DIVERGENT SUMS OF SPHERICAL HARMONICS
CHRISTOPHER MEANEY

ABSTRACT. We combine the Cantor-Lebesgue Theorem and Uni-
form Boundedness Principle to prove a divergence result for Cesaro
and Bochner-Riesz means of spherical harmonic expansions.

1. BACKGROUND

Fix an integer d > 1 and consider the unit sphere S¢ in Rt
equipped with normalized rotation-invariant measure. For each n > 0
let ‘H,, denote the space of spherical harmonics of degree n restricted to
S4 so that L?(S9) = @22, H,,. See [22, Section 4.2] for details. Every
distribution ¥ on S has a spherical harmonic expansion

(1) ZYn(w)(x), Vo € S where Y, (¢) € H,, Vn > 0.
n=0

This is the expansion of 9 in eigenfunctions of the Laplace-Beltrami
operator on S It is known [14] that if 1 < p < 2 then there is an
Y € LP(S?) for which (1) diverges almost everywhere. That leaves open
the general behaviour of spherical harmonic expansions for elements of
L*(S%). A partial step in this direction follows from the localization
principle [18].

Theorem 1.1 (Localization). Suppose 1 is a distribution on S¢ and
U c S9 is an open set disjoint from the support of ¥. For each v € U,
the expansion Y > Y, (¥)(x) converges if and only if Y, (¢)(x) — 0 as
n — oo.

Corollary 1.2. If¢ € L*(S?) and U C S is an open set on which 1 is
zero almost everywhere, then the expansion Y~ Y, (1)(x) converges
to zero almost everywhere on U.

There are special cases where a function ¢ € L?(S%) can be guar-
anteed to have an almost everywhere convergent spherical harmonic
expansion, if ¢ is in an L?- Sobolev space W?* of positive index s [16]
or if it is zonal [1]. (Recall that a function f on S is said to be zonal
about a point y € S% when f(z) depends only on x -y for all x € S9.)
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Carleson’s theorem [3] has been extended to zonal functions [11]. Let

p. be the critical index
2d

T d+1
Theorem 1.3. If p. < p < 2 and f € LP(S?) is zonal about a point

y € S?, then its spherical harmonic expansion is convergent almost
everywhere.

Pe

Corollary 1.4. Suppose ¢ € L?(S%), U C S is an open set, f, €
Usao W2#(S9), fo € L*(S?) is a finite sum of zonal functions, and
Y = f1 + fo almost everywhere on U. Then Y~ Y, (¢¥)(x) converges
almost everywhere on U.

The two corollaries 1.2 and 1.4 would be rendered trivial if there
where a higher dimensional version of Carleson’s theorem.

They do suggest that when considering convergence of expansions,
we should examine the term-wise behaviour away from the support of
a distribution.

In the early 1980’s we showed [17] that Theorem 1.3 is sharp and
that localization fails at the critical index.

Theorem 1.5. For eachy € S¢ and 1 < p < p, there is a ¢ € LP(S?),
supported in the hemisphere {x : -y > 0} whose spherical harmonic
expansion diverges almost everywhere.

This was proved by a combination of the Cantor-Lebesgue theorem,
knowledge of the L -norms of the zonal spherical functions, and the
uniform boundedness principle. Kanjin [13] showed that these methods
could be combined with a result of Hardy and Riesz [12] to deal with
Riesz means for radial functions on Euclidean space. This approach was
also used in [20] for Riesz means of radial functions on non-compact
rank one symmetric spaces.

Here we prove a similar result for Cesaro and Riesz means of spherical
harmonic expansions of zonal functions. This shows the sharpness of
the results in [4]. See [2, 7] for earlier work on Cesaro means of spherical
harmonic expansions. See [21, 5] for results in a more general setting,.

2. CESARO & RIESZ MEANS

2.1. Cesaro means. The Cesaro means [24, pages 76-77] of order &
of the expansion (1) are defined by

N
A
(2) o (x) = AV(];V Y,(¥)(z), VN>0z€S8
n=0
J
where A° = <n o). Theorem 3.1.22 in [24] says that if the Cesaro
n

means converge, then the terms of the series have controlled growth.
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Lemma 2.1. Suppose that A}im o\ (x) exists for some x € X and
0 > —1. Then
Yy () ()] < Cs N° max |o0u(z)], Vn > 0.

0<n<N

2.2. Riesz means. Hardy and Riesz [12] had proved a similar result
for Riesz means. Recall that the Riesz means of order § > 0 are defined
for each » > 0 by

(3) Sp(x) = > (1—5)6Yn<w><sc>-

r
0<n<r

Theorem 21 of [12] tells us how the convergence of S21(x) controls the
size of the partial sums S%)(x).

Lemma 2.2. Suppose that ¢ is a distribution on the sphere for which
there is some § > 0 and x € X at which its Riesz means So(x)
converges to ¢ as r — oo then

S () — ¢ < As r°  sup ‘wa(a:)| :

0<t<r+1

Note that this implies
Ya(¢)(z) = O(n)

and we have the same growth estimates as in Lemma 2.1.

Gergen[9] wrote formulae relating the Riesz and Cesaro means of
order § > 0, from which it follows that the two methods of summation
are equivalent.

3. ZONAL FUNCTIONS AND JACOBI POLYNOMIALS

3.1. Notation. Suppose that f is a function on S with f(z) depend-
ing only on z-y, for a fixed y € S% so that f(z) = fo(x - y). The
spherical harmonic expansion of f is

o0

(4) S ealfo)y "B (- y)

n=0

where o = (d — 2)/2, P\ is the Jacobi polynomial of degree n and
index (a, a),

1
hn :/ [P )] (1= 2)* dt,

1
and the coefficients are

cn(fo) = /_11 fo(t) Pl (t) (1- tz)a dt, Yn>0.

See section 4.7 of Szegé’s book [23] for details about these special func-
tions. Let m, be the measure on [—1, 1] given by

dmq(t) = (1 — %) dt,
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so that {P\*® :n > 0} is a orthogonal basis of L2(m,). From (4.3.3)
in [23] we know that the normalization constants h,, satisfy
(5) ho~ An~tasn — oo
3.2. Uniform Boundedness. Suppose there is a number 1 < ¢ < oo
and some positive number A with
P | Lagmay > en, Vn > 1.

The formation of the coefficient

F ¢, (F) = /_ 1 F(t) P (#)dmy (1)

n
1

is then a bounded linear functional on the dual of L?(m,) with norm
bounded below by a constant multiple of n4. The uniform boundedness
principle implies that for p conjugate to ¢ and each 0 < ¢ < A there is
an F' € LP(m,) so that

(6) cn(F)/n° — oo as n — 0.

3.3. Cantor-Lebesgue Theorem. This idea is explained in [19] and
is based on [24, Section IX.1]. Suppose we have a sequence of functions
F,, on an interval in the real line with the asymptotic property

F.(0) = ¢, (cos(Mp0 + ~v,) +0(1)) , Vn >0

uniformly on a set F of finite positive measure, and with M,, — oo as
n — oo. Integrating |F,|? over E gives

/E|Fn(0)|2d€: o2 ([ECOSZ(Mneﬂn)dwoa))

2 4

The Riemann-Lebesgue Theorem [24, Thm. I1.4.4] says that the Fourier
transforms xg(£2M,,) — 0 as M,, — oo. If we know that there is some
function G for which |F,()| < G(n) uniformly on E for all n then
there is an ng > 0 for which

E
u|cn|2 < / |Fn(0)|2d0 < G(n)2|E|, Vn > ng.
E

E 62i’Yn P 6_2i'7n -
— ‘Cn|2 (u + Xe(2M,) + 1 Xe(—2M,) + o(l)) )

4
This shows that |c,| < 2G(n) for all n > ny.

3.4. Asymptotics. Theorem 8.21.8 in Szegd’s book[23] gives the fol-

lowing asymptotic behaviour for the Jacobi polynomials P{**. For
a>—1/2 and ¢ > 0 the following estimate holds uniformly for all
e<f<m—ecandn>1.

() P cos) = 0 2R(6) cos (M + ) + O (n~?).

Here k(6) = 72 (sin(9)/2) %, M, =n+ (2a+1)/2, and v =
—(a+1/2)m/2.
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From Egoroft’s theorem and Lemma 2.1 we can say that if the series
(4) is Cesaro summable of order & on a set of positive measure in S¢
then there is a set of positive measure E C [0, 7] on which

‘Cn(f0>h;1P,§a’a) (COS 0)‘ S An5

and hence

(8) |cn(fo)n' /P70 (cos (M0 +7) + O(n1))| < A
uniformly for § € E. The argument of subsection 3.3 shows that
(9) ‘Cn(fo)n(l/m*‘s‘ < A, Vn > 1.

Lemma 3.1. If f is a zonal function on the unit sphere whose spherical
harmonic expansion is Cesaro summable of order d on a set of positive
measure, then there is a constant A > 0 for which

len(fo)] < An®~W2 0y > 1.

3.5. Norm Estimates. Markett[15] has calculated estimates on the
L? norms of Jacobi polynomials. Let

A a+1) 2
©“=50x1 d-1

Equation (2.2) in [15] gives the following lower bounds on these norms.

Lemma 3.2. For real number a > —1/2, 1 < ¢ < o0, and r > —1/q,

1/q n /2 if ¢ < ge,
( / [P @) (1 - 2)° dm) ~ 02 (logm) T ifg =g,
na—(2a+2)/q qu > (..

Notice that these integrals are taken over [0,1] rather than all of
[—1,1].

4. MAIN RESULT
Theorem 4.1. For each 1 <p < p.=2d/(d+ 1),

1
<o d 4L

P 2
and y € S¢, there is a function in LP(S?) which is zonal about y,
supported in the hemisphere {x : x -y > 0}, and whose spherical har-
monic expansion has Cesaro and Riesz means which diverge almost
everywhere.

Proof. Suppose that a series (4) has Cesaro means of order § which
converge on a set of positive measure. Then Lemma 3.1 implies that

(10) cn(fo) =0 <n57(1/2)) , asmn — oo.
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Compare this inequality with the last line of Lemma 3.2 and section

32. Ifg>gq., (1/p) +(1/q) =1 and
q 2

then there must be a zonal function f € LP(S?) with fy supported on
[0, 1] for which the estimate (10) fails. Remembering the definition of
« in terms of the dimension d, we are considering

1 d-1 1
e~ _dl1==
’ 2% 2 ( p>

5<C_l_
p

which means

0

Remark 4.1. In [19] we applied this technique to produce an analogous
theorem for Laguerre expansions.

5. CENTRAL FUNCTION ON SU(2)

We conclude with a simple three dimensional example. Suppose
that G = SU(2) is equipped with the normalized translation invariant
measure ;4 and that 7" is the maximal torus of diagonal elements of G.

For cach ¢ € G = {k/2 : k € Z,k > 0} there is an irreducible unitary
representation of G with dimension 2¢ 4+ 1 and character

V(5 )™

Every central function on G is determined by its restriction to T'. The
Fourier series of central functions are expansions in the characters. If
f € LY(G, p) is central then

(11) FeS e
=0
with
(12) ¢ = /G f@) @ du(z),  veed.

In [8] and [10], Dooley, Giulini, Soardi, and Travaglini estimated the
Lebesgue norms of characters of compact Lie groups. The group SU(2)
provides the simplest case of these estimates. For each g > 3

(13) Ixell, > c(20+ 1)1, v ed.
If 1/p+1/q =1 then

1_321_3<1_1):§_2.
q p p
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Uniform boundedness then says that if 1 <p < 3/2 and a < (3/p) — 2
then there is a central function f € LP(G) for which the coefficients in
(11) have

¢e/(20 4+ 1)* unbounded as ¢ — oc.

Suppose that (11) is Cesaro summable of order § on a set of positive
measure. Then Lemma 2.1 says that

cosin (204 1)0) = O(£°) as £ — oo,

on a set of positive measure. The Cantor-Lebesgue Theorem then says
that

co = O() as { — oo.

Theorem 5.1. For 1 < p < 3/2 and 0 < § < (3/p) — 2 there is a
central function f € LP(SU(2)) for which the Cesaro and Riesz means
of order ¢ are divergent almost everywhere.

This shows the sharpness of results in Clerc’s paper [6].
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