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III APPLICATIONS
by
A. N. Milgram

A. Solvable Groups.

Before proceeding with the applications we must discuss certain
questions in the theory of groups. We shall assume several simple propo-
sitions: (a) If N is a normal subgroup of the group G, then the mapping
f(x) = xN is a homomorphism of G on the factor group G/N. f is called
the natural homomorphism. (b) The image and the inverse image of a
normal subgroup under a homomorphism is a normal subgroup. (c) If £
is a homomorphism of the group G on G', then setting N' = f(N), and
defining the mapping g as g(xN) = f(x)N', we readily see that g is
a homomorphism of the factor group G/N on the factor group G'/N".
Indeed, if N is the inverse image of N' then g is an isomorphism.

We now prove

THEOREM 1. (Zassenhaus). If U and V are subgroups of G, u and

v normal subgroups of U and V, respectively, then the following three

factor groups are isomorphic: u(UnV)/u(Unv),

v(UAV)/v(unV), (UnV)/(unV)(vAU).

It is obvious that U n v is a normal subgroup of U N V. Let
be the natural mapping of U on U/u. Call f(UnV) = Hand f(Unv) = K.
Then fY(H) = u(UnV) and £}(K) = u(Unv) from which it follows
that u(UNV)/u(Unv) is isomorphic to H/K. If, however, we view f as
defined only over U n V, then £'}(K) = [un(UnV)](Unv) =
(unV)(Unv) so that (UNV)/(unV)(Unv) is also isomorphic to H/K.
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Thus the first and third of the above factor groups are isomorphic to
each other. Similarly, the second and third factor groups are isomorphic.

Corollary 1. If H is a subgroup and N a normal subgroup of the

group G, then H/HNN is isomorphic to HN/N, a subgroup of G/N.

Proof: Set G = U, N = u, H = V and the identity 1 = v in
Theorem 1.

Corollary 2. Under the conditions of Corollary 1, if G/N is

abelian, so also is H/HNN.

Let us call a group G solvable if it contains a sequence of sub-
groups G = G, D G, D...D G, = 1, each a normal subgroup of the
preceding, and with G, , /G, abelian.

THEOREM 2. Any subgroup of a solvable group is solvable. For

let H be a subgroup of G, and call H; = HNG,. Then that H, /H, is

abelian follows from Corollary 2 above, where G, |,

G, and H ; play
the role of G, N and H.
THEOREM 3. The homomorph of a solvable group is solvable.

Let f(G) = G', and define G| = f(G,) where G, belongs to a
a sequence exhibiting the solvability of G. Then by (c) there exists a
homomorphism mapping G, ,/G; on G} ,/G!} . But the homomorphic image
of an abelian group is abelian so that the groups G' exhibit the

solvability of G'.

B. Permutation Groups.

Any one to one mapping of a set of n objects on itself is called

a permutation. The iteration of two such mapping is called their product.
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It may be readily verified that the set of all such mappings forms a
group in which the unit is the identity map. The group is called the
symmetric group on n-letters.

Let us for simplicity denote the set of n objects by the numbers
1,2,...,n. The mapping S such that S(i) = i + 1 mod n will be de-
noted by (123...n) and more generally (ij...m) will denote the map-
ping T such that T(i) = j,...,T(m) = i. If (ij...m) has k numbers,
then it will be called a k cycle. It is clear that if T = (ij...s) then
T = (s...ji)

We now establish the

Lemma. If a subgroup U of the symmetric group on n letters

(n > 4) contains every 3-cycle, and if u is a normal subgroup of U

such that U/u is abelian, then u contains every 3-cycle.

Proof: Let f be the natural homomorphism f(U) = U/u and let
X = (ijk), y = (krs) be two elements of U, where i, j, k, r, s are 5
numbers. Then since U/u is abelian, setting f(x) = x', f(y) = y'
we have f(x1ylxy) = x'1y'"Ix'y' = 1, so that x1ylxy ¢ u. But
x1lylxy = (kji)-(stk)-(ijk)-(krs) = (kjs) and for each k, j, s we
have (kjs) € u.

THEOREM 4. The symmetric group G on n letters is not solvable

forn > 4.
If there were a sequence exhibiting the solvability, since G con-
tains every 3-cycle, so would each succeeding group, and the sequence

could not end with the unit.
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C. Solution of Equations by Radicals.

The extension field E over F is called an extension by radicals

if there exist intermediate fields B, ,B,,...,B, = E and B; = B, (a,)
where each qa; is a root of an equation of the form x't - a, =0,
a, € B, . A polynomial f(x) in a field F is said to be solvable by
radicals if its splitting field lies in an extension by radicals. We assume
unless otherwise specified that the base field has characteristic 0 and
that F contains as many roots of unity as are needed to make our sub-
sequent statements valid.

Let us remark first that any extension of F by radicals can always
be extended to an extension of F by radicals which is normal over F.
Indeed B, is a normal extension of B, since it contains not only a,
but ea,, where ¢ is any n,-root of unity, so that B, is the splitting field
of x"1 — a . Iff (x) =Tcl'r(xnz - o(a,)), where o takes all values in
the group of automorphisms of B, over B , then f, is in B, and ad-
joining successively the roots of X2 - o(a,) brings us to an exten-
sion of B, which is nommal over F. Continning in this way we arrive at
an extension of E by radicals which will be normal over F. We now

prove

THEOREM 5. The polynomial f(x) is solvable by radicals if

and only if its group is solvable.

Suppose f(x) is solvable by radicals. Let E be a normal exten-
sion of F by radicals containing the splitting field B of f(x), and call
G the group of E over F. Since for each i, B, is a Kummer extension of

B, ,, the group of B, over B, , is abelian. In the sequence of groups
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G = GBo D) GBl >...D GBr = 1 each is a normal subgroup of the
preceding since GB.-1 is the group of E over B, | and B, is a normal
extension of B, ;. But GBi-l /GBi is the group of B, over B, ; and hence
is abelian. Thus G is solvable. However, Gy is a normal subgroup of
G, and G/Gy is the group of B over F, and is therefore the group of the
polynomial f(x). But G/Gg is a homomorph of the solvable group G and

hence is itself solvable.

On the other hand, suppose the group G of f(x) to be solvable
and let E be the splitting field. LetG =G, D G, D ... D G =1bea
sequence with abelian factor groups. Call B, the fixed field for G;,.
Since G, , is the group of E over B, ; and G, is a normal subgroup of
G, , then B, is normal over B, | and the group G,_,/G; is abelian. Thus
B, is a Kummer extension of B, |, hence is splitting field of a polynomial
of the form (x-a )(x™-a,)...(x"-a) so that by forming the successive
splitting fields of the x™ — a, we see that B, is an extension of B, ; by

radicals, from which it follows that E is an extension by radicals.

Remark. The assumption that F contains roots of unity is not
necessary in the above theorem. For if f(x) has a solvable group G,
then we may adjoin to F a primitive n'" root of unity, where n is, say,
equal to the order of G. The group of f(x) when considered as lying in
F' is, by the theorem on Natural Irrationalities, a subgroup G' of G,
and hence is solvable. Thus the splitting field over F' of f(x) can be
obtained by radicals. Conversely, if the splitting field E over F of f(x)
can be obtained by radicals, then by adjoining a suitable root of unity

E is extended to E' which is still normal over F'. But E' could be
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obtained by adjoining first the root of unity, and then the radicals, to

F; F would first be extended to F' and then F' would be extended to

E'. Calling G the group of E' over F and G' the group of E' over F',

we see that G' is solvable and G/G' is the group of F' over F and
hence abelian. Thus G is solvable. The factor group G/G is the
group of f(x) and being a homomorph of a solvable group is

also solvable.

D. The General Equation of Degree n.

If F is a field, the collection of rational expressions in the

variables u;, u,,...,u  with coefficients in F is a field F(u,u,,..

By the general equation of degree n we mean the equation

(¢9) f(x) = x® —ux™ 4+ u,x™? - + ...+ (-1)",.
Let E be the splitting field of f(x) over F(u,,u,,...,u_). If
ViyVys ...,V are the roots of f(x) in E, then
u, =V, +v, + F VL, Uy = ViV, RV Ve b e R VYL
y UL = Ve Ve
We shall prove that the group of E over F(u,u,,...,u ) is the
symmetric group.
Let F(xl, S ,X_) be the field generated from F by the
variables x,,x,,...,x . Leta, =%, + x, + ... + X,
a, = XX, + XX + ...+ X X, ..., a = XX, ..x betheele-

mentary symmetric functions, i.e., (x-x )(%-x,)...(%x-x_ ) =
x® —a x™ + - ...(-)"a, = £*(x). lf g(a,,a,,...,a,)is a

polynomial ina,,...,a,, then g(al,az,. ..,a,) = 0 only if g is the

U
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zero polynomial. For if g(2x;, Zx;x,,...) = 0, then this relation would
hold also if the x; were replaced by the v,. Thus,
g(2v;,2v,v,,...) = Oorg(u,,uy,...,u.) = 0 from which it follows

that g is identically zero.

Between the subfield F(a,,...,a ) of F(x,,...,% ) and

F(u;,u,,...,u, ) we set up the following correspondence: Let
f(u,...,u,)/g(u,,...,u_ ) be an element of F(u,,...,u_). We make
this correspond to f(a,,...,a,)/g(a;,...,a,) This is clearly a map-

ping of F(u,,u,,...,u )onall of F(q,,...,a,). Moreover, if
f(ay,a,,...,a,)/8(a;,a,,...,a,)

= fl(al,az,.. .,an)/gl(al,az, ...,a,), then fg1 - gfl = 0. But this
implies by the above that

f(uy, . cyu)-g(ug, e u ) = guy,.eau ) f(u,.oou ) =0
so that f(u,,...,u )/g(u,u,,...,u.)
=f(u;,...,u)/g(u,u,...,u ). It follows readily from this that
the mapping of F(u,,u,,...,u ) on F(a,,a,,...,a,)is an isomor-
phism. But under this correspondence f( x) corresponds to f*(x).
Since E and F(x,,x,,...,Xx_) are respectively splitting fields of f(x)
and f*(x), by Theorem 10 the isomorphism can be extended to an iso-

morphism between E and F (x,, x ., X, ). Therefore, the group of E

P
over F(u,,u,,...,u,) is isomorphic to the group of F(x,x,,...,x,)
over F(a,,a,,...,a,).

Each permutation of x,,x,,...,x_ leaves a;,a,,...,a, fixed

27"
and, therefore, induces an automorphism of F(x,,%,,...,%_) which
leaves F(a,,a,,-..,a,) fixed. Conversely, each automorphism of
F(x,,%,,...,%_) which leaves F(a,,...,a,) fixed must permute the

roots X, X,,...,x of f*(x) and is completely determined by the

27"
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permutation it effects on x,x,,...,x . Thus, the group of F(x,,%,,...,%_)
over F(a,,a,,...,a,) is the symmetric group on n letters. Because of

the isomorphism between F(x,,...,x_) and E, the group for E over
F(u,,u,,...,u) is also the symmetric group. If we remark that the
symmetric group for n > 4 is not solvable, we obtain from the theorem

on solvability of equations the famous theorem of Abel:

THEOREM 6. The group of the general equation of degree n is

the symmetric group on n letters. The general equation of degree n is

not solvable by radicals if n > 4.

E. Solvable Equations of Prime Degree.

The group of an equation can always be considered as a permu-
tation group. If f(x) is a polynomial in a field F, let a;,a,,...,a, be
the roots of f(x) in the splitting field E = F(a,,...,a,). Then each
automorphism of E over F maps each root of f(x) into a root of f(x),
that is, permutes the roots. Since E is generated by the roots of f(x),
different automorphisms must effect distinct permutations. Thus, the
group of E over F is a permutation group acting on the roots
I PN of f(x).

For an irreducible equation this group is always transitive. For
let @ and a' be any two roots of f(x), where f(x) is assumed irreduci-
ble. F(a) and F(a') are isomorphic where the isomorphism is the
identity on F, and this isomorphism can be extended to an automorphism
of E (Theorem 10). Thus, there is an automorphism sending any given

root into any other root, which establishes the ‘‘transitivity’’ of the group.
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A permutation ¢ of the numbers 1,2, ...,q is called a linear
substitution modulo q if there exists a number b £ 0 modulo q such
that (i) = bi + ¢(modq), i =1,2,...,q.

THEOREM 7. Let f(x) be an irreducible equation of prime de-

gree q in a field F. The group G of f(x) (which is a permutation group

of the roots, or the numbers 1,2, ..., q) is solvable if and only if,

after a suitable change in the numbering of the roots, G is a group of

linear substitutions modulo q, and in the group G all the substitutions

withb = 1,0(i) =c + 1(c=1,2,...,q) occur.

Let G be a transitive substitution group on the numbers
1,2,...,qand let G, be a normal subgroup of G. Let 1,2, ...,k be the
images of 1 under the permutations of G,; we say: 1,2,...,kis a

domain of transitivity of G;. If i < q is a number not belonging to this

domain of transitivity, there is a 0 ¢ G which maps 1 on i. Then
o(1,2,...,k) is a domain of transitivity of oG 0. Since G, is a
normal subgroup of G, we have G, = 0G,o!. Thus, 0(1,2,...,k) is
again a domain of transitivity of G, which contains the integer i and
has k elements. Since i was arbitrary, the domains of transitivity of
G, all contain k elements. Thus, the numbers 1,2, ..., q are divided
into a collection of mutually exclusive sets, each containing k ele-
ments, so that k is a divisor of q. Thus, in case q is a prime, either
k = 1 (and then G, consists of the unit alone) ork = q and G, is
also transitive.

To prove the theorem, we consider the case in which G is
solvable. Let G = G, D G,D ... D G_,, = 1 be a sequence exhibiting

the solvability. Since G is abelian, choosing a cyclic subgroup of it
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would permit us to assume the term before the last to be cyclic, i.e.,
G, is cyclic. If o is a generator of G_, o must consist of a cycle con-
taining all q of the numbers 1,2, ..., q since in any other case G,
would not be transitive [if ¢ = (lij...m)(n...p)... then the powers
of o would map 1 only into 1,1i,j....m, contradicting the transitivity of
G_ ]. By a change in the number of the permutation letters, we
may assume
o(i) =i+ 1 (mod q)
0°(i) =i + ¢ (mod q)
Now let 7 be any element of G_ . Since G_ is a normal subgroup
of G, ,, ror! is an element of G, say ror ! = ¢® Let 7(i) = j orr7!(j) = i,
then ror-1(j) = o®j) = j + b (mod q). Therefore,
ro(i) = r(i) + b (mod q) or r(i+l) = r(i) + b for each i. Thus,
setting 7(0) = c, we have7(1) = c + b, 7(2) =7(1) + b=c + 2b
and in general 7(i) = ¢ + ib (mod q). Thus, each substitution in G,

is a linear substitution. Moreover, the only elements of G_, which

s-1
leave no element fixed belong to G_, since for each a # 1, there is an
i such thatai + b = i (mod q) [take i such that (a-1) i = — b].

We prove by an induction that the elements of G are all linear
substitutions, and that the only cycles of q letters belong to G_. Sup-
pose the assertion true of G, . Let 7 ¢ G_ , and let o be a cycle
which belongs to G_ (hence also to G__ ). Since the transform of a
cycle is a cycle, r-lo7 is a cycle in G___ and hence belongs to G _.
Thus rlor = ¢ for some b. By the argument in the preceding para-

graph, 7 is a linear substitution bi + c and if r itself does not belong to

G_, then r leaves one integer fixed and hence is not a cycle of q elements.
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We now prove the second half of the theorem. Suppose G is a
group of linear substitutions which contains a subgroup N of the form
o(i) =i + c. Since the only linear substitutions which do not leave
an integer fixed belong to N, and since the transform of a cycle of q
elements is again a cycle of q elements, N is a normal subgroup of G.
In each coset N.7 where 7(i) = bi + c the substitution ¢-!7 occurs,
where 0 = i + c. But g17(i) = (bi + ¢) — ¢ = bi. Moreover, if
r(i) = biandr'(i) = b'ithens'(i) = bb'i. Thus, the factor group
(G/N) is isomorphic to a multiplicative subgroup of the numbers
1,2,...,q-1 mod q and is therefore abelian. Since (G/N) and N are
both abelian, G is solvable.

Corollary 1. If G is a solvable transitive substitution group on q

letters (q prime ), then the only substitution of G which leaves two or

more letters fixed is the identity.

This follows from the fact that each substitution is linear modulo
gand bi + ¢ = i (mod q) has either no solution (b =1, ¢ 2 0) or
exactly one solution(b # 1)unlessb =1, ¢ = 0 in which case the sub-
stitution is the identity.

Corollary 2. A solvable, irreducible equation of prime degree in

a field which is a subset of the real numbers has either one real root

or all its roots are real.

The group of the equation is a solvable transitive substitution
group on q ( prime) letters. In the splitting field (contained in the field
of complex numbers) the automorphism which maps a number into its

complex conjugate would leave fixed all the reai numbers. By Corollary
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1, if two roots are left fixed, then all the roots are left fixed, so that

if the equation has two real roots all its roots are real.

F. Ruler and Compass Constructions.

Suppose there is given in the plane a finite number of elementary
geometric figures, that is, points, straight lines and circles. We seek
to construct others which satisfy certain conditions in terms of the
given figutes.

Permissible steps in the construction will entail the choice of
an atbitrary point interior to a given region, drawing a line through two
points and a circle with given center and radius, and finally intersec-
ting pairs of lines, or circles, or a line and circle.

Since a straight line, or a line segment, or a circle is determined
by two points, we can consider ruler and compass constructions as con-
structions of points from given points, subject to certain conditions.

If we are given two points we may join them by a line, erect a
perpendicular to this line at, say, one of the points and, taking the dis-
tance between the two points to be the unit, we can with the compass
lay off any integer n on each of the lines. Moreover, by the usual
method, we can draw parallels and can construct m/n. Using the two
lines as axes of a cartesian coordinate system, we can with ruler and
compass construct all points with rational coordinates.

If a,b,c,... are numbers involved as coordinates of points which
determine the figures given, then the sum, product, difference and

quotient of any two of these numbers can be constructed. Thus, each
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element of the field R(a, b, c,...) which they generate out of the

rational numbers can be constructed.

It is required that an arbitrary point is any peint of a given region.
If a construction by ruler and compass is possible, we can always
choose our arbitrary points as points having rational coordinates, If we
join two points with coefficients in R(a, b, c,...) by a line, its equa-
tion will have coefficients in R(a, b, c,...) and the intersection of two
such lines will be a point with coordinates in R(a,b,c,...). The equa-
tion of a circle will have coefficients in the field if the circle passes
through three points whose caordinates are in the field or if its center
and one point have coordinates in the field. However, the coordinates
of the intersection of two such circles, or a straight line and circle, will

involve square roots.

It follows that if a point can be constructed with a ruler and com-
pass, its coordinates must be gbtainable from R(a, b, ¢, ...) by a formula
only involving square roots, that is, its eoordinates will lie in a field
R, DR, D ... DR, = R(ab,e¢,...) where each field R, is splitting
field over R, of a quadratic equation 2 — g = 0. It follows (Theorem
6, p. 21) since eitherR, = R;, er (R/R,) = 2, that (R,/R ) is a
pawer of two, If x js the coordinate of a constructed point, then
(R (x)/R)-(R/R (%)) = (R/R) = 2¥ so that R,(x)/R, must also
be a power of two.

Conversely, if the coordinates of a point can be obtained from
R(a,b,c,...) by a formula involving square roets only, then the point

can be constructed by ruler and compass. For, the field operations of
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addition, subtraction, multiplication and division may be performed by
ruler and compass constructions and, also, square roots using 1:r =
r:r, to obtain r = \/r, may be performed by means of ruler and
compass instructions.

As an illustration of these considerations, let us show that it is
impossible to trisect an angle of 60°. Suppose we have drawn the unit
circle with center at the vertex of the angle, and set up our coordinate
system with X-axis as a side of the angle and origin at the vertex.

Trisection of the angle would be equivalent to the construction
of the point (cos 20°, sin 20°) on the unit circle. From the equation
cos 30 = 4 cos3 6 - 3 cos 6, the abscissa would satisfy
4x3 — 3x = 1/2. The reader may readily verify that this equation has
no rational roots, and is therefore irreducible in the field of rational
numbers. But since we may assume only a straight line and unit
length given, and since the 60° angle can be constructed, we may take
R(a,b,c,....) to be the field R of rational numbers. A root a of the
irreducible equation 8x3 — 6x — 1 = 0 is such that (R(a)/R) = 3,

and not a power of two.



