
DIVERGENT SUMS OF SPHERICAL HARMONICS

CHRISTOPHER MEANEY

Abstract. We combine the Cantor-Lebesgue Theorem and Uni-
form Boundedness Principle to prove a divergence result for Cesàro
and Bochner-Riesz means of spherical harmonic expansions.

1. Background

Fix an integer d > 1 and consider the unit sphere Sd in Rd+1,
equipped with normalized rotation-invariant measure. For each n ≥ 0
let Hn denote the space of spherical harmonics of degree n restricted to
Sd, so that L2(Sd) = ⊕∞n=0Hn. See [22, Section 4.2] for details. Every
distribution ψ on Sd has a spherical harmonic expansion

(1)
∞∑

n=0

Yn(ψ)(x), ∀x ∈ Sd, where Yn(ψ) ∈ Hn, ∀n ≥ 0.

This is the expansion of ψ in eigenfunctions of the Laplace-Beltrami
operator on Sd. It is known [14] that if 1 ≤ p < 2 then there is an
ψ ∈ Lp(Sd) for which (1) diverges almost everywhere. That leaves open
the general behaviour of spherical harmonic expansions for elements of
L2(Sd). A partial step in this direction follows from the localization
principle [18].

Theorem 1.1 (Localization). Suppose ψ is a distribution on Sd and
U ⊂ Sd is an open set disjoint from the support of ψ. For each x ∈ U ,
the expansion

∑∞
n=0 Yn(ψ)(x) converges if and only if Yn(ψ)(x) → 0 as

n→∞.

Corollary 1.2. If ψ ∈ L2(Sd) and U ⊂ Sd is an open set on which ψ is
zero almost everywhere, then the expansion

∑∞
n=0 Yn(ψ)(x) converges

to zero almost everywhere on U .

There are special cases where a function ψ ∈ L2(Sd) can be guar-
anteed to have an almost everywhere convergent spherical harmonic
expansion, if ψ is in an L2- Sobolev space W 2,s of positive index s [16]
or if it is zonal [1]. (Recall that a function f on Sd is said to be zonal
about a point y ∈ Sd when f(x) depends only on x · y for all x ∈ Sd.)
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Carleson’s theorem [3] has been extended to zonal functions [11]. Let
pc be the critical index

pc =
2d

d+ 1
.

Theorem 1.3. If pc < p ≤ 2 and f ∈ Lp(Sd) is zonal about a point
y ∈ Sd, then its spherical harmonic expansion is convergent almost
everywhere.

Corollary 1.4. Suppose ψ ∈ L2(Sd), U ⊂ Sd is an open set, f1 ∈⋃
s>0W

2,s(Sd), f2 ∈ L2(Sd) is a finite sum of zonal functions, and
ψ = f1 + f2 almost everywhere on U . Then

∑∞
n=0 Yn(ψ)(x) converges

almost everywhere on U .

The two corollaries 1.2 and 1.4 would be rendered trivial if there
where a higher dimensional version of Carleson’s theorem.

They do suggest that when considering convergence of expansions,
we should examine the term-wise behaviour away from the support of
a distribution.

In the early 1980’s we showed [17] that Theorem 1.3 is sharp and
that localization fails at the critical index.

Theorem 1.5. For each y ∈ Sd and 1 ≤ p ≤ pc there is a ψ ∈ Lp(Sd),
supported in the hemisphere {x : x · y ≥ 0} whose spherical harmonic
expansion diverges almost everywhere.

This was proved by a combination of the Cantor-Lebesgue theorem,
knowledge of the Lp′

-norms of the zonal spherical functions, and the
uniform boundedness principle. Kanjin [13] showed that these methods
could be combined with a result of Hardy and Riesz [12] to deal with
Riesz means for radial functions on Euclidean space. This approach was
also used in [20] for Riesz means of radial functions on non-compact
rank one symmetric spaces.

Here we prove a similar result for Cesàro and Riesz means of spherical
harmonic expansions of zonal functions. This shows the sharpness of
the results in [4]. See [2, 7] for earlier work on Cesàro means of spherical
harmonic expansions. See [21, 5] for results in a more general setting.

2. Cesàro & Riesz means

2.1. Cesàro means. The Cesàro means [24, pages 76–77] of order δ
of the expansion (1) are defined by

(2) σδ
Nψ(x) =

N∑
n=0

Aδ
N−n

Aδ
N

Yn(ψ)(x), ∀N ≥ 0, x ∈ Sd,

where Aδ
n =

(
n+ δ

n

)
. Theorem 3.1.22 in [24] says that if the Cesàro

means converge, then the terms of the series have controlled growth.
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Lemma 2.1. Suppose that lim
N→∞

σδ
Nψ(x) exists for some x ∈ X and

δ > −1. Then

|YN(ψ)(x)| ≤ Cδ N
δ max

0≤n≤N

∣∣σδ
nψ(x)

∣∣ , ∀n ≥ 0.

2.2. Riesz means. Hardy and Riesz [12] had proved a similar result
for Riesz means. Recall that the Riesz means of order δ ≥ 0 are defined
for each r > 0 by

(3) Sδ
rψ(x) =

∑
0≤n<r

(
1− k

r

)δ

Yn(ψ)(x).

Theorem 21 of [12] tells us how the convergence of Sδ
rψ(x) controls the

size of the partial sums S0
rψ(x).

Lemma 2.2. Suppose that ψ is a distribution on the sphere for which
there is some δ > 0 and x ∈ X at which its Riesz means Sδ

rψ(x)
converges to c as r →∞ then∣∣S0

rψ(x)− c
∣∣ ≤ Aδ r

δ sup
0<t≤r+1

∣∣Sδ
tψ(x)

∣∣ .
Note that this implies

Yn(ψ)(x) = O(nδ)

and we have the same growth estimates as in Lemma 2.1.
Gergen[9] wrote formulae relating the Riesz and Cesàro means of

order δ ≥ 0, from which it follows that the two methods of summation
are equivalent.

3. Zonal Functions and Jacobi Polynomials

3.1. Notation. Suppose that f is a function on Sd with f(x) depend-
ing only on x·y, for a fixed y ∈ Sd, so that f(x) = f0(x · y). The
spherical harmonic expansion of f is

(4)
∞∑

n=0

cn(f0)h
−1
n P (α,α)

n (x · y)

where α = (d − 2)/2, P
(α,α)
n is the Jacobi polynomial of degree n and

index (α, α),

hn =

∫ 1

−1

∣∣P (α,α)
n (t)

∣∣2 (
1− t2

)α
dt,

and the coefficients are

cn(f0) =

∫ 1

−1

f0(t)P
(α,α)
n (t)

(
1− t2

)α
dt, ∀n ≥ 0.

See section 4.7 of Szegő’s book [23] for details about these special func-
tions. Let mα be the measure on [−1, 1] given by

dmα(t) = (1− t2)α dt,
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so that {P (α,α)
n : n ≥ 0} is a orthogonal basis of L2(mα). From (4.3.3)

in [23] we know that the normalization constants hn satisfy

(5) hn ∼ An−1 as n→∞

3.2. Uniform Boundedness. Suppose there is a number 1 < q ≤ ∞
and some positive number A with

‖P (α,α)
n ‖Lq(mα) ≥ cnA, ∀n ≥ 1.

The formation of the coefficient

F 7→ cn(F ) =

∫ 1

−1

F (t)P (α,α)
n (t)dmα(t)

is then a bounded linear functional on the dual of Lq(mα) with norm
bounded below by a constant multiple of nA. The uniform boundedness
principle implies that for p conjugate to q and each 0 ≤ ε < A there is
an F ∈ Lp(mα) so that

(6) cn(F )/nε →∞ as n→∞.

3.3. Cantor-Lebesgue Theorem. This idea is explained in [19] and
is based on [24, Section IX.1]. Suppose we have a sequence of functions
Fn on an interval in the real line with the asymptotic property

Fn(θ) = cn (cos(Mnθ + γn) + o(1)) , ∀n ≥ 0

uniformly on a set E of finite positive measure, and with Mn →∞ as
n→∞. Integrating |Fn|2 over E gives∫

E

|Fn(θ)|2 dθ = |cn|2
(∫

E

cos2(Mnθ + γn) dθ + o(1)

)
= |cn|2

(
|E|
2

+
e2iγn

4
χ̂E(2Mn) +

e−2iγn

4
χ̂E(−2Mn) + o(1)

)
.

The Riemann-Lebesgue Theorem [24, Thm. II.4.4] says that the Fourier
transforms χ̂E(±2Mn) → 0 as Mn →∞. If we know that there is some
function G for which |Fn(θ)| ≤ G(n) uniformly on E for all n then
there is an n0 > 0 for which

|E|
4
|cn|2 ≤

∫
E

|Fn(θ)|2 dθ ≤ G(n)2|E|, ∀n ≥ n0.

This shows that |cn| ≤ 2G(n) for all n ≥ n0.

3.4. Asymptotics. Theorem 8.21.8 in Szegő’s book[23] gives the fol-

lowing asymptotic behaviour for the Jacobi polynomials P
(α,α)
n . For

α ≥ −1/2 and ε > 0 the following estimate holds uniformly for all
ε ≤ θ ≤ π − ε and n ≥ 1.

(7) P (α,α)
n (cos θ) = n−1/2k(θ) cos (Mnθ + γ) + O

(
n−3/2

)
.

Here k(θ) = π−1/2 (sin(θ)/2)−α−1/2, Mn = n+ (2α+ 1)/2, and γ =
−(α+ 1/2)π/2.
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From Egoroff’s theorem and Lemma 2.1 we can say that if the series
(4) is Cesàro summable of order δ on a set of positive measure in Sd

then there is a set of positive measure E ⊂ [0, π] on which∣∣cn(f0)h
−1
n P (α,α)

n (cos θ)
∣∣ ≤ Anδ

and hence

(8)
∣∣cn(f0)n

(1/2)−δ
(
cos (Mnθ + γ) + O(n−1)

)∣∣ ≤ A

uniformly for θ ∈ E. The argument of subsection 3.3 shows that

(9)
∣∣cn(f0)n

(1/2)−δ
∣∣ ≤ A, ∀n ≥ 1.

Lemma 3.1. If f is a zonal function on the unit sphere whose spherical
harmonic expansion is Cesàro summable of order δ on a set of positive
measure, then there is a constant A > 0 for which

|cn(f0)| ≤ Anδ−(1/2), ∀n ≥ 1.

3.5. Norm Estimates. Markett[15] has calculated estimates on the
Lp norms of Jacobi polynomials. Let

qc =
4(α+ 1)

2α+ 1
=

2d

d− 1
.

Equation (2.2) in [15] gives the following lower bounds on these norms.

Lemma 3.2. For real number α > −1/2, 1 ≤ q <∞, and r > −1/q,

(∫ 1

0

∣∣P (α,α)
n (x)

∣∣q (1− x)α dx

)1/q

∼


n−1/2 if q < qc,

n−1/2 (log n)1/q if q = qc,

nα−(2α+2)/q if q > qc.

Notice that these integrals are taken over [0, 1] rather than all of
[−1, 1].

4. Main Result

Theorem 4.1. For each 1 ≤ p < pc = 2d/(d+ 1),

0 ≤ δ <
d

p
− d+ 1

2
,

and y ∈ Sd, there is a function in Lp(Sd) which is zonal about y,
supported in the hemisphere {x : x · y ≥ 0}, and whose spherical har-
monic expansion has Cesàro and Riesz means which diverge almost
everywhere.

Proof. Suppose that a series (4) has Cesàro means of order δ which
converge on a set of positive measure. Then Lemma 3.1 implies that

(10) cn(f0) = O
(
nδ−(1/2)

)
, as n→∞.
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Compare this inequality with the last line of Lemma 3.2 and section
3.2. If q > qc, (1/p) + (1/q) = 1 and

α− (2α+ 2)

q
> δ − 1

2

then there must be a zonal function f ∈ Lp(Sd) with f0 supported on
[0, 1] for which the estimate (10) fails. Remembering the definition of
α in terms of the dimension d, we are considering

δ − 1

2
<
d− 1

2
− d

(
1− 1

p

)
which means

δ <
d

p
− (d+ 1)

2
.

�

Remark 4.1. In [19] we applied this technique to produce an analogous
theorem for Laguerre expansions.

5. Central function on SU(2)

We conclude with a simple three dimensional example. Suppose
that G = SU(2) is equipped with the normalized translation invariant
measure µ and that T is the maximal torus of diagonal elements of G.

For each ` ∈ Ĝ = {k/2 : k ∈ Z, k ≥ 0} there is an irreducible unitary
representation of G with dimension 2`+ 1 and character

χ`

((
eiθ 0
0 e−iθ

))
=

sin ((2`+ 1)θ)

sin (θ)
.

Every central function on G is determined by its restriction to T . The
Fourier series of central functions are expansions in the characters. If
f ∈ L1(G, µ) is central then

(11) f ∼
∞∑

`=0

c`χ`

with

(12) c` =

∫
G

f(x)χ`(x) dµ(x), ∀` ∈ Ĝ.

In [8] and [10], Dooley, Giulini, Soardi, and Travaglini estimated the
Lebesgue norms of characters of compact Lie groups. The group SU(2)
provides the simplest case of these estimates. For each q > 3

(13) ‖χ`‖q ≥ c(2`+ 1)1−3/q, ∀` ∈ Ĝ.

If 1/p+ 1/q = 1 then

1− 3

q
= 1− 3

(
1− 1

p

)
=

3

p
− 2.



116 CHRISTOPHER MEANEY

Uniform boundedness then says that if 1 ≤ p < 3/2 and a < (3/p)− 2
then there is a central function f ∈ Lp(G) for which the coefficients in
(11) have

c`/(2`+ 1)a unbounded as `→∞.

Suppose that (11) is Cesàro summable of order δ on a set of positive
measure. Then Lemma 2.1 says that

c` sin ((2`+ 1)θ) = O(`δ) as `→∞,

on a set of positive measure. The Cantor-Lebesgue Theorem then says
that

c` = O(`δ) as `→∞.

Theorem 5.1. For 1 ≤ p < 3/2 and 0 ≤ δ < (3/p) − 2 there is a
central function f ∈ Lp(SU(2)) for which the Cesàro and Riesz means
of order δ are divergent almost everywhere.

This shows the sharpness of results in Clerc’s paper [6].
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19. , Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions,
Preprint http://xxx.lanl.gov/abs/math.CA/0202019, Feb. 2002. To appear in
Proc. Amer. Math. Soc.

20. Christopher Meaney and Elena Prestini, Bochner-Riesz means on symmetric
spaces, Tohoku Math. J. (2) 50 (1998), no. 4, 557–570.

21. Christopher D. Sogge, On the convergence of Riesz means on compact mani-
folds, Ann. of Math. (2) 126 (1987), no. 2, 439–447.

22. Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean
spaces, Princeton University Press, Princeton, N.J., 1971, Princeton Mathe-
matical Series, No. 32.
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