4. SET FUNCTIONS

Given an additive set function, i, on a semiring of sets, &, the problem
arises naturally of finding a gauge which integrates for x. (See Section 3A.) If there
exists a finite non-negative o¢-additive set function, ¢, on @ such that
[w(X)| < X), for every Xeg, then p is said to have finite variation. In that
case, ¢ is a gauge integrating for x . This situation is classical.

The point of this chapter is that, even when g does not have finite variation,
there may exist gauges integrating for p. For, there may exist a continuous, convex
and increasing function, ®, on [0,0) such that ®(0)=0 and a o-additive set
function ¢:9-[0w) such that &(|w(X)]) < (X), for every Xeg. Then
| X)] < p(X), where p(X)=((X)), for every X€@, and ¢ is the inverse
function to ® . By Proposition 2.26, the gauge p is integrating.

So, we are led to the consideration of higher variations introduced by N. Wiener

and L.C. Young. (See Example 4.1 in Section A below.)

A. Let @ be a multiplicative quasiring of sets in a space . Recall that,
by X =2%(0) is denoted the set of all families of pair-wise disjoint sets belonging to
Q. (See Section 1D.) An element, ?, of ¥ such that its union is equal to Q and,
for every X e @, the sub-family {Ye?: YNnX#0} of 7 is finite, is called a
partition. The set of all partitions is denoted by II = II(Q) .

Let F be a Banach space and p: @~ F an additive set function.

Given a Young function @ (see Section 1G), a set X from ¢ and a partition
P, let

Al P, X) = (| (X .
(A.1) Vg (1,75.X) YE? (lu(Xn¥)])

Then, for the given &, X and a set of partitions A CII, let

(A:2) v(I)(u,A;X) = sup{vq)(u,?;X) :PeA}.
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The possibility of v('I)(u,A;X) = o is admitted. We write vq)(u;X) = vq)(u,H;X) , for
every Xeg.

The set function vq)(u,A) , that is, Xw %(u,A;X) , Xe@, is called the
®-variation of the set function u with respect to the family of partitions A . The set
function vq)(u) = 1)(1)( u,I1) is called simply the ®-variation of p. If vq)(,u,A;X) < o
for every X e @, the set function p is said to have finite ®-variation with respect to
the set of partitions A .

In the case when ®&(s)=s", or even when &(s)=cs’, for some constants
¢>0 and p>1 and every s€[0,w), we shall write simply vp(,u,A) instead of
v(p(u,A) and speak of the p-variation instead of the ®-variation. Similar conventions
are used without explicit mention in other symbols denoting objects depending on @,
and in the corresponding terminology. The 1-variation, vl(u,A) , of the set function
p with respect to the family of partitions A is called simply the variation of p with
respect to A and denoted by o(p,A) .

Formulas (A.1) and (A.2) have meaning as they stand for arbitrary quasirings,
not only multiplicative ones. For, XNZ= XZ € sim(g), whenever X€ @ and Z€ @,
and so, by the convention introduced in Section 1B, u(XnZ) is well-defined.
However, in such wider context, useful pronouncements would require more
complicated formulations and the gained generality would be of little value.

On the other hand, it is sometimes advantageous to define vq)(u,’P;X) and
v(I)(u,A;X) by (A.1) and (A.2), respectively, for any set - X belonging to the ring,
B ="%Q), generated by &, not only for X € ¢. This represents no difficulty because
every set belonging to % is eqﬁal to the union of a finite family of pair-wise disjoint

sets belonging to 4.

EXAMPLE 4.1. Let @ and b be real numbers such that a< b. Let £ =(a,b] and

9={(st]:a< s< t< b}. Let d bea function on the interval [a,0] and let

w(s,4) = d(¥) - dls) ,

forany s and ¢ suchthat a< s<¢t<b.
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Although not much attention seems to have been paid to ®-variation of
additive set functions in general, there is already considerable literature devoted to this
case. To be sure, the ®-variation of the set function p is discussed in terms of the
function d. In fact, if the partition P is determined by the points @ = 8y < 8 <

S5, < ...< §

A <s =b, thatis, 7= {(sj_l,sj] :j=1,2,..,n}, then

n—1
n

v (1, 752) = ]_;1 o(ld(s) - d(s,_D1) -

Actually, often the function d itself is the centre of interest, because some
convergence properties of the Fourier series of d can be studied using the notion of the
d-variation; see e.g. [66].

Besides A =1II, the set of all dyadic partitions is often taken for A,
especially when ¢=0 and b=1.

The variation (that is, 1-variation) is a classical concept dating back to
C. Jordan. The notion of the p-variation was introduced in this case by N. Wiener in
[67]. It was subsequently studied by several authors, notably by L.C. Young, who
considered, in [69], Stieltjes integration with respect to functions of finite p-variation
and introduced, in [70], the notion of a function of finite ®-variation. Spaces of
functions of finite ®-variation were studied by W. Orlicz and his collaborators, [51],
[42], and by M. Bruneau, [4].

The notation and terminology are not firmly established in the literature

although they seem to converge to similar ones to those adopted here.

The introduction of the set of partitions, A, as an additional parameter on
which the ®-variation, vq)( u,AA) , depends, genuinely increases the generality of this

notion. It is illustrated by the following classical

EXAMPLE 4.2. In the situation of Example 4.1, let ¢=0 and b=1. For every

m=1,2,..., let 7’m be a partition, determined by the points

= < <..< =1
0 Sm,O Sm,l sm,n ’
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such that ?m <7P that is, every point S0 £=0,1,....,n_, is among the points

m+l’

determining the partition ?m e and

lim max{s_ 2 St :£=12,...n }=0.
m= 0o m, m

Let A= {7’m: m=12,.}. By a classical result of P. Lévy, [43], (see also [11],
Theorem VIIL.2.3) the limit
lim v2(u,7’m;ﬂ)

m— oo

exists for almost every, in the sense of the Wiener measure, continuous function d on

[0,1] and, hence, v2(u,A;Q) < w. However, 112(u,H;Q) =w. See, e.g., [64], §4.

EXAMPLE 4.3. Let ©=R. Let @ be the family of all bounded Borel sets in Q.
Let ¢ be the Lebesgue measureon R. Let 1< p< o andlet E=LP(1). If Xeg,
let

w0 =1im L[ 7 JHeas,

u= 0+

for every t€R for which this limit exists. Then g(X) represents an element of the
space E. What is more, M. Riesz has proved, see [7], that there exists a constant,

A, depending on p, such that

P
i, < 4 [ 1f(o1ds

for every fesim(g). Consequently, the resulting additive set function g:@- E has
finite p-variation.

The Riesz estimate was extended to a wide class of kernels in Euclidean spaces
of arbitrary dimension by A.P. Calderén and A.Zygmund, [7]. Accordingly, such
kernels give rise to similar vector valued set functions of finite p-variation on bounded

Borel setsin R", n=12,....
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EXAMPLE 44. Let Q=R and let @ be the family of all bounded intervals (of all
kinds) in Q. Let
SXf(s) = J f(w)exp(27n'sw)dw ,
X

for any s€eR, Xe@ and any function f on R integrable with respect to the
Lebesgue measure, where
flu)= | fts)exp(@risu)ds,

R
for every we Q. J.L. Rubio de Francia, F.J. Ruiz and J.L. Torrea have proved, in
[60], Corollary 2.4, that, for every p € [2,0) , there exists a constant Cp such that

L) 1sitas< ¢, [ ifta)iRas

for any such function f and every family of intervals 7 € £(9) .

Consequently, if E=L?(1), f¢ cng? (¢) , where ¢ is the Lebesgue measure in
R, and if, for every X €@, we define u(X) to be the element of the space F
determined by the function S «f» we obtain an additive set function p: g- F having

finite p-variation.
PROPOSITION 4.5. Let AcIl, Pe A and Xe Q. Then

U (1,8, X0Y) < g (1,4;X)
Yé? (I) ®

for any additive set function u: Q- E and a Young function @ .
Proof. It is obvious.

It is worth-while to note explicitly that, if the Young function @ 1is not a
multiple of the identity function on [0,®), then the @®-variation is not necessarily

additive.

EXAMPLE 4.6. In the situation of Example 4.1,let a=0, b=1 and d(s)=s for
every s€[0,1]. Then v2(u;(s,t]) = (t—s)2 , for every s and ¢ ~ such that

0<s<t<1.
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B. Let @ be a multiplicative quasiring of sets in a space . Let @ be a
Young function.

Recall that the set II=TII(@) of all partitions is directed by the relation of
refinement. (See Section 1D.)- We refer to the same relation when we speak of
directed subsets of II .

To aveid some trividlities, we assume that, for every finite set 7)€ (9,
thereexists a partition P€ 1 such that ﬂ’@ c?P.

TLet F bea Banach spaceand p: @~ F am additive set function.

PROPOSITION 4.7. The ®-variation, vq)(u) , of the set function n is additive if
and only if
(B.1) vq)(u;X) = sup{vq)(u,?;X) : ’PO <Pell},

forevery X€ @ and 7’0 ell.
Proof. For any X€g and ’If’o el,

U5 XNY) = sup{vL (P, XNY): Pe I} =
y);;v o yé? &

0 0
= ¥ sup{oz(u?XnY): P < Pell}=
' Y);'}’O { @ 0
= sup{ Yg? vq)(u,?;XﬂY) : ’PO <Pe H} = sup{vq)(u,?;X) : 7’0 <Pell}.

0

Therefore,

vs (1 X) = v (1, XNY)
2 Y§7’0 ?

if and only if (B.1) holds.

Let ¢ be a non-atomic measure in the space O such that every set X e g is
t~integrable. (See Section 3B.)
For a partition 7€ 1Il, the i-mesh, |7, of 7 is defined by

”7)“4 =sup{yX): Xe€P}.
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Because the cardinal number of 7 may be infinite, the possibility that ||7’||L =0 may
occur.

A set of partitions A c II will be called s~fine if,
inf{H?HL :PeA}=0.

We say that the ®&-variation, vq)(u,A), of u with respect to a set of
partitions, A, is scontinuous if, for every ¢ >0, there is a 6 >0 such that
vq)(u,A;X) < ¢, for every set X in the ring, T =7R(g), generated by @ such that
U X) < . Recall that, by formula (A.2) in the previous section, vq)(u,A;X) is indeed
well-defined for any Xe 7% .

Now, if A I is a directed set of partitions, then the family
(B.2) 9,={0tuu 7
A PeA
of all sets, X, for which there exists a partition, P?€ A, such that Xe7?,
augmented by 0, is a quasiring.
PROPOSITION 4.8. Let A be a directed set of partitions. If

(B.3) Vg (A, X) = Lim vg (u,7:X)
PeA

for every X e @, then the set function vq)(u,A) is additive on the quasiring @ A If,

moreover, vq)(u,A) is —conlinuous then vq)(u,A) is o-additive on the whole of R .

Proof. The first statement is obvious. The second one follows from the fact that, for
everyset X€ 7% and ¢ > 0, thereisaset Y, which is the union of a finite family of

pair-wise disjoint sets from QA , such that (| X-Y]) < €.
In some cases of great interest, instead of (B.3), the formula

(B.4) v (1,25 X) = Lim sup{vg(uPX) : |||, < r, P € A}
=0+
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holds for every X € @. It might be expected that this formula too would imply the

additivity of vq)( u,A) . However, this is not necessarily the case.

EXAMPLE 4.9. Let the set-up be as in Example 4.1 with ¢=0 and d=1. Bya

result of S.J. Taylor, [64], Theorem 1, if @ is a Young function such that

25‘2<I>(s) log log staa ,

as s- 0+, then, for almost every (in the sense of the Wiener measure) continuous
function d on [0,1], (B.4) holds with A =1II and with the Lebesgue measure in the
role of ¢. On the other hand, M. Bruneau proved, [5], Théoréme 1, that the set of
points ¢ € [0,1] such that

Vg (1,115(0,1]) = vg, (,T;(0,1]) + v (w15 (3,1])
for almost every continuous function d, has empty interior.

Because vq)(u,A) indeed, also in interesting cases, fails to be o-additive, it is
desirable to find a o¢-additive set function o¢:80- [0,0) such that %(u,A;X) <
o(X), for every X € @. Such a set function ¢ can be used together with the inverse

function, to ® , to produce a gauge integrating for u .

EXAMPLE 4.10. Let the set-up be as in Example 4.1 with arbitrary ¢ €R and

beR, a< b. Forsome A CII, assume that vq)(,a,A;Q) < . Let
U((S>t]) = ”(I)(/%A,(a,t]) - v@(u,A;(a,s])

forany s and ¢ suchthat a< s<t<b.

Now, if A is a directed set of partitions, then ¢ is a non-negative and
additive set function on the quasiring @ A such that vq)(,u,A;X) < o(X), for every
Xegd A - If, moreover, A is ifine, where ¢ is the one-dimensional Lebesgue
measure, and the function d is continuous, then ¢ is o-additive on the whole of ¢

and the inequality vq)(,u,A;X) < o(X) holds for every Xe€g.
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If A=1I, then ¢ is o-additive on ¢ and U(I)(,LL,A;X) < ¢(X), for every
X e g. This observation is due to L.C. Young, [71].

PROPOSITION 4.11. Let ?n €Il be a partition such that ?n < ?ﬁﬂ , for every
n=1,2,..., and
lim [|7 ||, = 0.

- 00
Let A= {?n: n=12,.} and assume that «X) >0 for every non-empty set
Xed A -
Let ® be a Young function such that u has finite and -continuous
®-variation with respect to the set of partitions A .

Then there exists a o-additive set function o : Q- [00) such that

(B.5) Vg (1:A5X) < o(X)

for every X e QA .

Proof. Let
0,(X)= T g VUY))(XNY)

YE’Pl

for every (-measurable set X . Then o is a measure in {1 such that

Vg (1,0:X) = 0, (X)
for every X € 7’1 .

Now, if » > 1 is an integer and o, ameasure in Q) such that
(B.6) g (105 X) < o (X)

for every Xe€ 7., forevery set Ye? U {0}, let w(Y) be a number such that
w®) =0, vg(sA;Y) < w(Y) and

yZ wXnY) = g (X)
E/pn+l

for every Xe ? . By (B.6) and Proposition 4.5, such numbers w(Y), Ye7? do

n+l’
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exist. Then we put

X) = “L(xn
o,1(X) 1)e:?nJrlw(Y)(t(Y)) y{XnY)

for every (-measurable set X . This defines a measure, Ops1> in £ such that

0n+1(Y) , forevery Ye? and 0n+1(X) = an(X) , forevery Xe? .

n+l’
So, by induction, a sequence of measures, o,, M= 1,2,..., is constructed such
that, if we define

o(X)=1im an(X) ,

100

for every (-measurable set X, we obtain a measure in Q such that (B.5) holds for

every X € QA'

C. Let ¢ be a measure in a space . Let 7%(:) be the family of all
i-integrable sets. (See Section 3B.) Let ¢ be a multiplicative quasiring of sets such
that @ CR(s) . To avoid some trivialities, we assume that the measure & is generated
by its restriction to @. Let ¢ be a real valued, continuous, concave and strictly
increasing function on [0,w) such that ¢(0)=0. Let p(X)= (X)) for every
X € 0. By Proposition 2.26, p is an integrating gauge on g.

The reason why we are interested in this situation is clear: If F is a Banach
space, p: @~ E an additive set function, ® a Young function and A € II(Q) a set of
partitions such that v@(u,A;X) < X)), forevery X €@, then, assuming that ¢ is
the inverse function to @, the gauge p integrates for the set function p. (See
Section 3A.) |

The purpose of this and the next section is to provide some information about
the space L(p,d) , namely to present workable sufficient conditions for a function to
belong to L(p,d) . In this section, we discuss the relation of the spaces L{(p,d) and

C(I)(L) , where @ is the inverse function to ¢ . (See Section 3C.)

PROPOSITION 4.12. Let pe[lw) and olt)= tl/p for every t€[0w). Then
L(p,9) ¢ LP(0) .
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Proof. Let fe L(p,d). Let ¢, be numbers and Xj € 9 sets, j=1,2,..., such that

0

(C.1) Yolelp(X) <o
F= j
and
[¢)
(C.2) flw=Y c¢X(w
P
for every we Q for which
a
(C.3) YolelX(w) < o.
F= I

_ - _ _ /p _
Denote f],— chj, for every j=1,2,.... Then “fij,L" chl(L(Xj)) = ]leﬂ(X].) , for

every j=1,2,.... (See Section 3C.) So, by (C.1),

0

Consequently, fe £P(4) .

The following proposition extends the above result to more general functions
¢ . (For the notion of a Young function, see Section 1G; for the definition of the class

L'q)(L) , see Section 3C.)

PROPOSITION 4.13. Let ¢ be the inverse function to a Young function, ® , and
K a constant such that 0< K< g.o(t)(,o(t_l) for every t€(0,w).  Then
L(0,0) c £2(1).

Proof. First, let ¢ be a number, X a set belonging to @ and g¢g=cX. Assume that
c#0 and «X) > 0. Recall that the Luxemburg norm, ||gl|q) ,» of the function g is

defined by the formula
lollg,, = imt{k: k>0, JQ S| g(w)])uldw) < 1} .

Hence, ]|g||¢ ,=F%, where £ is the number that satisfies the condition
(K[ c|)dX) = 1. Tt follows that |lgllg , < K ~'le[)o(uX) = K" [c[p(X), where

K is the constant mentioned in the statement of this proposition. This estimate is.
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obviously, true alsoif ¢=0 or «z)=0.

The proof is now finished as that of Proposition 4.12. Namely, if fe€ £L(p,9)
and ¢ are numbers and Xj €0 sets, j=1,2,.., satisfying (C.1), such that (C.2)
holds for every weQ {for which (C.3) does, we denote fj= chj , for every
j=1,2,.... Then we use the obtained estimate of the Luxemburg norm to deduce from

(C.1) that
a0
o<

which implies that f€ [:(I)(L) .

In the following proposition, no additional conditions are imposed on ¢ . (For

the concepts used in its statement, see Section 1D.)

PROPOSITION 4.14. If @ is an algebra of sets, then every bounded function

measurable with respect to the o-algebra generated by @ belongs to L(p,9) .

Proof. Let § be the o-algebra of sets generated by @ . Because, for every set Ye S
and ¢ >0, thereis aset Xeg such that Y| Y-X|) < € and the function ¢ is
continuous, it is obvious that & C £L(p,9) . Then, by Proposition 2.7, £( qp,S) = L(p,9)
and, by continuity, qp( V)= (YY), for every YeS. Hence, without a loss of
generality, we can assume that @ is a c-algebra.

Now, let f be a @-measurable function such that 0 < f(w) < 1, for every
w€ Q. Assuming that %k >1 is an integer and the sets X,-’ j=1,2,....,k1, are

already constructed, let

k-1 .
X, = {w: flo) - § 27X (w) 2 2"“}.

j=1
Then
°Z°1 2Ip(X) < 9l0) <
]:
and
flw) = § 27X (w)
=1

for every we Q).
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PROPOSITION 4.15. Let @ be an algebra of sets. Let 1< p< g and let
olt) = alr , for every t>0, so that p(X)= (L(X))l/p , for every XecQ. Then
£9) ¢ L(p,9) .

Proof. Without loss of generality, we shall assume, as in the proof of Proposition 4.14,
that @ is the family of all ~-measurable sets.

Let f be a non-negative function belonging to £%:). Let Xj ={w: flw) =7},
for every j=1,2,.... Then

0

v 1 g .
L 0T < § GRG0 < [ S,

so that

=1 !
By the Holder inequality,
v _ 7 JWroy -0/p et 1/p
)= 5 = § (X))

. [ § j(l—q>/<p—1)] (1"”/”{
j:

because (¢-1)/(p-1) > 1. So, if we let

)

1/p
Fmaﬂ <o,
7

1

[¢9]
=} X(w
=1 7
for every we 1, then ge L(p,9) .
Now, let h=f-g. Then 0< Mw)< 1, for every we Q. By Proposition
4.14, h belongs to L(p,9) and, therefore, f= g+h too belongs to L(p,9) .

The following examples settle some natural questions about the space £(p,9) .

They were designed by Susumu Okada.

EXAMPLES 4.16. Let ¢ be the one-dimensional Lebesgue measure. Let Q= (0,1],
0={(5#]:0< s<¢t< 1} and % be the algebra of sets generated by g. Let 1< p
and let p(X) = (L(X))l/p , for every X e 7. Then, obviously £(p,9) C L(p,2) and, by
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Proposition 4.12, L(p,B) c LP(1). We wish to show that L(p,9) # L(p,2) and
L(p,R) # LP(s) . Let us denote, for short, a=p ©.

(i) Let us note first that there exists a constant ¢ >0 such that

| 2%0st ! - ?%e0ss™}| < ¢,|t-5] o)

for every s€ ) and t€ . Indeed,let 0 < s<t< 1. Let n=>1 be the integer

1 -1

such that (n+1)_1 < t< n . Assume first that (n+2)_1 < s and put u=(n+2)

and v=n"" , sothat v< 3u. By the Lagrange theorem,
|t2acost_1—s2acoss_1| [t-s|"% < 3|t—,.<:|1_0‘52a_2 < 3(2un) %2 % < 3617
If s< (n+2)_1, then
|t2acost~1— szacoss_ll ]t—$|—a < (n_2a+(n+2)_20‘)((n+1)_1 ~(m2) )y %< 20%,

Integrating by parts, we then obtain that

t t
J w?* %inu M| < ]tmcost_1 - s2acost_1| +J’ 2002 1qu < c|t-s|%,
S 8§

for some ¢ > 0 andevery s€) and t€ ). So, if we put d(0) =0 and

t
d(t) =lim 2% %giny du ,
s=0+7Ys

for every t€ (0,1], then d is a well-defined continuous function on [0,1] .

Let u((s,t]) = d(¢) - d(s), for every s and ¢ such that 0<s<t<1.
Furthermore, given apoint s€Q, let p’(X)=pu(Xn(s1]), for every XeQ. We
have noted that |u’(X)| < U X)% = ¢p(X), for some ¢ >0 and every Xeg.
Therefore, by Proposition 3.1,

Nl < eq (),

1
20-2. -1, | _
‘ L flu)u sinu “du| = | : A

for every f € L(p,d) .
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Let ¢(t) = #7207 , for every te€ ). Then the function ¢ does not belong

to L(p,d) , because

1
lim J g(u)um_zsinu_ldu:oo.
s—~0+Ys

None-the-less, ¢ belongs to L(p,2) . Indeed,if p > 2, thatis, @< 4, this follows
from Proposition 4.14. If p< 2, we choose a number g¢¢€ (p,p/(2-p)). Then
g€ LY1) and, by Proposition 4.15, ge L%(p,7) .
Consequently, £L(p,d) # L(p,7) .
(ii) To show that L(p,R) # £P(s), let A(t) = t_a|10gtl_1 , for te(0,4],
and A(t)=0, for te(4,1]. Then he LP(:). However, the function h does not

belong to L(v,R) = L(v) , where

YX) = aJ uatldu,
X

for every X € @. Using the fact that every set in 7% is the union of a finite collection
of pair-wise disjoint intervals belonging to €, we can prove that (X) < p(X), for

every X € . Therefore, the function & does not belong to L(p,?) either.

D. We maintain the notation of Section C.
A function f on © will be called @-locally :-integrable if it is integrable with
respect to ¢ on every set belonging to &, that is, if Xf e L(:) for every X € g.

Now, assuming that f is a @-locally ¢-integrable function, let

M) =ity |

for every set X € @ such that «(X) >0, and M L( f,X) =0 for every set X such that
dX)=0. If X) >0, then the number M L( {,X) is the mean value of the function f
on the set X with respect to the measure ¢.

Furthermore, if ? € II(Q) is a partition, let

M@GF?) = ¥ M(FXX.
7= T M)
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So, M L( f,?) is a function on £, constant on every set belonging to ?, having the
same mean value as the function f on every set X € 7 such that «X) > 0.

Let ¢ be a real valued, continuous, and strictly increasing function on [0,x)
such that ¢(0)=0.

We shall say that a function f on € satisfies the ¢-Holder condition with

respect to the quasiring ¢ and the measure ¢ if

[f(w) - f(v)] < ¥(X)),
for every set X € @ and any points we X and ve X.

PROPOSITION 4.17. Let [ be a «-measurable function satisfying the - Holder
condition with respect to § and ¢. Then [ is Q-locally 1~integrable.

Let 7’n € II(9) be a partition such that ?n < 7’n+1 , for every n=0,12,.., and
I7,ll,-0 as n-ow. If

P MEX)X)+ Y T HdD) T eld¥nz) < w,

0 =1 ZE?],_I YE?’]

then fe L(p,9) .

Proof. 'The first statement is clear, because the function [ is bounded on every set
belonging to g .
Let fo = ML( f,?o) and
jj = ML(f—ML(f’?j—l)’?j) 3

for every j=1,2,.... Then

L f=M{17),

=0
for n=0,1,2,... . Now,

0,(fy) < xé% M (1,X00(X) .

(See Section 2A.) Furthermore, for every j=1,2,...,

Mb(f-ML(fa?j_1)>Y) = ML(f_ML(ﬁZ),Y) 5
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for any Ye 7’],, where Z is the set belonging to 7’7._1 such that Y c Z. Then
| f(w) - Mb(f,Z)] | < ¥((2)), forevery we Z, and, hence,

| M(f-M(£,2), )] < W) .

Consequently,

0(f) < T IMUMEP_ LN < T WD) § edvnz),

PTI T vep 77 YED.
g j-1 j

for every j=1,2,.... So, Proposition 2.1 applies.

+10 Y
every X € 7’]_ and j7=0,1,2,..., and A= {7’], 1§=0,1,2,...}.

COROLLARY 4.18. Let R €, 7y ={0}, 7.<7  , «X)=|7]l, = (:)uQ), for

If f is an --measurable function satisfying the -Hdélder condition with respect

to the quasiring @ A and the measure ¢, and

(D.1) Jlﬂi)g’ﬂldk ®,

0 t

then fe L(p,9) .

Proof. Let o= (1) . Because the functions ¢ and % are increasing,

¥ T 42 T eldynz)= 3 P2 e)e ) <
=1 2P Ye?, =1

® 3 ) ) ) 1 o
< ¥ 222 et )2 < 4J M%ﬂldtﬂmj LU g
=1 0 t 0 t

COROLLARY 4.19. Let Q= (a,b] with acR, beR and a< b. Let 9= {(s1:

a< s<t<b}. Let d beafunction on [a,b] such that

[d(t) - d(s)| < o(t-5),
and let

w(s,1]) = d(t) - d(s) and p((s,q]) = p(t-s) ,
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for every s and t such that a< s< t< b. Then p is a gauge integrating for the
additive set function .

If, moreover, | is a function on 0 such that

[f(2) - f(s)] < ¥(It-sl),
forany s€Q and teQ, and (D.1) holds, then fe L(p,9) .

Condition (D.1) is satisfied, in particular, when  ¢(f) = cltl/ P and

¢(t):c2t1/q, fOI‘eVeI‘y tZO, where ¢ >0’ C2>0 and p—1+q—1 1.

1

E. In some sense the notion of an additive set function with finite
p-variation is analogous to the notion of a (point) function locally belonging to an IL?
space. The analogy reverses the extension of these notions though, because, if p < ¢,
to have finite p-variation is a more restrictive condition than one to have finite
g-variation. In this section, we introduce additive set functions which are analogous to
functions locally belonging to an L® space.

Let @ be a multiplicative quasiring of sets in a space Q. (See Section 1D.)
Let E be a Banach space. Let p: 8- E be an additive set function.

For any set X € g, let

(E.1) v (1:X) = sup{|w(XnZ)| : Ze g} .

The possibility vw(u;X) = is admitted.

The set function g will be called locally bounded if voo(u;X) < o, for every
Xegd.

A wealth of locally bounded additive set functions do not have finite
®-variation for any Young function @ is provided in Chapter 6. Here is a simple

example of such a set function.

EXAMPLE 4.20. Let Q and @ be as in Corollary 4.19.  Let E be the Banach space
of all bounded Borel measurable functions on € with the sup-norm. For every

Xegd, let u(X) be the characteristic function of X considered as an element of the
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space E. Then p:0- E is an additive set function such that voo(u;X) =1, but
v@(u;X) =w, forevery Xe @, X+ 0, nomatter what the Young function & .

The set function x will be called indeficient if it is locally bounded and the

gauge, p, defined on @ by
(E.2) - p(X) =y (X)),

for every X € @, isintegrating. (See Section 2D.)
So, if the set function g is indeficient then this gauge integrates for it. (See

Section 3A.)

PROPOSITION 4.21.  The set function u is indeficient if and only if it is locally

bounded and
(03]

(E?)) Z c]ﬂ(X].) =0,
=1

for any numbers ¢, and sets Xj €g, j=12,..., such that

Y
(E.4) 72::1 chlvoo(u;Xj) < o
and
Q0
(E.5) L eX(w)=0
PN
for every we Q such that
0
(E.6) Y olelX(w) < w.
F=T A

Proof. Let us show first that, if the condition is satisfied, then the gauge , p, defined
by (E.2) is integrating. Let X € Q. Let ¢ be numbers and X]_E g sets, j=1,2,..,
satisfying condition (E.4), such that

(E.T) X(w) =T X (w)
P

for every w satisfying the inequality (E.6). Let ¢ >0 andlet Ze@ be a set such
that pM(X) < |W(XnZ)| + €. Because
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n

lim |p(Xn2) - ) cj,u(XjﬂZ)I =0,

n— oo ]—1
the inequality

¢ ] Q0

pX) - €< |uXNZ)| < ¥ lel X NZ)] < ¥ lelplX)
=1 =1

holds. So, by Proposition 2.7, the gauge p is integrating.

Conversely, assume that p is indeficient. That is, vm(u;X) < o foreach Xe€
9@ and the gauge (E.2) integrates for u. So, if ¢, are numbers and X] €0 sets,
j=12,..., satisfying (E.4), such that (E.5) holds for every we  for which (E.6)
does, then, by Proposition 2.1,

n
lim qp[g ch,] =0.

n- 00 5=1 J

Because

n n
zj cu(X.)\ < cqp[gl c].X].} ,
for some number ¢ > 0 and every n=1,2,..., (E.3) follows.

The following proposition is a simple means for producing examples: it helps us
to prove the indeficiency of some additive set functions which arise in connection with

classical improper integrals and are not ¢-additive.

PROPOSITION 4.22. Let the set function p:@- E be locally bounded. Let Qn €g
be sets such that Qn C Qn + and the restriction of u to the quasiring Qnﬂn is
indeficient, for every n=1,2,..., and that

lim [p(X) - p(XnQ )| =0,

- 00

forevery Xe@.

Then the set function u is indeficient.

Proof. Let ¢ be numbers and X] € g sets, j=1,2,.., satisfying condition (E.4)
such that the equality (E.5) holds for every w € 2 for which the inequality (E.6) does.
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Let ¢ > 0. Let J be a positive integer such that
T o1e iy wx)
lelv (X)) < €.
PSS I ® I
Let m be a positive integer such that
J J
|j§1 c],u(Xj) - jgl cfu(Xj n Qm)' < e€.

Let N be a positive integer such that

n

]zl C]ﬂ(XjﬂQm)‘ < ¢

for every n > N. Such an integer N exists because, by the assumption, the

restriction of p to QﬂQm is indeficient. Then

n n
;§1 X)) - El c]u(XjﬂQm)| <

n n
jgl c],u(Xj)l < ’jgl c],u(Xjﬂ Qm)! +

n

< €+ l}j C]M(X].)-Z cfu(X,-an)l +} ) cu(‘X,)— f cp(XNQ )| <

m

5=1 =1 1t
00
<2+2 ) lelv (5X) < 4e,
j=J+1 7o I

for every n > max{J,N}. Hence, by Proposition 4.21, the set function p is

indeficient.

EXAMPLES 4.23. (i) A non-negative real valued additive set function on a
quasiring of sets is indeficient if and only if it is o-additive. This follows from
Proposition 2.13 and Proposition 4.21.  However, the argﬁment establishing
Proposition 2.13 can be simplified for the purpose of proving the indeficiency of such a
set function directly.

So, let ¢ be a non-negative real valued additive set function on the quasiring

Q. Then vw(L,X) =yX), forevery Xeg.
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If + is not o-additive, then, obviously, it is not an integrating gauge. Let us

assume, therefore, that ¢+ is o-additive. We want to prove that

(E.8) {X) < 020: IleL(Xj)
=1

for any set X e @, numbers ¢ and sets Xj €@, j=1,2,.., such that the equality
(E.7) holds for every we Q for which the inequality (E.6) does. Let ¢ >0 and, for

every n=1,2,.., let Zn be the set of those points w € X for which

n
YolelX(w) >1-€.
PR A

Then Z € sim(9) , zZ CZ ., and

n n

L leldX) > )

=1 =1 "

IC].|L(XjﬂZn) > (1-e)dZ ),

for every n=1,2,.... Because ¢ is o-additive on the ring of sets whose characteristic
functions belong to sim(49) , and the union of the sets Zn , n=12,..., is equal to X,

there is an integer n > 1 such that L(Zn) > i(X) - €. Hence,

o]

21 le]UX) 2 (1-€)(s(X)-¢)
=
for every ¢ >0, and the inequality (E.8) follows. By Proposition 2.7, the gauge
Xn voo(L;X) = (X) is integrating and, hence, ¢ is indeficient.

(ii) Let @ be a ring of sets and let u be a locally bounded real valued
o-additive set function on @ . Then p is indeficient.

In fact, let = u+ - i be the Jordan decomposition of p. So u+ and 4~ are
non-negative o¢-additive set functions on @ such that p M(X) < uH(X) +u (X) and
ph(x) < pu(X) , w(X)< pM(X) , for every Xe@. Hence, the indeficiency of p
follows from that of u+ and g by Proposition 4.21.

(iii) Let @ be a ring of sets and let u be a locally bounded complex valued

o-additive set function on ¢. Then g is indeficient. This follows from (ii) by
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considering the real and imaginary parts of x .
(iv) Let ©={1,2,...} be the set of all positive integers. Let @ be the family

of all intervals in €, that is, intersections of  with intervals of the real-line. Let

o]

E be a Banach space and let {ozj}j:1

be a conditionally summable sequence of its

elements. Let

WX) =1lim 3 X(a,

n—o0 j=1 J

for evéry Xed.
If we choose Q = {1,2,...,n} , for n=12,..., in Proposition 4.22, we deduce
easily that the set function g is indeficient.
(v) Let ©=R and let @ be the family of all (bounded and unbounded)

intervals of the real-line. Let s+ 0 be a real number and let

wX)=1lim Ju X(t)exp(istz)dt

U 00

for every X € @. Then p is an indeficient additive set function on g .

In fact, let Qn = (-n,n) , for every n=1,2,... The restriction of y to QﬂQn
is indeficient for every n=1,2,.... This can be seen by considering the real and
imaginary parts of u separately and noting that each Qn can be divided into a finite
number of intervals such that in each of them Rey and Imp are of constant sign.

Proposition 4.22 then applies.

If the set function p: Q- E is indeficient then the gauge p, defined by (E.1)
and (E.2), integrates for u. However, this is not necessarily the only gauge which
integrates for x. For example, if p has finite and o¢-additive variation it might be
convenient to let the variation integrate for g . But the resulting spaces of integrable

functions could be very different even if E is just the space of scalars.

EXAMPLE 4.24. Let Q and g be as in Example 4.23(iv). Let

X) =Y (-1)572
HX) ,EX( Y'j
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for every Xe€g. Then g has finite and o-additive variation, o(z), and, by
Example 4.23(ii), it is indeficient.
Let e(w) = w, for every we Q. Then

dw=§

; 1X].(w)

for every we O, where Xj = {j,j+1,...} forevery j=1,2,.... Because

PX) =0 (X) = sup{ WX N2)|: Ze G =5,

for every j=1,2,..., the function e belongs to £(p,0) .
On the other hand, a function f belongs to £(v(u),d) if and only if

00

T i< w.

=1

F. Roughly speaking, indeficiency is preserved by closed rather than
continuous maps. |

Let @ be a multiplicative quasiring of sets in a space 2. Let E be a Banach
space.

Let A be an index set and, for every a € A, let Fa be a Banach space and
T oy E-F ,, & continuous linear map. We say that the family of maps {T o Q€ A}
separates the points of the space FE if the equality Ta( z)=0, for some z€ F and
every a € A, implies that z=0.

For every a€ A, let v o g-F o be a locally bounded additive set function.

The family of set functions {v,: o€ A} is said to be collectively indeficient if
F . 5}
(F.1) jgl cjl/a(Xj) =0,

for every a € A, whenever ¢, are numbers and X] € g sets, j=1,2,..., such that

[+

(F.2) 2 |cjlvw(oa;Xj) <w,

j=
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for every a€ A, and the equality (E.5) holds for every we Q) for which the
inequality (E.6) does.
By Proposition 4.21, if each set function V> QE A, is indeficient, then the

family {v ol @€ A} is collectively indeficient.

PROPOSITION 4.25. Let p: Q- E be a locally bounded additive set function. Let
Vo= Taou, for every a€ A .

If the family of maps {Ta: a € A} separates points of the space E and the
family of set functions {l/a: a € A} s collectively indeficient, then the set function p

is indeficient.

Proof. Let us note first that the local boundedness of x and the boundedness of T o
imply that each set function v o @€ A, islocally bounded.

Let ¢ be numbers and X; €0 sets, j=1,2,..., satisfying condition (E.4),
such that the equality (E.5) holds for every w e £ for which the inequality (E.6) does.
Let

Condition (E.4) and the continuity of Ta imply that (F.2) holds for every «€ A.
Consequently, (F.1) holds for every a€ A, because the family of set functions

v_:a€ A} is collectively indeficient. So, by the continuity of 7, the equality
o «

o0

T (9)=T, L; c],u(Xj)] - jgl ey (X)) =0

holds for every o€ A . Then =0, that is, (E.3) holds, because the family of maps

{Ta: a€ A} separates points of the space E. So, by Proposition 4.21, the set

function g is indeficient.

COROLLARY 4.26. Let p: Q- E be alocally bounded additive set function.
If the family of functionals z' € E', such that the scalar valued set function
x'ou 15 indeficient, separates points of the space E ., then the set function it s

indeficient.
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EXAMPLE 4.27. Let FE be a Banach space. Let ¢ be a ring of sets in a space {2
and let p:9- E be a locally bounded additive set function. By Corollary 4.26 and
Example 4.23(iii), if the set of functionals z‘€ E’ , such that the set function z’opu
is o-additive, separates the space FE, then the set function g is indeficient. In
particular, a locally bounded o¢-additive set function p:@- E is indeficient. This
fact opens another way to integration 'with respect to vector measures'.

So, let p:9-FE be a locally bounded o-additive set function. Let

pM(X) (u, (), for every X€@. Let p bethe seminorm on sim(g) defined by

p(f) = sup{v(2’op, | f|) : 2" € B", |2’ | < 1},

for every fesim(g). Then pu(X) < p(X) < Opu(X) , for some C >1 and every
X e Q. (See Proposition 3.13.) Therefore, £(p,d) = [(pu,Q) . But of course L(p,9) C
L(p,sim(9)) and the inclusion may be strict.

In fact, let © ={1,2,...} be the set of all positive integers and let E=c, be

0
the space of all scalar valued sequences tending to 0 equipped with the usual sup

norm. Let @ be the family of all subsets of . For every X € @, let

wx) =y jle,
EX J

where € j=1,2,..., are the elements of the standard base of the space ¢, - Let

/= Z i(log) {4} -
=2

The function f is wv(z’ou)-integrable, for every z’€ E’ . (See Section 3F and/or

Section A of this chapter.) Moreover, if

for every X € g, then
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for every z°€ E/ and X e ¢. Hence, by Proposition 3.13, the function f belongs to
L(p,sim(Q)).

On the other hand, the function f does not belong to £(pu,Q) . In fact, let
Q -9
MX) =Y 577,
jeX
for every Xed. Then MX)< Zpu(X), for every Xeg@. Therefore,

E(pﬂ,Q) CL(A9). Because f does not belong to L(A,0), it does not belong to
E(pM,Q) either.

EXAMPLE 4.28. Let Q=(0,1] and let @ be the semiring of all intervals X = (s,
such that 0 < s< ¢t< 1. Let ¢ be the space of all convergent sequences = {xn}izl
of scalars equipped with the standard sup norm. Let d be a continuous scalar valued
function in the interval [0,1] and let v((s,f]) = d(¢) - d(s) for every s and ¢ such
that 0<s<t<1l. Let : be the one-dimensional Lebesgue measure. Given an
integer n > 1, let ij ((j—l)n_l,jn_l] for every j=1,2,...,n, and let

m(XﬂZj)z/(Z.)

M(X)=i f

K =1

for every X € @. Finally, let u(X)= {un(X)}"nO=1 for every X e @. This defines an
additive set function x:9- ¢.

The set function p is locally bounded. Furthermore, by Proposition 2.23, each
component of 1 is indeficient because it is the direct sum of a finite collection of
multiples of the Lebesgue measure. Since the coordinate functionals separate the space

¢, by Corollary 4.26, the set function x is indeficient.

If the set function p:¢- F is indeficient, then the set functions zou,

z’ € B, are not necessarily all indeficient.

EXAMPLE 4.29. Let Q and @ be as in Example 4.28. Let E be the closure of
sim(g) in the space of bounded functions on ) equipped with the sup norm. For

every X €0, let u(X)= X, interpreted as an element of the space E.
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To see that p is indeficient, let cj be numbers and Xj €0 sets, j=12,..,
satisfying condition (E.4), such that (E.5) holds for every w € ) for which (E.6) does.

Then of course

o] [
]2::1 cuX) = gl cX =0

in the space F.
On the other hand, let

z’(z)=lim 2(w)
w-0+

for every Xe E. Then z°€ B and z’oy is scalar valued additive set function

which is not indeficient.

G. Proposition 4.25 and its consequence, Corollary 4.26, are only effective
when the space FE is infinite-dimensional. However, we describe now a device which
makes it possible, at least in principle, to use these propositions also on scalar valued
set functions.

Let @ be a multiplicative quasiring of sets in a space 1. We assume that @
is directed upwards by inclusion. That is, the union of any finite collection of sets from
g is contained in a set belonging to ¢ .

Let E be a Banach space. Let BV®(Q,E) be the set of all bounded additive
set functions ¢:9- E. Then BV®(Q,E) is a vector space with respect to the natural

(set-wise) operations. Let

V (€) = sup{] £(X)| : X e @}

for every £ € BV®(Q,E). Then (v Vw(f) , e BV°°(Q,E') , is a norm which makes of
BV®(,E) a Banach space. ’

Let wu:9-E be a locally bounded additive set function. For every
fesim(9), let fu be the element of BV*(Q,E) such that (fu)(X)= u(fX), for
every X €. It is straightforward that the set function fu so defined is indeed an

element of BV®(Q,FE) .
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PROPOSITION 4.30. Let p:9-E be a locally bounded additive set function. Let
;2: 9- BV®Q,E) be the set function defz'ned by ﬁ(X) =Xu, forevery Xeg.

Then 1 is indeficient if and only if /2 is indeficient.

Proof. The set function ;2 is obviously additive and locally bounded.
Now, if ;2 is indeficient then it follows easily from Proposition 4.21 that pu is

indeficient because
yoo(ﬁ;X) = sup{ VOO(/,/L\(XHZ)) 1 Z€ @} =sup{luXn2)| : Ze G} =0 (1X),

for every X € §. The multiplicativity of ¢ is used.
Conversely, let p be indeficient. Again, Proposition 4.21 implies that ;2 is

indeficient. Indeed, let cj be some numbers and Xj € g sets, j=1,2,..., such that

oY)

A
(G.1) ,§1 chlvw(u;X].) <o

and the equality (E.5) holds for every we 8 for which the inequality (E.6) does.

Then

n
lim | § ep(x,n2)| =0,

no  j=1

for every Z € @, by the indeficiency of p. But then

lim Vm[ 2 c}ﬁ(X})] =0.

n- 00 =1 J

For a locally bounded additive set function x:9- E, let BV®(u,d,E) be the
closure of the space {fu: f € sim(Q)} in BV®(Q,E) .

PROPOSITION 4.31. Let P and @ be multiplicative quasirings of sets in the space
Q such that @C?P. Let E and F be Banach spaces and p:@-FE and v:P-=F
locally bounded additive set functions. Assume that v is indeficient and that there
erists an injective continuous linear map T:BV®(u,0,E) - BV(v,?,F) such that
T(Xp) = Xv, forevery X € Q. Then the set function p is indeficient.



4H 136 4.33

Proof. Let ¢, be numbers and X],E 9 sets, j=1,2,.., satisfying condition (G.1),
such that the equality (E.5) holds for every w € §) for which the inequality (E.6) does.
Then the sequence {ch]u}";zl is absolutely summable in the space BV*(y,0,E) ; let
& be its sum. Because the map T is linear and continuous and va = T(Xfu) , for
every j=1,2,..., the sequence {ch;‘V}O;ﬂ is absolutely summable in the space
BV*®(v,?,E) . By the indeficiency of v and Proposition 4.30, the sum of the sequence
{ch]_V}";zl is the zero-element of the space BV®(v,?,E). Then T(¢) =0, because
the map T 1is continuous, and then &=0, because T is injective. Hence, by

Proposition 4.30, the set function g is indeficient.

The use of Proposition 4.31 is mainly in that it gives a sufficient condition for

the preservation of indeficiency in passing to a sub-quasiring.

H. Let ¢ be a multiplicative quasiring of sets in a space . Let E be a
normed space and 4 :@- E an indeficient additive set function. Let the gauge p be
defined by (E.1) and (E.2), for every X € . Then of course the gauge p integrates
for the set function u . But the usefulness of p is thereby not exhausted; the gauge p
integrates possibly for many other, not necessarily indeficient, additive set functions on
9. For instance, it does integrate for every set function of the form Tou , where T

is a continuous map from F into another Banach space.
EXAMPLE 4.32. Let us adopt the notation of Example 4.28. Because

WX) = Lin 4, (),

700

for every - X € @, and the limit is a continuous linear functional on the space ¢, the
gauge p integrates for the scalar valued set function v .
Such a gauge integrating for the set function v is especially interesting if v

does not have finite variation in any interval.

EXAMPLE 4.33. Let E= L2([R) . Let S5(0) = I be the identity operator on the space
E. For t#0, let S(¢) bethe operator on E such that
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2
(S(0))(z) = 42—% Jo o=l (4] o)y

for every g€ rt ﬂLQ([R) . It is well-known that by this a unitary operator S(¢): B~ E
is defined and that the resulting one-parameter family of operatrors tw S(1),
1 € (~oo,w) , i8 a unitary group.

For a Borel set B in R, let P(B) be the operator of point-wise
multiplication by the characteristic function of B on the space FE.

Let ¢ >0 be fixed and let Q be the set of all continuous functions (paths)
w: [0, »R. Let @ be the family of all sets

(H.1) X={wef: w(tj) € Bj ,j=12,...,n},

for arbitrary n=1,2,..., 0< b <ty<..<t <t <t and Borel sets B]_ in R,
j=12,..,n.

Let ¢ be a non-zero element of the space E. Let

)P(B

JP(B_)... P(B

)iyt P(B )

UX) = S(t-¢ )P(B )S(t -t _ PR

for any set X € @ written in the form (H.1).

Then v:g- E is an additive set function which has infinite variation on every
set Xe€g. A gauge integrating for » can be constructed in a similar manner as a
gauge for the set function of Example 4.28.

Indeed, let /4, be partitions of the real-line into finite numbers of intervals
such that S is a refinement of oy n=12, For every n=1,2,..., let ?n be

the family of all sets X € @, which can be written in the form
X={w:w(j/2") e B, j= 1,2,...,2"},

where the sets B], , depending on X, belong to A j=12,..,2" . Then ?n € I1(9)
are partitions such that ’Pn +1 is a refinement of ?n , forevery n=12,... Let ¢ be
the Wiener measure in ) with unit variance per unit of time and with the standard

normal initial distribution, say. That is, ¢ is the measure such that
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dz dg, ... dz _,dz ,

2 2
R e
B,’B,; “B'R =17 e

for every set, X, of the form (H.1), where we put ty=0. Assume that the partitions
/£, are so chosen that, for every n=1,2,.., there is a number m, > 0 such that
dX) = m, for every Xe 7’n and that m, - 0 as n-o. Partitions of € similar to
?n were used by N. Wiener in the first constructions of the measure named after him;
see, for example, [68].

Now, given an integer n > 1, let

-1
un(X) =m_ Zé?n UZnX)v(Z)

for every X € @. Then b, @~ F is an indeficient additive set function.

Let ¢, be the space of all convergent sequences of elements of the space F

E
equipped with the usual sup norm. Let p:¢- ¢, be the set functions such that

E
wX) = {un(X)}‘:::l , forevery Xe@. Let F =FE andlet T :c,~F be the n-th
coordinate map, for every n=1,2,.... The set functions Tnou g~ Fn are then
indeficient because Tnou =p,, n=12, Therefore, by Proposition 4.25, the set
function p is indeficient.

Because

WX) = Lin g (X),

n—00

for every X e g, and the limit is a continuous linear map from the space ¢ p onto

E, the gauge p, defined by (E.1) and (E.2) for every X € @, integrates for v .

J. Let @ be a multiplicative quasiring of sets in a space 0 directed
upward by inclusion. (See Section G.) Let A c II(g) be a set of partitions. Let E be
a Banach space.

Given a Young function, @, the family of all additive set functions £:9- F
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such that
sup{vg(&,A:X) : X €0} < w,

will be denoted by BVCI)(A,E) . We shall write BV(I)(Q,E) = BV(I)(H,E) .
These notions are useful mainly in the case when @ is a quasialgebra, that is,

2 € g. Inthat case, the definitions can be simplified somewhat.

PROPOSITION 4.34. If ® is a Young function, then BVI(A,E) C BV(I)(A,E) C
BV®(Q,E) , for any set of partitions A cII.

If @ and U are Young functions for which there exist numbers a >0 and
k>0 such that U(s) < k®(s), for every se[0,a], then BV(D(A,E') C BV\II(A,E) ,

for any set of partitions A CII.

Proof. The first statement is obvious. The second one is analogous to the statement
1.15 in [51]. For its proof, let us note first that, if the condition is satisfied, then, for
every b > 0, thereis a constant ¢ > 0 such that U(s) < £®(s), for every se€[0,0] .

In fact,if a< s< b, then

a(s) > il a(s) =t EA A wio) > 4 u(s).

So, let us assume that &€ BV@(A,E). Then there exists a b >0 such that
[6(XNY)] < b for every set X€e @ and every set Y belonging to some 7€ A.
Consequently, ¥(|£(XNY)| < ¢&(1£(XnY)|) and vq,(ﬁ,/_\.;X) < €v¢(§,A;X). v

The second part of this proposition has a converse: If & and @ are as in
Example 5.28 and BVQ(Q,R) C BV‘I;(Q,[R) , then there exist numbers a >0 and
k> 0 such that ¥(s) < k®(s) for every se€[0,a] . Cf. statement 1.15 in [51].

The sets BVI(A,E) and BV®(A,E) are, obviously, vector spaces with respect
to the natural operations. The following proposition says that, if the Young function,

® , satisfies condition (A,) for small values of the argument (see Section 1G), then

2
also BV(I)(A,E) is a vector space. It is analogous to statement 1.13 in [51] and so, its

proof too is analogous.
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PROPOSITION 4.35. If the Young function, ® , satisfies the condition (AQ) for
small values of the argument, then BV(D(A,E) is a vector space under the natural

operations.

Proof. Assume that £ >0 and a >0 are numbers such that ®(2s) < k®(s) for
every s€[0,a]. Then, for every & >0, there is an #b) >1 such that
D(2s) < £(b)®(s) for every se€ [0,4(0)] . Infact,if sa< s< b, then

P(a _1®(a) ®(s 1 ®(a
a(s) > 1griks 5(s) = } 4l Bl 0(29) > 1 Bt 0(29).

Now, if £¢€ BV¢(A,E) and ne BV(D(A,E) , there exists a b > 0 such that
[E(XNY)| < b and |9(XNY)| < b, for every X € g and every set Y belonging to

any partition from A . Consequently,

for every X e @. I, further, ¢ isa number, let m be the least positive integer such
that |¢| < 2™. Then

vg(CE,A5X) < (A2™710) Mg (€,A:X)
for every Xe g.

For every (€ BVl(A,E) , let
V,(64) = sup{o, (§A:X) : X € 0}

Then the functional ¢w V1(§,A) , L€ BVI(A,E) , is a norm making the space
BVl(A,E) complete.

If the Young function, @, satisfies condition (AQ) for small values of the
argument (see Section 1G), then a norm still can be introduced in the space
2

BV~ (A,E) . It can be naturally done in at least two ways. Thus let

Vg(&A) =inf{k > 0: vg(K6AX) < 1, Xeg},

for every ¢€ BV(I)(A,E) . Secondly, given a set function ¢¢€ BVq)(A,E) and a

partition P € A, let
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va(ea) =swf T AXNVIMXNY)I i e Byy, Pe A, Xegf,
Ye?P

where BX?’ is the set of all functions

B:{XnNY:YeTP}-[0w)
such that

Y ¥(AXnY)) <1,
YEP

and U is the Young function complementary to ® . (See Section 1G.)

By analogy with the usual terminology in Orlicz spaces, the functional
En V¢(§,A) , L€ BV@(A,E) , will be called the Luxemburg norm and the functional
v V%(&,A) , te BV(I)(A,E) , the Orlicz norm. It turns out that these functionals

are indeed norms on the space BVQ(A,E) and they are equivalent.

PROPOSITION 4.36. Assume that the Young function @ satisfies conditions (0),
(w) and (A2) for small values of the argument. Then the functionals V(I)(~,A) and
V(;%( -, A) are norms on the space BV(I)(A,E) such that

(J.1) Val6A) £ VE(EA) < 2V(£,4)

for every &€ BV(I)(A,E) . The space BV(I)(A,E) is complete in each of these norms.

Proof. The inequalities (J.1) follow directly from the definitions of the functionals
V®(~,A) and V(%( -,A) and from Proposition 1.15. We omit the proofs that these

functionals are indeed norms and of the completeness of the space BV(I)(A,E) .

Let us note that, if 1 < p< o and ®(s) = s”, for every s€ [0,w), then

V(6A) = [sup{ L |6XNY)|P:PEeA, Xe Q}]l/p,

for every ¢ € BVP(AE) .
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K. Let & be a multiplicative quasiring of sets in a space ! which is
directed upward by inclusion and E a Banach space. Let A cII=T1I(@) be a set of
partitions and let ® be a Young function satisfying condition (AQ) for small values
of the argument. (See Section 1G.) |

Let us note first that, if the additive set function px:g- E has finite
®-variation with respect to the set of partitions A and f is a @-simple function,
then fue BV(I)(A,E) . Now, assumjng that g is such a set function, the closure of
the vector space {fu:fesim(9)} in BV‘I)(A,E) will be denoted by BV(I)(A,M) .
Then BVQ(A,u) is a Banach space, being a closed subspace of BVQ(A,E) . Again,
we write BV‘I)(Q,u) = BVq)(H,u) .

If ¢ is a real valued positive o-additive set function on @, then
(K.1) Vi = ifld
Q

for every f € sim(g) . Therefore, the elements of the space BVl(Q,L) are canonically
associated with -integrable functions, or, more accurately, with the equivalence
classes of such functions. In other words, the space BVI(Q,L) is identified with Ll(b) .

In this section, those set functions, p:@- E, are isolated for which an
analogous identification of BVQ(A,/J,) with a space of (equivalence classes of)
functions on € is possible. The definition is immediate.

An additive set function u: g~ E will be called (®,A)-closable if it has finite
®-variation with respect to the set of partitions A and the seminorm p=p L@ A o0
sim(9) , defined by

o) = Valfu)

for every fe€sim(g), is integrating. In that case, we write L(u,®,A) = L(p,sim(g))
and ” : HM,Q),A = pﬂ,@,A =p= qp . AISO) K(H,'I),Q) = £(U7¢,H) .

Because sim(g) is dense in L(u,®,A), for every fe€ L(u,®,A), thereis a
unique element v, € BVQ(A,M) such that V= fu for fesim(d) and the map

f

fr Ve from £L(p,®,A) onto BVQ(A,,u), is continuous. We write, of course,
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fu= Vs for every fe€ L(u,®,A), and call fu the indefinite integral of the function f
with respect to 4 .

To introduce an interesting class of (®,A)-closable additive set functions, we
adopt the following definition. An additive set function p:@- F will be called
d-scattered if the set function Xr ®(|u(X)|), Xe @, is c-additive.

This notion originates from the case when F is a Hilbert space and for any
disjoint sets, X and Y, belonging to @, the values u(X) and pu(Y) are
orthogonal. Such a set function is called orthogonally scattered. It is immediate that,
if p is an orthogonally scattered set function, then the set function X» [u(X)l2 ,
Xeg, isadditive and, if E is a real Hilbert space, then also the converse is true.
Since, however, the converse is not necessarily true in a complex Hilbert space and
o-additivity is built in the notion of a 2-scattered set function, which is convenient for
the purpose of this example, we keep the notions of an orthogonally scattered and a
2-scattered set function distinct. For a systematic treatment of orthogonally scattered

additive set functions, see [49].

PROPOSITION 4.37. Assume that the Young function ® satisfies condition (AQ) .
Let 1:9-E be a ®-scattered additive set function. Denote «(X) = ®(|u(X)|) for
every X € Q. Assume that the measure generated by the set function . is o-finite.

Then the set function u is (®,I1)-closable, L(y,®,9) = [:@(L) and
for every fe L(u,®,9) .

Proof. First we prove (K.2) for € sim(g). So, let

chX

]177

with an arbitrary n=1,2,..., numbers ¢ and pairwise disjoint sets XjEQ,

j=12,.,n. Let ¥ be the Young function complementary to ® . Then
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11 g = sup] jﬂ fodu: g€ sim(@), | , Bl 1]
and

Vo fusTI) = sup{ )

(W(NIBY) : peBy, e,
YEP '

where B7, is the family of all functions #:7- [0,@) such that

Y w(pY)<1.

YEP

Because Vg(-,ﬂ) is a norm in the space BVQ(M,Q) , it suffices to calculate the
supremum over partitions P € II such that every set Xi , 7=1,2,..,n, is equal to the
union of some elements of P . Furthermore, it suffices to take [¢€ B? such that
B(Y) =0, whenever Yan = foreach j=1,2,..,n. Then, given such a f, we put
g= ) gt [\11 f ] Y.
YeP, (V)40

Because, in calculating || f”(z o it suffices to take those functions ¢ € sim(d) which
are obtained in this manner, the equality (K.2) is indeed true.

The equality (K.2) is analogous to, or a generalization of, (K.1). It implies that

the set function p is o-additive, (®,II)-closable and that L(y,®,9) = [:(I)(L) .

It seems difficult to prove the (&®,A)-closability of set functions which are not
in a sense equivalent to ®-scattered ones. None-the-less, the norms Vq) and V(%
could still be helpful. For, if the additive set function px: @- F has finite

®-variation, then the gauge p, defined by

p(X) =V,

q)(lef:A) s

for every X € @, is usually very sub-additive (see Section 2J) and so, in many cases,
Proposition 2.25 applies. Then this gauge can be used instead of the one studied in

Section C.





