young function, then $\mathrm{BV}^1(\Delta, E) \subset \mathrm{BV}^{\bar{\Phi}}(\Delta, E) \subset \mathrm{BV}^{\bar{\Phi}}(\Delta, E)$

If Φ and Ψ are Young functions for which there exist numbers a>0 and k>0 such that $\Psi(s)\leq k\Phi(s)$, for every $s\in[0,a]$, then $\mathrm{BV}^\Phi(\Delta,E)\subset\mathrm{BV}^\Psi(\Delta,E)$, for any set of partitions $\Delta\subset\Pi$.

Proof. The first statement is obvious. The second one is analogous to the statement 1.15 in [51]. For its proof, let us note first that, if the condition is satisfied, then, for every b>0, there is a constant $\ell>0$ such that $\Psi(s)\leq \ell\Phi(s)$, for every $s\in[0,b]$. In fact, if $a\leq s\leq b$, then

$$\Phi(s) \, \geq \frac{\Psi\left(\,a\right)}{k\Phi\left(\,a\right)}\,\Phi(s) = \frac{1}{k}\,\frac{\Psi(\,a)}{\Phi\left(\,a\right)}\,\frac{\Phi(\,s)}{\Psi(\,s)}\,\Psi(\,s) \, \geq \frac{1}{k}\,\frac{\Psi(\,a)}{\Psi(\,b)}\,\Psi(\,s) \ .$$

So, let us assume that $\xi \in \mathrm{BV}^{\overline{\Phi}}(\Delta, E)$. Then there exists a b > 0 such that $|\xi(X \cap Y)| \leq b$ for every set $X \in \mathcal{Q}$ and every set Y belonging to some $\mathcal{P} \in \Delta$. Consequently, $\Psi(|\xi(X \cap Y)| \leq \ell \Phi(|\xi(X \cap Y)|)$ and $v_{\overline{\Psi}}(\xi, \Delta; X) \leq \ell v_{\overline{\Phi}}(\xi, \Delta; X)$.

The second part of this proposition has a converse: If Ω and \mathcal{Q} are as in Example 5.28 and $\mathrm{BV}^\Phi(\mathcal{Q},\mathbb{R})\subset\mathrm{BV}^\Psi(\mathcal{Q},\mathbb{R})$, then there exist numbers a>0 and k>0 such that $\Psi(s)\leq k\Phi(s)$ for every $s\in[0,a]$. Cf. statement 1.15 in [51].

The sets $\mathrm{BV}^1(\Delta,E)$ and $\mathrm{BV}^\infty(\Delta,E)$ are, obviously, vector spaces with respect to the natural operations. The following proposition says that, if the Young function, Φ , satisfies condition (Δ_2) for small values of the argument (see Section 1G), then also $\mathrm{BV}^\Phi(\Delta,E)$ is a vector space. It is analogous to statement 1.13 in [51] and so, its proof too is analogous.

PROPOSITION 4.35. If the Young function, Φ , satisfies the condition (Δ_2) for small values of the argument, then $\mathrm{BV}^\Phi(\Delta,E)$ is a vector space under the natural operations.

Proof. Assume that k>0 and a>0 are numbers such that $\Phi(2s)\leq k\Phi(s)$ for every $s\in[0,a]$. Then, for every b>0, there is an $\ell(b)\geq 1$ such that $\Phi(2s)\leq \ell(b)\Phi(s)$ for every $s\in[0,\ell(b)]$. In fact, if $\frac{1}{2}a\leq s\leq b$, then

$$\Phi(s) \, \geq \frac{\Phi(a)}{k\Phi(\frac{1}{2}a)} \, \Phi(s) = \frac{1}{k} \frac{\Phi(a)}{\Phi(\frac{1}{2}a)} \, \frac{\Phi(s)}{\Phi(\frac{1}{2}a)} \, \Phi(2s) \, \geq \frac{1}{k} \frac{\Phi(a)}{\Phi(2b)} \, \Phi(2s) \ .$$

Now, if $\xi \in \mathrm{BV}^\Phi(\Delta, E)$ and $\eta \in \mathrm{BV}^\Phi(\Delta, E)$, there exists a b > 0 such that $|\xi(X \cap Y)| \leq b$ and $|\eta(X \cap Y)| \leq b$, for every $X \in \mathcal{Q}$ and every set Y belonging to any partition from Δ . Consequently,

$$v_{\bar{\Phi}}(\xi + \eta, \Delta; X) \leq \, \ell(b) (\, v_{\bar{\Phi}}(\xi, \Delta; X) \, + \, v_{\bar{\Phi}}(\, \eta, \Delta; X)) \,\, ,$$

for every $X \in \mathcal{Q}$. If, further, c is a number, let m be the least positive integer such that $|c| \leq 2^m$. Then

$$v_{\Phi}(c\xi,\Delta;X) \le (\ell(2^{m-1}b))^m v_{\Phi}(\xi,\Delta;X)$$
,

for every $X \in \mathcal{Q}$.

For every $\xi \in \mathrm{BV}^1(\Delta, E)$, let

$$V_1(\xi,\!\Delta)=\sup\{v_1(\xi,\!\Delta;\!X):X\in\mathcal{Q}\}.$$

Then the functional $\xi \mapsto V_1(\xi, \Delta)$, $\xi \in \mathrm{BV}^1(\Delta, E)$, is a norm making the space $\mathrm{BV}^1(\Delta, E)$ complete.

If the Young function, Φ , satisfies condition (Δ_2) for small values of the argument (see Section 1G), then a norm still can be introduced in the space $\mathrm{BV}^\Phi(\Delta,E)$. It can be naturally done in at least two ways. Thus let

$$V_{\overline{\Phi}}(\xi,\Delta) = \inf\{k > 0 : v_{\overline{\Phi}}(k^{-1}\xi,\Delta;X) \le 1 , X \in \mathcal{Q}\} ,$$

for every $\xi \in \mathrm{BV}^\Phi(\Delta, E)$. Secondly, given a set function $\xi \in \mathrm{BV}^\Phi(\Delta, E)$ and a partition $\mathcal{P} \in \Delta$, let

$$\begin{array}{l} V_{\Phi}^{0}(\xi,\!\Delta) = \sup \left\{ \ \sum_{Y \in \mathcal{P}} \beta(X \cap Y) \, | \, \mu(X \cap Y) \, | \, : \, \beta \in B_{X\mathcal{P}} \, , \, \mathcal{P} \in \Delta \, \, , \, \, X \in \mathcal{Q} \right\} \, , \end{array}$$

where B_{XP} is the set of all functions

$$\beta: \{X \cap Y: Y \in \mathcal{P}\} \to [0,\infty)$$

such that

$$\sum_{Y \in \mathcal{P}} \Psi(\beta(X \cap Y)) \le 1 ,$$

and Ψ is the Young function complementary to Φ . (See Section 1G.)

By analogy with the usual terminology in Orlicz spaces, the functional $\xi\mapsto V_{\Phi}(\xi,\Delta)$, $\xi\in \mathrm{BV}^{\Phi}(\Delta,E)$, will be called the Luxemburg norm and the functional $\xi\mapsto V_{\Phi}^0(\xi,\Delta)$, $\xi\in \mathrm{BV}^{\Phi}(\Delta,E)$, the Orlicz norm. It turns out that these functionals are indeed norms on the space $\mathrm{BV}^{\Phi}(\Delta,E)$ and they are equivalent.

PROPOSITION 4.36. Assume that the Young function Φ satisfies conditions (0), (∞) and (Δ_2) for small values of the argument. Then the functionals $V_{\Phi}(\cdot,\Delta)$ and $V_{\Phi}^{0}(\cdot,\Delta)$ are norms on the space $\mathrm{BV}^{\Phi}(\Delta,E)$ such that

$$(J.1) V_{\overline{\Phi}}(\xi, \Delta) \le V_{\overline{\Phi}}^{0}(\xi, \Delta) \le 2V_{\overline{\Phi}}(\xi, \Delta)$$

for every $\xi \in \mathrm{BV}^\Phi(\Delta, E)$. The space $\mathrm{BV}^\Phi(\Delta, E)$ is complete in each of these norms.

Proof. The inequalities (J.1) follow directly from the definitions of the functionals $V_{\Phi}(\cdot,\Delta)$ and $V_{\Phi}^{0}(\cdot,\Delta)$ and from Proposition 1.15. We omit the proofs that these functionals are indeed norms and of the completeness of the space $\mathrm{BV}^{\Phi}(\Delta,E)$.

Let us note that, if $1 and <math>\Phi(s) = s^p$, for every $s \in [0,\infty)$, then

$$\label{eq:Vp} \begin{split} V_p(\xi,\!\Delta) &= \left[\sup \left\{ \ \sum_{Y \in \mathcal{P}} \mid \xi(X \cap Y) \mid^p : \mathcal{P} \in \Delta \ , \ X \in \mathcal{Q} \right\} \right]^{1/p} \,, \end{split}$$

for every $\xi \in \mathrm{BV}^p(\Delta, E)$.

142

4K

K. Let $\mathcal Q$ be a multiplicative quasiring of sets in a space Ω which is directed upward by inclusion and E a Banach space. Let $\Delta \in \Pi = \Pi(\mathcal Q)$ be a set of partitions and let Φ be a Young function satisfying condition (Δ_2) for small values of the argument. (See Section 1G.)

Let us note first that, if the additive set function $\mu:\mathcal{Q}\to E$ has finite Φ -variation with respect to the set of partitions Δ and f is a \mathcal{Q} -simple function, then $f\mu\in \mathrm{BV}^\Phi(\Delta,E)$. Now, assuming that μ is such a set function, the closure of the vector space $\{f\mu:f\in \mathrm{sim}(\mathcal{Q})\}$ in $\mathrm{BV}^\Phi(\Delta,E)$ will be denoted by $\mathrm{BV}^\Phi(\Delta,\mu)$. Then $\mathrm{BV}^\Phi(\Delta,\mu)$ is a Banach space, being a closed subspace of $\mathrm{BV}^\Phi(\Delta,E)$. Again, we write $\mathrm{BV}^\Phi(\mathcal{Q},\mu)=\mathrm{BV}^\Phi(\Pi,\mu)$.

If ι is a real valued positive σ -additive set function on \mathcal{Q} , then

(K.1)
$$V_1(f\iota,\Pi) = \int_{\Omega} |f| \, \mathrm{d}\iota$$

for every $f \in \text{sim}(\mathcal{Q})$. Therefore, the elements of the space $\text{BV}^1(\mathcal{Q},\iota)$ are canonically associated with ι -integrable functions, or, more accurately, with the equivalence classes of such functions. In other words, the space $\text{BV}^1(\mathcal{Q},\iota)$ is identified with $L^1(\iota)$.

In this section, those set functions, $\mu: \mathcal{Q} \to E$, are isolated for which an analogous identification of $\mathrm{BV}^{\Phi}(\Delta,\mu)$ with a space of (equivalence classes of) functions on Ω is possible. The definition is immediate.

An additive set function $\mu:\mathcal{Q}\to E$ will be called (Φ,Δ) -closable if it has finite Φ -variation with respect to the set of partitions Δ and the seminorm $\rho=\rho_{\mu,\Phi,\Delta}$ on $\mathrm{sim}(\mathcal{Q})$, defined by

$$\rho(f) = V_{\bar{\Phi}}(f\mu, \Delta)$$

for every $f \in \text{sim}(\mathcal{Q})$, is integrating. In that case, we write $\mathcal{L}(\mu, \Phi, \Delta) = \mathcal{L}(\rho, \text{sim}(\mathcal{Q}))$ and $\|\cdot\|_{\mu, \Phi, \Delta} = \rho_{\mu, \Phi, \Delta} = \rho = q_{\rho}$. Also, $\mathcal{L}(\mu, \Phi, \mathcal{Q}) = \mathcal{L}(\mu, \Phi, \Pi)$.

Because $\operatorname{sim}(\mathcal{Q})$ is dense in $\mathcal{L}(\mu,\Phi,\Delta)$, for every $f\in\mathcal{L}(\mu,\Phi,\Delta)$, there is a unique element $\nu_f\in\operatorname{BV}^\Phi(\Delta,\mu)$ such that $\nu_f=f\mu$ for $f\in\operatorname{sim}(\mathcal{Q})$ and the map $f\mapsto\nu_f$, from $\mathcal{L}(\mu,\Phi,\Delta)$ onto $\operatorname{BV}^\Phi(\Delta,\mu)$, is continuous. We write, of course,

 $f\mu=\nu_f$, for every $f\in\mathcal{L}(\mu,\Phi,\Delta)$, and call $f\mu$ the indefinite integral of the function f with respect to μ .

To introduce an interesting class of (Φ, Δ) -closable additive set functions, we adopt the following definition. An additive set function $\mu: \mathcal{Q} \to E$ will be called Φ -scattered if the set function $X \mapsto \Phi(|\mu(X)|)$, $X \in \mathcal{Q}$, is σ -additive.

This notion originates from the case when E is a Hilbert space and for any disjoint sets, X and Y, belonging to \mathcal{Q} , the values $\mu(X)$ and $\mu(Y)$ are orthogonal. Such a set function is called orthogonally scattered. It is immediate that, if μ is an orthogonally scattered set function, then the set function $X \mapsto |\mu(X)|^2$, $X \in \mathcal{Q}$, is additive and, if E is a real Hilbert space, then also the converse is true. Since, however, the converse is not necessarily true in a complex Hilbert space and σ -additivity is built in the notion of a 2-scattered set function, which is convenient for the purpose of this example, we keep the notions of an orthogonally scattered and a 2-scattered set function distinct. For a systematic treatment of orthogonally scattered additive set functions, see [49].

PROPOSITION 4.37. Assume that the Young function Φ satisfies condition (Δ_2) . Let $\mu: \mathcal{Q} \to E$ be a Φ -scattered additive set function. Denote $\iota(X) = \Phi(|\mu(X)|)$ for every $X \in \mathcal{Q}$. Assume that the measure generated by the set function ι is σ -finite. Then the set function μ is (Φ,Π) -closable, $\mathcal{L}(\mu,\Phi,\mathcal{Q}) = \mathcal{L}^{\Phi}(\iota)$ and

(K.2)
$$V_{\Phi}^{0}(f\mu;\Pi) = \|f\|_{\iota,\Phi}^{0} ,$$

for every $f \in \mathcal{L}(\mu, \Phi, Q)$.

Proof. First we prove (K.2) for $f \in sim(Q)$. So, let

$$f = \sum_{j=1}^{n} c_j X_j$$

with an arbitrary n=1,2,..., numbers c_j and pairwise disjoint sets $X_j\in\mathcal{Q}$, j=1,2,...,n. Let Ψ be the Young function complementary to Φ . Then

$$\|f\|_{\iota,\Phi}^0=\sup\bigg\{\int_{\Omega}fg\mathrm{d}\iota:g\in \mathrm{sim}(\mathcal{Q})\;,\int_{\Omega}\Psi(\,|\,g|\,)\mathrm{d}\iota\leq\,1\bigg\}$$

and

$$V_{\Phi}^{0}(f\mu;\Pi) = \sup \left\{ \ \textstyle\sum_{Y \in \mathcal{P}} \ | \, (f\mu)(\,Y) \, | \, \beta(\,Y) \, : \, \beta \in \mathcal{B}_{\mathcal{P}} \, , \, \mathcal{P} \in \Pi \right\} \, ,$$

where $B_{\mathcal{P}}$ is the family of all functions $\beta: \mathcal{P} \to [0,\infty)$ such that

$$\sum_{Y \in \mathcal{P}} \Psi(\beta(Y)) \le 1.$$

Because $V_{\Phi}^{0}(\cdot,\Pi)$ is a norm in the space $\mathrm{BV}^{\Phi}(\mu,\mathcal{Q})$, it suffices to calculate the supremum over partitions $\mathcal{P}\in\Pi$ such that every set X_{j} , j=1,2,...,n, is equal to the union of some elements of \mathcal{P} . Furthermore, it suffices to take $\beta\in\mathrm{B}_{\mathcal{P}}$ such that $\beta(Y)=0$, whenever $Y\cap X_{j}=\emptyset$ for each j=1,2,...,n. Then, given such a β , we put

$$g = \sum_{Y \in \mathcal{P}, \, \iota(Y) \neq 0} \Psi^{-1} \left[\frac{\Psi(\beta(Y))}{\iota(Y)} \right] Y.$$

Because, in calculating $\|f\|_{\iota,\Phi}^0$, it suffices to take those functions $g \in \text{sim}(\mathcal{Q})$ which are obtained in this manner, the equality (K.2) is indeed true.

The equality (K.2) is analogous to, or a generalization of, (K.1). It implies that the set function μ is σ -additive, (Φ,Π) -closable and that $\mathcal{L}(\mu,\Phi,\mathcal{Q})=\mathcal{L}^{\Phi}(\iota)$.

It seems difficult to prove the (Φ,Δ) -closability of set functions which are not in a sense equivalent to Φ -scattered ones. None-the-less, the norms $V_{\overline{\Phi}}$ and $V_{\overline{\Phi}}^0$ could still be helpful. For, if the additive set function $\mu:\mathcal{Q}\to E$ has finite Φ -variation, then the gauge ρ , defined by

$$\rho(X) = V_{\bar{\Phi}}(X\mu, \Delta) ,$$

for every $X \in \mathcal{Q}$, is usually very sub-additive (see Section 2J) and so, in many cases, Proposition 2.25 applies. Then this gauge can be used instead of the one studied in Section C.