
DISCUSSION BY PROFESSOR BRUCE M. HILL

(University of Michigan)

I should like to congratulate Berger and Wolpert on their lucid

and informative presentation of the history and substance of the likelihood

principle, and their extension of the likelihood principle. Although I found

their extension interesting, and hope that it may resolve some doubts concern-

ing the status of the likelihood principle in the infinite case, my own view

is that the likelihood principle really stands or falls in the finite case.

The part of their article that I would like to discuss is that concerning the

various examples that have been presented against the likelihood principle,

where my views are perhaps different from those of Berger and Wolpert (BW), and

in the course of the discussion my approach to the infinite case should become

clear. Before doing so I want to preface my remarks with two comments. First,

I think that we Bayesians should be grateful to Stein, Stone, Fraser and

Monette, for their interesting examples, all of which have some real substance

to them. Theories require good criticism in order to grow, and the lack of

such criticism has been detrimental to the Bayesian theory. Secondly, I think

it is essential that we keep in mind the distinction between the likelihood

principle (by which I mean the formal likelihood principle of BW) and various

implementations or interpretations of the likelihood principle. I shall try to

demonstrate that none of the examples speak against the likelihood principle as

such, but rather that they constitute frequentistic arguments against the use

of specific improper (or diffuse finitely additive) prior distributions. I

shall then explain why I think such arguments have no real teeth to them.
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162 THE LIKELIHOOD PRINCIPLE

Let us begin with the example of Stein. Although it was originally

presented by Stein as an argument against the likelihood principle, with an

argument against lazy Bayesians tacked on at the end, I regard it as primarily

an argument against Bayesians (such as myself) who use improper or finitely

additive prior distributions to obtain approximate posterior distributions, and

also against the theory of de Finetti (which I follow) which in principle does

not rule out any finitely additive prior distribution. To begin with, the

likelihood principle does not justify either (5.3.4) or (5.3.5) of BW, since it

does not suggest a way of attaching probability to sets. It is true of course

that some individuals who support the likelihood principle (perhaps with quali-

fications), such as George Barnard and A. W. F. Edwards, also sometime recom-

mend the use of such probabilistic interpretations of the likelihood function,

but that is by virtue of additional assumptions, whether explicit or implicit,

and is not really part of the likelihood principle. BW apparently accept that

(5.3.6) is a strong argument against the use of a uniform improper prior dis-

tribution for theta, but suggest that there is no difficulty for Bayesians be-

cause on the one hand theta is a scale parameter and so it is the logarithm of

theta (if anything) that should be given a uniform prior distribution, as in

Barnard's reply to Stein; and on the other hand, and more importantly, they

argue that with proper prior distributions the type of interval that Stein

shows has bad frequentistic properties can occur only rarely since "Y is almost

certain to be enormous." Although I agree with both arguments of BW, it seems

to me that the issue being raised by Stein is not whether a sensible Bayesian

can avoid the intervals (5.3.5), but rather whether by virtue of carelessness

or because his theory permits such intervals (as for example is true of the

de Finetti theory) the unwary or even wary Bayesian will become frequentistic

prey. If there really were a trap with teeth to it then Stein's example would

suggest either that one stick with proper prior distributions, or else be quite

careful in the choice of improper, or merely finitely additive, prior distribu-

tions, and as Stein says, this would make the "prior distribution used dependon
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accidental features of the decision problem." Now to me this seems to be a

real and important issue. Suppose we are discussing a real-world parameter,

whose existence, definition, and meaning, in no way depend upon the experiment

to be performed. (The existence of such parameters may be far less common

than is usually assumed, but presumably we could all agree that at least some

such parameters exists, or at any rate are worth discussing, and confine atten-

tion to these. When the "parameter" depends upon the experiment for its

existence and meaning, then, of course, the likelihood principle does not

apply.) In the subjective Bayesian theory of de Finetti and L. J. Savage, the

prior distribution for such a parameter would be chosen to represent one's

opinions about that parameter, and whether the measurement is to be made

according to the normal model or according to (5.3.3) should not in any way

affect the prior distribution. If for some reason I thought that a uniform

improper prior for theta was appropriate as an approximation under the normal

model, and then learned that in fact the measurement error was distributed

according to (5.3.3), but with the nearly identical likelihood functions that

Stein produces, then it seems to me that the uniform prior should still provide

a satisfactory approximation in obtaining my posterior distribution. Further-

more, a Bayesian who would use the uniform prior for theta when the measure-

ment error is normally distributed, but would use a uniform prior distribution

for the logarithm of theta when the measurement error is distributed according

to (5.3.3), is coming very close to violating the likelihood principle in

this example, since he is making very different inference about theta in the

two cases even though the likelihood functions are in a certain sense very

"close," and theta is the same fixed quantity. See Savage (1970) for

a related argument. (Some Bayesians, for example Box and Tiao, actually

recommend that prior distributions be made to depend upon the sampling scheme,

and so would use a different prior distribution for the parameter of a

Bernoulli sequence if the experiment were of binomial form than if the experi-

ment were of negative binomial form, even when the choice of the experiment is
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made by randomization and is thus uninformative, and this clearly violates

the likelihood principle. Whatever else may be said of such an approach, it

is certainly not a part of the ordinary subjective Bayesian theory, in which

the prior distribution for a parameter of the type we are discussing does not

depend upon what experiments may or may not be performed at some future time.

Furthermore, if BW choose to use improper prior distributions, but only when

these do not lead to bad frequentist properties, then they too are perilously

close to a violation of the likelihood principle, since their choice will turn

out to depend upon the sampling distribution, just as with Box and Tiao.)

What the Stein example actually demonstrates is that if a Bayesian uses the

uniform prior distribution for theta, then his posterior probability for the

interval (5.3.5), given any y, is at least .95, while given any theta, the

frequentist probability for the interval is very tiny according to (5.3.6).

This is the phenomenon of nonconglomerability. Conglomerability is a property

of a probability distribution, and was defined by de Finetti (1972, p. 99)

as follows: if the conditional probability of an event, given each

element of a partition, lies between p and q, then also the probability of

the event lies between p and q. Conglomerability always holds for countably

additive probability distributions and countable partitions, but need not

hold for merely finitely additive distributions, and in fact, as shown

recently in Hill and Lane (1983) using only elementary mathematics and

verifying a conjecture of de Finetti, conglomerability and countable additivity

are equivalent for countable spaces. The uniform improper prior distribution

can be given a finitely additive interpretation, which is why the nonconglomer-

ability exhibited by Stein can occur. Thus for the partition based upon the

value of theta, we have (5.3.6), while for the partition based upon the value

of Y, the intervals (5.3.5) have posterior probability at least .95 for all

possible such Y values, when the uniform prior distribution for theta is used.

The unconditional probability of the interval has not been defined, but

whatever value it is given must exhibit a nonconglomerability with respect to

one or the other of the two partitions. In Hill (1981) I
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gave some general arguments as to why nonconglomerability cannot be avoided in

the subjective Bayesian framework, and as to why I believe there is really yery

little that is operationally meaningful in the type of superficially frighten-

ing calculation exhibited in (5.3.6). After discussing the other examples, I

will return to this issue, and suggest a new argument as to why there is no

way to demonstrate any undesirable consequences if one uses an improper prior

distribution. Thus although I agree with BW that the Bayesian can always avoid

the trap by using proper distributions, I also like to use improper prior dis-

tributions or merely finitely additive prior distributions when I think they

yield a simple and satisfactory approximation to my posterior distribution, and

do not accept (as BW seem to do) that there are any operationally meaningful

ill consequences to so using such distributions (even for all possible values

of Y in the Stein example). A general theory pertaining to the type of conse-

quences that arise in nonconglomerable situations has been formulated and

elegantly presented by Heath and Sudderth (HS) in Heath and Sudderth (1978)

and by Lane and Sudderth (1984), and as we shall see later all of the

examples purportedly against the likelihood principle, are in fact merely more

examples of the type of incoherence discussed by HS. (See HS example 5.2 for a

very simple example similar to that of Stein.) It is my opinion, however, that

the HS requirement for coherence, to the extent it goes beyond the de Finetti

form of coherence (which only requires avoidance of sure loss with a finite

number of gambles), is too restrictive, and at least in the special case of

the Monette-Fraser example, I will argue that the apparent ill consequences of

violating the HS condition for coherence cannot really be made operational.

The Stone example does not directly pertain to the likelihood

principle, and has been analysed by myself in Hill (1981) from a

finitely additive point of view. In addition to observing that a finitely

additive diffuse uniform distribution on the "length" of path yields the

standard confidence result, it was also pointed out that in order to obtain the

uniform distribution on the location of the treasure that Stone criticizes it
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is necessary to employ a diffuse finitely additive prior distribution which

gives odds of nine to one in favor of paths of length j+1 versus paths of

length j-1, for all j > 1, and such a prior distribution seems rather silly in

this example. Nonetheless, just as in the Stein example the de Finetti theory

does not rule out such prior distributions, and the question is once again

whether a serious case can be made against their use. It may be noted that the

posterior obtained with this prior is also incoherent in the sense of Heath and

Sudderth.

Fraser in his discussion of my Valencia article Hill (1981)

maintained that the Stone example also has implications with regard to

the likelihood principle, and gave the example reported by BW. The example as

initially presented did not seem appropriate to me, since it required that

first theta, the true path to the treasure, be selected as in Stone's example,

next that the observed path of the Stone experiment be given, and finally that

a randomization be performed that leaves one with the same likelihood function

as before. In this situation, where the second experiment consists of the

first experiment together with an irrelevant randomization, the likelihood

principle follows from just the sufficiency principle, and is barely worth

commenting on. However, the Fraser example can be modified so that this is

no longer the case, for example, one can imagine that a new experiment E* is

performed as follows: first a path z from the origin is selected according to

a probability distribution that depends upon theta, in such a way that z is

equally likely to be any of the four paths for which theta is a one block

extension or retraction of z, and we observe this z. Next, someone else who

somehow or other happens to know the true theta, unobservedly retracts or

extends z back (or forth) to the true theta (which therefore remains the true

parameter of the experiment), and from there does the experiment with the

Fraser likelihood function as presented by BW, with z = x(0). One then

observes in this last experiment a path X. The likelihood function for theta

based upon the data Z = z, X = z, in the experiment E*, is then identical with

the likelihood function derived from the Stone experiment with the same
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observed path z, and so with this modification the Fraser example does meet the

conditions for the likelihood principle to apply. If one adopts a Bayesian

point of view, then as BW argue, one has precisely the same apriori information

about theta no matter which experiment is performed, and it is certainly

reasonable to draw the same inference in each experiment. Suppose, however,

one imagines that it is meaningful to consider the case of no prior information

(whatever this means), so that Bayesian inference is not possible. It would be

interesting to know what the appropriate non-Bayesian inference about theta

would be under E* as opposed to the Stone experiment. Would, for example, a

non-Bayesian now treat theta as though it were equally likely to be any of the

four possible paths? Rather than calling into question the likelihood princi-

ple it seems to me that this example may raise some serious problems for non-

Bayesians.

Now let us turn to the new example by Monette and Fraser (MF).

This example does not seem to pertain directly to the likelihood principle,

since there is only one experiment under discussion. It does, like the other

examples, suggest that according to frequentist standards a certain improper,

or diffuse finitely additive, prior distribution is unsatisfactory, and BW,

as in the Stein example, argue that for proper prior distributions, and even

for the conventional improper prior distribution for something akin to a

scale parameter, there is no difficulty. Although again I agree with BW that

ordinarily one need only consider quite proper prior distributions, and also

that the particular improper or finitely additive distributions that are being

castigated may be of no special interest, I would nonetheless like to argue

that as yet very little has been demonstrated against the use of such prior

distributions. My argument would be much the same in all examples, but will

be presented here in connection with the MF example, which is the simplest.

What has been shown is that choice of an improper uniform prior distribution

(or a finitely additive diffuse prior distribution) for theta would lead to a

posterior distribution, such that if I were to bet in accord with it, I would

be a loser in the Heath-Sudderth sense (this is closely related to a lack of
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extended admissibility). Since I regard the finitely additive uniform distri-

bution as useful for approximations, and as having as much justification as any

other distribution (to be given full rights, as de Finetti says), and in any

case I don't think that it matters whether theta is akin to a scale parameter,

so that I cannot take refuge in the BW argument unless I dispense entirely

with both merely finitely additive distributions and improper priors, I am

loathe to give it up so easily. So suppose I fall into the trap and agree to

post odds in accord with the posterior distribution that is uniform over the

three possible values for theta, given x. Let us see to what extent MF can

take advantage of such foolishness as I am willing to exhibit. In order to

do so they must construct a real world version of their mathematical model. So

first of all they must somehow or other pick a theta, and then pick an x in

accord with their model. The Heath-Sudderth gambling scenario seems to be a

convenient and appropriate way of describing the operational consequences of

my potential incoherency (even for those who think that they don't gamble),

and if desired, can easily be translated into non-gambling terms. Thus suppose

that theta is picked from amongst the positive integers by the master of cere-

monies in any way he likes, and then X is selected according to the MF distri-

bution for X, given theta. After we are all given the value x that X takes

on, I then use the posterior distribution based upon the uniform prior distri-

bution for theta to determine the odds that I, as bookie, will give for the

various values of theta. Also, after observing x, MF are entitled to place

any finite number of bets concerning theta they wish, and finally theta is

revealed by the master of ceremonies and all bets are paid off. Suppose that

MF bet a dollar on the event that theta takes on the value δ ,(X), and let G

denote the final payoff from me to them. Given theta, there is at least

probability 2/3 that δ^X) will equal theta, and so the expectation of G,

given theta, is at least $1, for all possible theta, and I am incoherent in

the sense of Heath-Sudderth. However, to make the transaction operationally

meaningful it is necessary to specify precisely how X will be revealed, for
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example, that X will be expressed to the base 10 (or in any other specified

form whatsoever), and that a certain finite time limit is prescribed during

which the game is to be played. Now I think that all of us could come to

agreement that given the constraints of the world we live in, there is an

upper bound, say N, to the value of X that can be reported to us as data in

the prescribed form and in the prescribed time, for example, an N such that in

the present state of technology even the fastest computer could not display an

integer greater than N in the time allotted for the experiment. (To be even

more realistic, the same is true with regard to theta, but for the purpose of

the present argument we need not assume any constraint on the magnitude of

theta, and shall follow MF in assuming that the master of ceremonies can choose

any value whatsoever, and then can and does select an X in the way that MF

specify. Of course theta, like X, cannot actually be reported it if exceeds N,

but one might wish to consider cases where the master of ceremonies has extra-

ordinary powers, and is entrusted to announce who wins the gamble in situations

where X does not exceed N but 2 X does. This points out that there are in

fact a variety of ways to make the Heath-Sudderth scenario operationally mean-

ingful, and that our assumption that X cannot be reported if it exceeds some

known N, is merely the minimal real-world constraint. This gives the present

argument greater generality in that it may apply even when theta is a real-

world physical parameter for which there would be no known bounds. If a bound

on theta were available then of course the argument would apply all the more.

However, the point is that whether or not there is such a bound on theta, there

is necessarily a bound on the possible value of X that can be reported. If we

do take into account known bounds on possible theta, or on possible reported

values of theta, then this would lead us to proper prior distributions as in

BW. However, it is not necessary to introduce such considerations in the

present example since, as we shall soon see, the boundedness of the X that can

be reported already destroys the frequentistic argument.) Suppose then that

theta and X are selected by the master of ceremonies in accord with the MF

model, without any constraint upon the magnitude of either, and that N is a
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known upper bound for any X that can possibly be reported as data. We do not

assume that N is the least possible upper bound for a reportable X, but merely

that it is an upper bound. (It is, of course, desirable that N be not too much

larger than the least upper bound, but the argument does not depend upon this.)

Thus our experiment now consists in precisely the MF experiment, together with

the modest real world constraint that if X > N, then no value of X will be

reported (since it would be impossible to do so), and hence that any bets that

depend upon the value of X will be called off. In this situation the actual

gamble as to whether theta is 6-.(X) is called off whenever X > N, and we are

dealing with a conditional gamble in the sense of de Finetti (1974, Ch. 4 ) .

Consequently the payoff from me to MF is now as before if X is

actually reported, but all gambles are called off if X > N. (There is nothing

underhanded here with regard to the reduction to conditional gambles: in order

that transactions can occur, so that the scenario has operational meaning, it

is necessary that the bets are conditional bets, given that a value of X is

reported, and hence conditional upon the event that the X selected in the MF

experiment does not exceed N. If X > N then no X is reported and no gambles

can be made concerning whether theta = δi(X). Note also that it is not neces-

sary to assume that X must be reported if X < N, but merely that X cannot be

reported if X > N, and that X must be reported if it is possible to do so in

the fashion prescribed.) It is interesting now to see what becomes of the

frequentist argument that showed that the conditional expectation of my loss,

given theta, is at least $1, for all possible theta. I am still using the same

prior distribution as before, so that if I am actually given a value of X

(necessarily <_ N) then I post the same odds as before against the event that

theta = δ-j(x). If theta is sufficiently small so that X both can and must be

reported (hence necessarily theta < N/2), then the expectation of G, given such

a theta, is the same as before, at least $1. On the other hand, if theta > N/2,

then the only values of X that can possibly be reported are X = theta/2 or

(theta-l)/2, depending on whether theta is even or odd. Hence given a value

of theta > N/2, and given that the gamble is not called off, it is certain that
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theta is not equal to ό,(X), and so the conditional expectation of G, given

such a theta and that the gamble is not called off, is -$1, while the uncondi-

tional expectation of G, given such a theta, lies between -$.33 and $0.

Whether in gambling terms or in coverage probability terms, it is thus seen

that when a real-world constraint as to the value of X that can be reported is

incorporated into the MF example, then the example breaks down, and in fact if

a value of X is actually reported,then the yery same δ-j(X) that appeared so

desirable from the MF point of view, becomes impossible as the value of theta

when theta > N/2. (A variation of this scenario would require me also to post

odds on theta, given the information that X exceeds N. This would require care

in obtaining the posterior distribution for a finitely additive prior distribu-

tion, but in any event the 6.(X) are still not available, and the frequentistic

argument still breaks down.)

The above form of argument suggests why there need not be anything

wrong with using the finitely additive uniform distribution in connection with

experiments conducted by human beings, i.e., where the reportable observation

X, if not theta itself, must be bounded, and one can with a little thought

always choose a generous upper bound. More generally, when theta is not

chosen by any human, but is a parameter of the real world, then one may not be

able to argue for any upper bound for theta, but in my opinion neither will

there by any operationally meaningful scenario in which one who chooses a

finitely additive distribution can be shown to be in trouble by virtue of

frequentist properties. BW suggest using proper prior distributions for theta

as a way of avoiding the apparent frequentistic difficulties in the above

examples. However, if BW or Heath-Sudderth wish to use improper or merely

finitely additive prior distributions, and if they choose to avoid nonconglom-

erability and its frequentistic consequences, as in the various examples, then

it seems to me that they are in fact going to violate the likelihood principle,

since the particular improper or finitely additive distributions that they must

rule out in order to avoid nonconglomerability will depend upon the form of
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the experiment, just as the prior distributions that Box and Tiao recommend

depend upon the form of the experiment. (BW can avoid violating the likelihood

principle by either restricting themselves to proper prior distributions, or by

using improper prior distributions only when they provide an "adequate11 approx-

imation to the posterior distribution based upon some proper prior distribution.

But I think i t is too restrictive always to restrict oneself to proper prior

distributions, and although, as mentioned earl ier , I too ordinarily take the

approximation point of view, I don't think the notion of what is an adequate

approximation should depend upon frequentistic properties.) In the Stein

example and in the Heath-Sudderth example (5 .2 ) , where according to the model

(taken l i te ra l ly ) the parameter and data are not discrete and the set of theta

compatible with the data is not f i n i t e , the argument I have given above must

be modified, but I think that here too, when real-world constraints are

allowed for, the frequentistic argument wi l l again break down, and I hope that

my discussion of the MF example at least suggests some of the diff icult ies

involved in trying to make the frequentistic argument operational. In my

Valencia art icle I also suggested that as yet no serious argument for conglom-

erabil ity had ever been given (since that time Lane and Sudderth (1984) have

given such an argument, but I do not agree with their views concerning the

appropriate gambles with which to define coherency), and suggested also that

Stone's example had an implicit assumption of conglomerability for its castiga-

tion of the uniform prior. (Stone (1979) replied by asserting that Hi l l is like

a prisoner condemned to death by guillotine who rejoices that the guillotine

wil l be chosen from an inf ini te collection. I replied "Yes, Mervyn, but a l l your

guillotines are made of butter." At a deeper level this concerns the appro-

priate interpretation of conditional probability, whether in terms of gambles

that are called off i f the conditioning event does not occur, as in de Finetti

(1972, p. 81), or in the more usual way, but there is not space to go

into this here.) Sir Harold Jeffreys once crit icized conventional tests of

significance because they reject hypotheses that may be true on the basis of

data that have not occurred. Apparently some would also have us reject the
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use of improper prior distributions because of experiments that cannot be

performed.

Finally, let me mention an important real-world problem where

exactly such considerations as I have been discussing arise. Consider a

balanced one-way random effects analysis of variance model, with I rows and J

columns. In Hill (1980) I examined the consequences of drawing inference about

the ratio of the between to the within variance, τ, using as data only the

ratio of the mean square between to the mean square within. It was shown that

this can in fact be justified by a fully Bayesian analysis, and is appropriate

when the prior distribution of the two variance components is such that their

ratio is independent of the within variance, and the overall mean is given a

diffuse prior distribution. The problem then reduces to one of inference about a

simple location parameter, γ = ln(l+Jτ), based upon data γ = ln(MSB/MSW), and

with the distribution of γ-γ, given γ, being that of the logarithm of a random

variable having the F distribution with 1-1 and I(J-l) degrees of freedom.

The likelihood function for γ based upon the data γ is then the density of this

ln(F) distribution, translated so that the mode is at γ (and with degrees of

freedom reversed), except that the density must be truncated from below at 0

because γ is nonnegative (it is convenient and harmless to think of the likeli-

hood function as being defined for all γ, so that even if γ is negative, the

mode is at γ, and then to make the truncation from below at 0 stem from the

prior distribution.) If one uses the uniform prior distribution for γ, with

γ > 0, then one is in precisely the type of situation that the Stein, HS (5.2),

and MF examples, deal with. Although there is nothing magical or mandatory

about use of this particular prior distribution, and in fact there is usually

a great deal of prior information about the ratio of variance components in

such problems, so that I would recommend use of a proper prior distribution

for γ, at the same time, I think a great deal of insight can be obtained from

the improper uniform prior on γ, and do not think it should be automatically

ruled out merely because it may lead to bad frequentistic risk properties. As

I argue in Hill (1980), the posterior expectation based upon this improper prior
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yields, at least in some respects, a more plausible estimator for a multi-

variate mean (the realized random effects) than does the positive-part Stein

estimator. For example, the posterior expectation cannot shrink all the way

to the grand mean of the observations, since the weight given to the row means

y.
#
 decreases only to 2/(1+1) as the ratio of the between to within mean

square goes to 0, whereas of course the positive-part Stein estimator can give

zero weight to the row means, and this is not always sensible. The behavior

of the posterior expectation stems partly from the particular form of the

prior distribution for the variance components (especially the fact that the

ratio of the variance components is apriori independent of the within variance

component), and partly from the truncation of the posterior distribution of γ

from below at 0, neither of which do non-Bayesians incorporate into their

analysis. In my opinion due respect for the likelihood principle, and proper

allowance for these aspects of the problem, are far more important than any

frequentistic arguments against the use of improper prior distributions, while

at the same time, as BW would presumably agree, a proper prior distribution

for the variance components would ordinarily be reasonable, and give the best

of both worlds.

DISCUSSION OF THE SECOND EDITION BY PROFESSOR HILL

Since the publication of the first edition of the monograph by

Berger and Wolpert, I have written several articles pertaining to the validity

of the likelihood principle, and to its role in Bayesian data-analysis. I

believe that the example of Hill (1987a,b) clearly shows that the original

statement of the likelihood principle by Birnbaum in terms of an abstract con-

cept of evidence was faulty. The difficulty in the likelihood principle is

easily remedied, however, and this was done in my statement of the restricted

likelihood principle in those articles. In my formulation one speaks not of

the evidence in some undefined abstract sense, but rather only of the evidence

about the value of θ, and excludes from the discussion any assertion about how

θ might relate to other unknowns, whether hypotheses or parameters. Thus my



DISCUSSION BY HILL 174.1

example can be viewed as showing that two different experiments that yield

proportional likelihood functions for θ do not necessarily provide the same

evidence about θ, since we can learn, for example, that θ has a different

'color' in the two experiments. The color might be an important part of the

overall evidence about θ. Of course the color can be included in the parameter,

but the likelihood principle, as usually formulated, does not require one to do

so. It is hoped that once this point is understood, others will, like myself,

become even stronger supporters of the essential part of the likelihood

principle.

The basic point of my example is related to fundamental questions

that arise in theories of causality, for example, concerning determinism and

the possibility of independence in the real world. Such questions arise in

critical discussions of quantum mechanics and relativity theory, for example,

in connection with Bell's inequality, as well as in philosophy.

In Hill (1985-86, p. 223) I have given an account of how the like-

lihood principle must be further modified to deal with Bayesian data-analysis,

where through exploration of the data, one may modify the original model. The

same article, p. 202f, argues that even apart from inadmissibility, incoherence,

and the failure to utilize available information, the frequentist approach

breaks down completely in connection with such data-analysis, since all fre-

quentistic assertions must be conditional not only upon the diagnostics used,

but their order, and even the thoughts that cross one's mind. Such conditional

probabilities are plainly both unknown and unknowable. Finally, Hill (1988)

gives a very short, and partly new, proof of the stopping rule principle, i.e.,

that the stopping rule is irrelevant for inferential and decision-making pur-

poses, or that "sequential analysis is a hoax," as concluded by Anscombe (1963,

p. 381). Here the proof does not depend upon the likelihood principle, or

even the restricted likelihood principle. Instead, it is shown that on a post-

data basis, i.e., given the realized data, sequential analysts purport to

extract information over and above that following from the corresponding fixed

sample size experiment, from a logically certain event. In this article the
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important distinction between the pre-data and post-data considerations is

emphasized. Once one is given the data, the primary aim must be to make

intelligent and rational decisions, for which the Bayesian approach seems

quite well suited. Of course sequential design need not necessarily be a hoax,

but it appears that not very much is known about this potentially important

subject, perhaps because of the confusion between pre-data and post-data consid-

erations, as discussed in Hill (1988).

The likelihood principle is often mistakenly assumed to be largely

equivalent to the Bayesian approach. The likelihood principle, as proposed by

Birnbaum, in terms of an abstract and empty concept of evidence, was in fact

the last gasp (intellectually speaking) of the theory of classical statistics,

with its naive pretence at objectivity. Indeed, Birnbaum (1962, p. 277) quotes

Jimmie Savage as follows. "Rejecting both necessary and personalistic views of

probability left statisticians no choice but to work as best they could with

frequentist views... The frequentist is required, therefore, to seek a concept

of evidence, and of reaction to evidence, different from that of the primitive,

or natural, concept that is tantamount to application of Bayes1 theorem."

"Statistical theory has been dominated by the problem thus created,

and its most profound and ingenious efforts have gone into the search for new

meanings for the concepts of inductive inference and inductive behavior.

Other parts of this lecture will at least suggest concretely how these efforts

have failed, or come to a stalemate. For the moment, suffice it to say that a

problem which after so many years still resists solution is suspect of being ill

formulated, especially since this is a problem of conceptualization, not a

technical mathematical problem like Fermat's last theorem or the four-color

problem."

Birnbaum then states that "The present paper is concerned primarily

with approaches to informative inference which do not depend upon the Bayesian

principle of inverse probability." It would therefore appear that Birnbaum

regarded his approach to evidence as meeting the objections that Savage and

others had raised. However, just as the Michelson-Morely experiment spelt the
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death knell for classical physics (which was at least a highly successful and

useful subject), one must wonder what is left of classical statistics, without

even Birnbaum's likelihood principle to sustain it. All that appears to be

left is the restricted likelihood principle, which is implied by the Bayesian

approach, and is somewhat more general than the Bayesian approach, since it

allows for versions of Bayesian data analysis such as in Hill (1988). I know

of no way to demonstrate even the restricted likelihood principle, however,

other than through the Bayesian approach.

I think that nowadays it will be readily understood that the pre-

tence at objectivity in classical statistics was equivalent to taking a partic-

ular subjectivistic Bayesian view, that based upon diffuse prior distributions,

and by fiat declaring that this constitutes objectivity. Such prior distribu-

tions play an important role in Bayesian statistics, via the stable estimation

argument of Jimmie Savage, but do not acquire any magical status in the Bayes-

ian theory.

The nature of "objectivity" was never seriously discussed in class-

ical statistics, despite the fact that this was and is a notoriously difficult

question in philosophy. Even in statistics, numerous examples exist showing

that this pretence cannot be made, without leading to absurdities. There are

many examples in which the realized likelihood function is nearly flat, no

matter what the pre-data expected information may have been. This occurs, for

example, in inference about variance components when the classical unbiased

estimator of the between variance component is negative, as in Hill (1965,

1967). A more sophisticated example of the need for a subjective view occurs

in deciding whether a particular observation is an "outlier," as in Hill (1974b,

Section 4) and Hill (1988, Section 3). What the so-called objectivists do, as

Jack Good says, is to SUTC (sweep the subjective aspects under the carpet).

Probability and statistics, as related to the real world, are fundamentally

subjective or personalistic. In certain situations, however, one may obtain

practical objectivity by means of a consensus as to appropriate prior distri-

butions and models. See Hill (1985-86, 1988). Also, sometimes certain
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"objectivistic" methods, such as the fiducial approach, can be justified

Bayesianly, as for example with A(n) in Bayesian nonparametric statistics,

Hill (1987c). Finally, by a delicious irony, it also turns out that the few

important objective criteria that frequentists have recommended, such as

admissibility, extended admissibility, etc., lead inevitably back to the

Bayesian approach.

The distinguished philosopher and psychologist, William James

(1896, p. 97) puts it quite well: "Objective evidence and certitude are doubt-

less yery fine ideals to play with, but where on this moonlit and dream-visited

planet are they to be found? I am, therefore, myself a complete empiricist so

far as my theory of human knowledge goes. I live, to be sure, by the practical

faith that we must go on experiencing and thinking over our experience, for

only thus can our opinions grow more true; but to hold any one of them - I

absolutely do not care which - as if it never could be reinterpretable or

corrigible, I believe to be a tremendously mistaken attitude, and I think that

the whole history of philosophy will bear me out."

James's eloquent statement can serve as a preamble to the theory

and practice of Bayesian data analysis and decision-making, which is a synthe-

sis of the empiricism-pragmatism of John Locke, David Hume, Charles Peirce,

and William James, with the rationalism of Plato, Descartes, Kant, and others,

and to which I believe that the next century will be devoted.




