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In [4], Ladner, Lynch and Selman defined a non-deterministic polynomial
time bounded version of many-one reducibility, denoted by <£fp, as follows:

For any sets A and B, we say A <£τ B if and only if there is a non-
deterministic Turing transducer, M, that runs in polynomial time such
that, x G A just in case there is a y, computed by M on input x, with
y e B.

However, their definition does not completely capture the essence of a many-
one reducibility due to the fact that, given some x 6 A, there only needs to be
some y output by M such that y € B. It may be the case that all computation
branches of M halt on input x, but only one of the output values is actually in
B. Seen in this light, their reducibility is obviously a candidate for a polynomial
time bounded singleton reducibility rather than a many-one reducibility. This
intuitive idea is borne out by the fact that, if we define <s

p, a polynomial time
bounded version of singleton reducibility (see [7] for details), then <^PΞ<S

P.
We claim that gamma reducibility is the correct notion of a non-deterministic
polynomial time bounded many-one reducibility and study its properties.

Gamma reducibility, <7, was first defined by Adleman and Manders [1] in
1977, and was later studied by Long in [5] and [6]. Its relevance to the world of
time bounded computations comes, in part, from the fact that P = λίP =ϊ [<7

= <,3 =*• P = NT Π co-λίP and that if A is an jVP-complete set (with respect
to <7), then A € λfp Π co-λίP & λfP = co-λfP.

DEFINITION 1 (Adelman and Manders [1]). A <Ί B if there is a non-
deterministic polynomial time bounded transducer, M, such that if

G(M) = {{x, y) I On input X, M outputs y on some computation branch}

then:

(I) (Vx)(3y)[(x,y)eG(M)]

(II) (Vx)(Vy)[(x,y) E G(M) ^(xeA&y

Trivially, A <Ί B & 'A <Ί ~B.
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We note without proof that (Dτ, <7) is an upper semilattice with A®B
as the least upper bound of A and B, that the λίP 7-degrees form an ideal of
(^75 <-y) and that the zero degree, 07, is exactly λίP Π co-λfP.

DEFINITION 2.
i) For any two sets, A and £?, we say that A and B differ finitely, A =* B, if

and only i f A - B U B - A i s finite,
ii) A class of sets C is closed under finite variations (c.f.v.) if, for A € C and

B=* A, we have B£C.
iii) A class of recursive sets, C, is recursively presentable (r.p.) if C is empty or

there exists a recursive set Z7, called the universal set for C, such that

C = {Ue I e G N } where [7e = {x | (e, z) € [/}.

Note that if C is any recursively presentable class of sets, say C = {Aj}i6N,
then for each z, A, <^ί7 via λx[(z,x}], where U is the universal set for C. Thus
Λi <Ύ U.

It is simple to show that if A is a recursive set, then degΊ(A) contains only
recursive sets, and that the recursive 7-degrees form an ideal of the γ-degrees
and are c.f.v. and r.p.

Let / be a strictly increasing function where /(O) ^ 0, and define fn

by /°(m) = m and /n+1(m) = /(/n(m)) The (n + l)ih f-interval is // =
{z I /n(0) < |x| < /n+1(0)}> and we note that UnKeN partitions {0,1}*.
Furthermore, if A is recursive, then let ΓA — |J{/f£ | n £ A}.

Ambos-Spies defines a function as polynomially honest if / is recursive and
there is some polynomial, p, such that for all x, we can compute f ( x ) in less
than p(/(x)) steps. This is clearly not equivalent to Homer's original definition
of polynomial honesty. To avoid confusion, we will refer to a function satisfying
Ambos-Spies's definition as polynomially honest II. Clearly, if / is polynomially

honest II and A£P (so A is recursive), then ΓA£P. A function, #, dominates
f if (Vn)[/(n) < g(n)]. Note that if / is recursive, then there is some strictly
increasing polynomially honest II function, </, that dominates / (see [2]).

A recursive set A&P is super sparse II if there is a strictly increasing
polynomially honest II function / such that A C Zf = {0 ̂ n) | n E N} and

"Q f(n) £ A?" can be answered in less than f(n + 1) steps. As above, we call this
super sparse II to distinguish it from Hartmanis's well-known notion of super
sparseness.

Finally, let
A^={x\(n,x)eA}

A^n>= {(m,x) I m < n & (m,x) G A}
kA= {kx I x € A}

kA + i= {kx + i I x e A}

LEMMA 3 (Ambos-Spies [2]). There exists a super sparse II set in EXP-
TIME.

PROOF. Let /(O) = 1 and /(n + 1) = 2/(n). We will construct A as a subset
of {0^2n+1) I n € N}.
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Let {-R;}j€N be an enumeration of the sets in P. Given some n, perform
2n steps of the following algorithm:

i) Find the largest m < n such that /(2m + 1) < n.
ii) If /(2m + 1) < n then On £ A. Otherwise;

iii) Set On G A & On £ Rk where m = (i, /).

If the computation does not terminate in 2n steps, then On ^ A.
It is clear that A G EXPTIME. Suppose, if possible, that A G P, then there

is some k G N such that A = Rk.
Now, consider n such that there is some m where /(2m + 1) = n. Clearly,

since there is a polynomial, p, such that /(n + 1) can be computed in less than
p(/(n)) steps, then /(2m -f 1) can be computed in less than p(/(2m)) steps.
Thus, for sufficiently large n, /(2m + 1) can be computed in less than 2n steps.

So, for large n we will have that On G A <& On £ Rk where m = (fc, I) and
/(2m + 1) = n.

Therefore, given k we will have, for sufficiently large /:

0 / (2<M>+D € A ^ 0^2<^>+1> i Rk

Thus A^Rk and so A & P.
Finally we note that (Vn)[ 2n < /(n + 1) ], so "0/(n) G A?" can be

answered in less than /(n + 1) steps.
Thus A is super sparse II. D

THE JOIN LEMMA (Ambos-Spies [2]). Let CQ and C\ be any recursive
sets and Co, C\ be r.p. and c.f.v. classes such that CQ U C\ &Co and C\ &C\.
Then there is a recursive function, g^, such that if g is a strictly increasing
function that dominates go, and A is an infinite coinfinite recursive set, then

THE DENSITY THEOREM. Let a and b be the j-degrees of recursive sets
such that b < a. Then there is a recursive ̂ -degree, d such that b < d < a.

PROOF. Fix sets A = {2x \ x G A0} and B = {2z + 1 | x G BQ} for some
AQ G a and BQ G b. Clearly A and B are recursive and 7-equivalent to AQ and
#o respectively.

Now suppose, if possible, that A U B G b, i.e., A U B <Ί B. Then there is
some non-deterministic polynomial time bounded transducer, M, such that:

(I) (Vx)(3y)[(x,y)GC?(M)]

(II) (V*)(Vy)[ (x, y) G G(M) = M * G A U £ ^ y G B ] ]

Note that x G A U B & (x = 2m&x G A) V (x = 2m + l & x G B).
Define a non-deterministic machine, TV, such_that on input x, N checks if

x = 2m + 1. If so then N outputs some fixed 6 G B, otherwise N simulates M
on input x and outputs M(x).

Clearly, as M is polynomial time bounded, then N is too, and we have

Now, suppose (x,y) G G(N), then
i) x = 2m + 1. Then y = b and x g A as A C 2N.
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Thus x £ A & y g B.
ii) x = 2m. Then if x G A we must have y 6 B, and if x £ A then as

x <j£ B C 2N + 1, we must have y g B.

Thus x G A & y G B, i.e., A <Ί B via TV. This contradicts the fact that
A <Ί B, so we must have A U B ^ b.

Also, since B ^ a, then we can apply the Join Lemma with CO = A, C\ = B,
Co = b and Ci = a. This will give the function #0? so consider some strictly
increasing polynomially honest II function, g, that dominates </o Clearly 2N is
infinite, coinfinite and recursive, so the Join Lemma gives that:

( A Π l f J U B i b U a

Now, let D = ( A Π I 2

9 » ) ( J B .
If B <Ί D <Ί A, then we have B <Ί D <Ί A as the Join Lemma ensures

that D £a, b. Thus we have b < d < a.

Claim. B <Ί (A Π J/N) U B <Ί A.

Proof. We show that B <£ (A Π 7/N) U B <£ A, which will prove the claim.
Pick some α £ 2N Π I?N+l.

{ x if x = 2m + 1 some m

a if x = 2m some m
Clearly / is polynomial time computable. We consider three cases:

i) xeB=>x = 2m + l=ϊ f ( x ) =x=ϊ f ( x ) € B

ii) x <£ B & x = 2m + 1 => f(x) =x = 2m + l
=ϊ f(x) ΪB b f(x) <Ξ 2N + 1 =* /(x)

^/Or

iii) x$B & z = 2 m = > /(x) G 2N & /(x) € //N+1

=»/(*){** & /(x)^//N^/(x

Thus, 5 <£ (A Π //N) U 5 via /.
Further, pick some b £ A Θ B and define

{
2x if x = 2m & x 6 J?N

6 if x = 2m & x G -Gw+i

2x + 1 if x = 2m + 1

We consider three cases:
i) x G 2N + 1

So g ( x ) = 2x + 1, and so x G B <3> ^(x) G A®B. Since A C 2N then
x G -B <& x G (A Π //N) U 5. Thus x G (A Π //N) U B & g ( x ) G AΘB.

ii) x G 2N Π J?N

So ^(x) = 2x and thus x G A <=> ^f(x) G A®B. Again, as B C 2N + 1, then
for x G 2N Π //N, we have x G A & x G (A Π //N) U B.
So x G (A Π J?N) U B <ίΦ ^(x) G A®B.



294 A. SILVER

iii) x E 2N & x G ΛN+I
So <?(*) = 6. Clearly x ϊ (A Π //N) U £ and 0(z)
Thus, x 6 (A Π 7/N) U £ <& #(z) G AΘ£ follows immediately.

Thus, (A Π //N) U B <* A@B via #. Since b < a, then A Ξ£ A®B.
Thus (A Π J/N) (JB <Ί A and this completes the proof. D

We can extend the proof of the Density Theorem to show that between
any two distinct comparable recursive 7-degrees there exist two incomparable
7-degrees whose supremum is the higher degree. This result can then be further
extended to give infinitely many incomparable degrees whose supremum is the
higher one. Together with repeated applications of the Density Theorem this
shows that, given recursive 7-degrees b < a, there are infinitely many distinct
comparable and incomparable 7-degrees between them.

COMBINED SPLITTING AND DENSITY THEOREM. Given any two recursive
^-degrees a and b with b < a, there exist recursive ^-degrees do and di such
that:

i) b < dj < a for i = 0,1

ii) a is the least upper bound of d0 and di i.e., a = d0Θdι.

PROOF. As in the Density Theorem, fix A and B to be in a and b respec-
tively, where A C 2N and B C 2N + 1. As before, A U B & b and B & a, so apply
the Join Lemma with Co = A, C\ = B, Co = b and C\ = a.

We will obtain a recursive function, #0? so let g be any strictly increasing
polynomially honest II function that dominates </o

Let DQ = (A Π //N) U B and d0 = degΊ(D0)
DI = (A Π J?N+1) U B and di = degΊ(Dι).

Proof of i). By a similar argument to the Density Theorem we have that
B <Ί Di <Ί A for i — 0,1. By the Join Lemma, D{ ^a, b, so b < do, di < a.

Proof of ii). By our choice of A and 5, A U B =τ A®B, so for any set £),

(AΓ(D)(JB=Ί(AΓ}D)®B.

Thus we have that £>0 =Ί (A Π #N)Θ£ and DI =Ύ (A Π J?N+1)ΘB.
We need to show that [(A Π I/N)Φ£]Θ[(A Π l?N+l)ΘB] =ΊA(JB.
Pick some αg A(JB. Define

(
α if x = 2m & ro = 2n & n 6 /2iι+1

α if x = 2m + 1 & m = 2n & n G /&

I 111 I otherwise

Clearly / is polynomial time computable as //N, J/N+1 € 7?, and by definition,
DQ&DI <*A(JB via /. Similarly, we can find a function to witness the reverse
reduction and thus D0®£>1 =7 A(JB. However, A(JB =Ί A@B by our choice of
A and B and since b < a then we have A®B =Ί A. Thus we have D0®Dι =Ύ A,
i.e., d0θdι = a. D
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COROLLARY 7. Given any two recursive ^-degrees a and b where b < a,
and some n 6 N, there exist n + 1 pairwise incomparable recursive 7-degrees d,
(for 0 < i < n) such that:

i) (V* < n)[ b < dt < a ],
ii) a is the least upper bound of the d, .

PROOF. Pick some n £ N. Follow the proof of Theorem 6, and define for
all t < n the set A = (A Π ίfN+i) U J3.

Now, pick α ^ 2N Π ίfN+j where j = (i 4-1) mod n. Define

i z if x = 2m + 1 some m

.
α if x = 2m some m

Clearly, fi is polynomial time bounded and, by a similar proof to before, we can
see that (Vx)[ x € B & ft(x) <Ξ (ΛnίfN + )UB ]. Thus B <Ί Di via /;. Now,
pick 6 g AΘ£. Further define

{
2x + 1 if x = 2m + 1 some m

2x Ίί x = 2m some m and x £ ίfN+.

6 if x = 2m some m and x ^ ίίN+.

Again, gi is polynomial time bounded as ίfN+l € 7^. Further, (A Π ίfN+ ) U
5 <m ̂ θ5 via '̂ Thus, B <7 .D, <7 A&B so, as before, ^ <7 Di <Ί A.
Now, by adapting the proof of Theorem 6 in the obvious way, we see that A =7

DoθDiθ ••• Φ-Dn
So, given any n € N, there exist n + 1 incomparable recursive 7-degrees

satisfying Theorem 6. D

It is immediate from the Density Theorem that minimal γ-degrees do not
exist, and so we turn our attention to the question of minimal pairs of 7-degrees.
We first show that minimal pairs do exist, and then show that every non-zero
7-degree below a super sparse II set is half of a minimal pair of 7-degrees.

THEOREM 8. If A is super sparse II, then the 7-degrees of A and A form a
minimal pair of ^-degrees.

PROOF. Let A be a super sparse II set via the function /, and suppose that
B <Ί A via Meo and B <Ί A via Meι. Thus:

(Vz)(Vy)(W)[[ (x, y) € G(Meo) & {x, z) e G(Mtl) ] =* y + z } [*]

To test membership of -B, use the following algorithm:

i) On input x, compute y such that (x,y) G G(Meo).
ii) If y ̂  0/(n) for any n € N then y $ A and so x £ B. Halt.

Note that to test if "y £ Z/T\ we know that Meo is non-deterministic
polynomial time bounded, so if (x,y) € G(Mβo), then |y| < peo(M) Thus,
/(n) < peo(N) and, since / is strictly increasing we have n < /(n). So to

check if y = 0/(n) requires calculating f ( k ) for 0 < k < f(n) < peo(\x\)'
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Thus, we must make a maximum of peo(N) calculations. Now, / is poly-
nomially honest II, so /(fc) can be calculated in less than r(/(fc)) steps, for
some polynomial r.
Since f ( k } < /(n) < peo(N)> ^en f(k) can be calculated in less than
Φeo(N)) steps.
Thus, testing if "y ^ Z/?" can be performed in less than peo(N)'Kpe0(N))
steps.

iii) Otherwise compute z such that (x,z) G G(Meι).
iv) If z ^ 0/(m) for any m G N then z g A and so x G B. Halt. As in step ii),

this can be performed in polynomial time,
v) So now we know that y = 0 ̂ n) and z = 0^m^. By [*], we know that n ̂  m.

a) Case 1. n < m.
Now x€B&y£A<& 0^n^ G A. Since A is super sparse II then
"0/(n) £ A?" can be answered in less than f(n-\-1) steps. / is strictly
increasing and n < m, so this can be done in less than /(m) = \z\
steps. Now Meι is polynomial time bounded, so for (x,z) G G(Mβl)
we must have \z\ < 7>eι(|#|) Thus, "x G BΊ" can be answered in less
than Peι(\x\) steps.

b) Case 2. m < n.
Now, x^B^-z^A^ Qf(m) G A. As above, since A is super
sparse II and m < n, then "0 ̂ m) £ A?" _can be answered in less than
/(n) = |y| < peo(|x|) steps. Thus "x G jB?" can be answered in less
than peo(|x|) steps, so "x G -B?" can too.

Clearly, steps i) and iii) can be performed in non-deterministic polynomial
time, and as shown, the other steps can be performed in deterministic polynomial
time. Thus B£λίP._Now B <Ί A & ~B <Ί A, so by following the above
analysis, we see that B G AfP too.

Thus B G λίP Π co-λίP = 07. D

COROLLARY 9. If A and A form a minimal pair, then for any B such that
07 <7 B <7 A, we have that B and B form a minimal pair in the ^-degrees.
Thus, if A is super sparse II and B <Ί A, then B and B form a minimal pair.

PROOF. Let A and ~A be minimal and B <Ί A for some B gλfP Π co-ΛΛP.
Suppose C <Ί B and C <7 B. Then as <7 is transitive, we have that

C <7 A and C <7 A. Since A and A are minimal, then C G 07.
Thus degΊ(B) and degΊ(B) are a minimal pair. G

Finally, we show that VΊ is not a lattice. This is achieved by showing that
exact pairs of 7-degrees exist. Corollaries to this result will also show that every
non-zero 7-degree is one half of a minimal pair and one half of an exact pair.

THEOREM 10. Let C be a recursively presentable class of recursive sets and
let B be a recursive set. Then there is a recursive set A such that:

i) AΪC
ii) (Vn)[ A^ =* B(n^ }

Hi) (V£>)[[ D <7 A & D <7 B ] =* (3n)[ D <Ί
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PROOF. For any set X and number n, we define X\n = {x \ \χ\ < n & x e
X}. Furthermore, for the purposes of clarity, we will use N to denote {0, 1}*, so
that we have:

Given C and 5, we construct A in stages so that, at stage s+1 of the construction,
we only add strings of length s to A. Thus, by the end of stage s + 1 we will have
completely determined A\s. The construction will be effective, thus ensuring
that A is recursive.

In order to satisfy clause i), we will attempt to satisfy, for all e, the require-
ments:

R2e : A φ [7<e>

where U is a universal set for C. This will ensure that

We assume a recursive enumeration, {Mj,7Vi}j, of pairs of non-deterministic
polynomial time bounded Turing transducers where M, and TV, are time bounded
by the polynomial p,(n). Now, if we have some set C such that C <Ί A via M,
and C <Ί B via Ni then C = Mt(A) = Ni(B). Thus, in order to satisfy
clause iii), it is sufficient to ensure that we satisfy, for all e, the requirements:

Λ2e+ι : Me(A) = Ne(B) => Ne(B) <7 B<*e>

We will ensure that the construction used to meet these two requirements also
satisfies clause ii).

Strategy.
We say that requirement Rn has a higher priority than requirement Rm if

n < 77i. The action taken at stage s + 1 of the construction will be designed to
satisfy the highest priority requirement, Rn for n < 2s + 1, which has not yet
been satisfied at some previous stage and which can be satisfied by appropriately
determining membership of A for strings of length s.

We say that R^e is satisfied at stage s + I if A\s φ U^\s. Recall that A\s
is completely determined by the end of stage 3 + 1. If Rie is satisfied for every
e, then clause i) will be satisfied.

If Rϊe is not satisfied at stage 5 + 1, then we can satisfy it by setting
A(x) — 1 — U^e\x) for some string x of length s. Clearly, if R^e is satisfied at
stage 5 + 1, then it will remain so at all later stages.

Note that clause ii) requires that A^ =* B^n\ so we must ensure that our
action to satisfy R^e does not cause this to fail. We do this by insisting that any
string x of length s that is added to A to satisfy R^e does not come from N(-e).
Then only finitely many strings z can be added to A(n) to make A^ φ jB(n).
This will ensure that clause ii) is satisfied.

We say that R^e requires attention at stage s + 1 if A\s = U^\s (so R^e is
not yet satisfied) and there is some string x £ N(-e) such that \x\ = s. In this

case we will be able to satisfy JZ2e by setting A(x) = 1 - U^e\x).
In order to satisfy R ϊe+i , we will try to construct A such that Me(A) φ

Ne(B). We will show that if we fail to do this then Ne(B) <7 £
(-e) and so the

requirement will be satisfied anyway.
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If (3x)[ \Me(x)\ < s & A(Me(x)) φ B(Ne(x)) } then #2e+ι is already
satisfied. Otherwise we say that R2e+ι requires attention via x at stage s + 1 if
(3*)[ \Me(x)\=s & M e(z)£N^ e ) ].

The problem with this is that to check the above statement requires per-
forming an unbounded search for an appropriate string x. This will cause the
construction to be ineffective making A non- recursive. We can avoid this prob-
lem by bounding the search by some time bound, tf(n), for A. In this case then
Rie+ι will require attention via x at stage s + 1 if

(3x)[ |x| < t(s) & |M«(x)| = s & Me(x) £ N(ίe) ] [*]

If this holds then, for all strings y of length s, we can set:

( B(y) i fy^Me(x)

l-B(Ne(x)) i f y = Me(x)

Then A(Me(x)) φ B(Ne(x)) so we have Me(A) φ Ne(B). Thus R2e+ι is satis-
fied.

We consider two possible cases:

1) Me(A) φ Ne(B).
In this case Rie+\ will eventually require attention as we will find some x
to witness this difference. Since there are only finitely many requirements
of a higher priority and we will satisfy one at every stage, then J?2e+i will
eventually be satisfied. Clearly, once satisfied R^e+i will never again require
attention and will remain satisfied forever.

2) Now there are two possible reasons why R^e+i may not require attention
at stage 5 + 1. Firstly, R^+i may already be satisfied, in which case the
above holds, or secondly there is no x to act as witness. In this case the
search will be unsuccessful at every stage, and so there is some stage SQ
beyond which J?2e+ 1 will never require attention.

Thus (Vθ > θoH3x)[ |*| < t(s) & IMeOOl = * & Me(x) <£ N(^e) ]

i.e., (Vs > θ0)(Vx)[ |x| < t(s) =Φ [ \Me(x)\ φ s V Me(x) € N (^e) ]].

So, if this is true, then we need to show that there is a non- deterministic
polynomial time bounded Turing transducer T such that Me(A) <7 B(-e}

via T. Pick some y0 € #(-e) and some t/i £ B(^e\ We construct T as
follows; on input x, compute Me(x). We consider three cases:

ί) |Afe(x)| < SQ.

Now, A I SQ is finite and fixed by this stage, so information about it
can be stored on one of T's worktapes and can be queried in polyno-
mial time. Thus A(Me(x)) can be computed in polynomial time. If
Me(x) £ A then T outputs y0, and if Me(x) £ A then T outputs y\.
Then x G Me(A)& T(x) = y0

<£> T(x)

ϋ) |Afe(a?)| > SQ and Me(x)
We are assuming that (Vn)[ A^ =* B^ ], so by careful choice of SQ
we can ensure that for strings of length > SQ we have A(-e) = B(-e\
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Now, A^e\Me(x)) = S<ίe>(Me(:r)), so we will have A(Me(x)) =
B^e\Me(x)). Thus, in this case, T outputs Mt(x).
Then x <Ξ Me(A)<& T(x) = Me(x)

<*• T(x) €

iii) \Me(x)\ > SQ and Af.(x)
Since ^2e+i does not require attention at stage s = \Me(x)\ then we
have from [*] that
(Vy)[ |Me(y)| = s =» [ Me(y) € N<*e> V |y| > t(a) ]]
In particular, since Me(x)^N (-e ) and |Me(x)| = s we have |x| >
t(s) = t(\Me(x)\). Now, Me(z) can be computed in less than pe(H)
steps, and A(Me(x)) can be computed in less than t(\Me(x)\) = t(s) <
\x\ steps, so A(Me(x}) can be computed in non-deterministic polyno-
mial time. Now, if Me(x)£A then T outputs y0 and if
then T outputs y\.
Then x £ Me(A)& T(x] = yQ

& T(x]

It is clear that, on input x, T always outputs some string y, so:

(Vx)(3y)[ {x ,y )€G(Γ)]

Furthermore, we have shown that:

(Vx)(Vy)[ (x,y) € G(T) =Φ [ x € M.(Λ) ̂  y € J5<^) ]]

Finally, since T was constructed to run in non- deterministic polynomial time,
then Ne(B) = Me(A) <Ί B

(^ via T as required.
Thus ί?2e-f i is satisfied in both cases.
We will construct the time bounds for A as we proceed through the con-

struction. At any given stage, let the variable count record the total number
of steps made during the whole construction so far. The time bounds will be
defined in terms of count, where tt(s) will bound i?2e+i in its search at stage s.
Then t, the final time bound for A will be defined by t(n) = Ί%$lte(n).

The Construction.
Do nothing at stage 0.
Stage s + 1.

1) For all e > s + I let te(s) := count.
2) for n := s downto 0

begin
We need to ascertain whether or not Rn requires attention at this stage
and if so, what action it requires. Note that we do not perform this action
yet, we are merely checking which requirements require attention. In the
step 3) we will go back and take action to satisfy the requirement of highest
priority that was found in this step.

i) n = 2e.
If Rn is not already satisfied then we note that Rn requires attention
at stage s + 1 and that it wants us to set, for all strings y of length s:
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( B(y) if y € N(se)

Let tn(s) := count.
ii) n = 2e + 1.

Check if .Rn is already satisfied, i.e.:
(3x)[ |x| < t2e+2(s - 1) & |Me(x)| < s
if not then check if
(3x)[ |x| < t2e+2(s) & |Me(x)| = « & Me(x) £ N(ίe) ]
If so, then note that Rn requires attention at stage s + 1 and that it
wants us to set, for the least string y that satisfies the above :-

ί B(y) i fy^Me(x)
A(y) = {

( 1 - B(Ne(x)) if y = Me(x)
Let tn(s) := count.

end
3) Act on the requirement of highest priority (assuming that there is one) as

decided in step 2).

End of stage 6 + 1.

It is clear that if Rn is satisfied at stage s then it remains satisfied at all later
stages. Also, at every stage we satisfy the requirement of highest priority that
requires attention (assuming that there is one). Thus, every requirement that
requires attention will eventually be satisfied as there are only a finite number of
requirements of higher priority that need to be satisfied first. It is clear from the
construction that A is built so as to meet Rn for all n. Thus the construction
works. D

COROLLARY 11. Let b and c be recursive j-degrees such that c < b. Then
there exists a recursive 7-degree a > c such that c is the inGmum of a and b.

Thus, by setting c = 07 we have that every non-zero recursive 7-degree is
half of a minimal pair.

PROOF. Pick some B € b and C€c. Define B by

!

β(x) if |x| < n

C(x) if |x| > n

Clearly B is recursive as u|x| < n" is a recursive test and B and C are recursive
sets.

( 2x if |x| < n
Trivially we have that B <* BΘC via θ((n,x)) = <

[ 2x + 1 if \x\ > n

f (|m|,m) if x = 2m

(0, m) if x = 2m + 1

Thus B =ΊB®C and so B € b. Furthermore (Vn)[ B^ =* C ] and so we
have (Vn)[ £(^n) =7 B^ =Ί C }.
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Now, set C = {D I D <Ί C] and apply Theorem 10 with this B. This gives
a recursive set A. By the theorem (Vn)[ A^ =* B^ } so (Vn)[ C =Ί B^ =Ί

AM <Ί A}. Furthermore, A &C by the theorem so C <Ί A.

Finally let D <Ί A and D <Ί B. By the theorem (Ξn)[ D <Ί B
(^ } so

D <Ί C as (Vn)[ C =7 £<^n> ]. Thus a = degΊ(A) has the desired properties.D

DEFINITION 12.

i) A sequence, {cj}i€N, of 7-degrees is ascending if (Vn)[ cn < cn+ι ] and
(Vn)(3m)[ cn < cm ].

ii) A sequence, {ci}t.€N, of 7-degrees is recursive if there is a recursive set, (7,
such that cn = degΊ(CM).

iii) 7-degrees a and b are an exact pair for {cJ.€N if (Vn)[ cn < b,c ] and
(Vd)[ d<b,c^(Ξn)[ d < c n ]].

It is clear from the Density Theorem that recursive ascending sequences
of 7-degrees exist between any two comparable recursive 7-degrees. The next
lemma will enable us to show that any upper bound for a recursive ascending
sequence of 7-degrees is half of an exact pair for that sequence.

LEMMA 13 (Ambos-Spies [2]). Let a and b be recursive 7-degrees. Then
the following are equivalent:

i) a and b have no inβmum.

ii) There is an ascending sequence of ^-degrees for which a,b is an exact pair,

iii) There is a recursive ascending sequence of j-degrees for which a,b is an
exact pair.

PROOF. Clearly iii)=>ii)=^i), so it remains to show that i)
Assume a and b are recursive 7-degrees without infimum and let C be

defined as C = {D \ degΊ(D) < a & dtgΊ(D) < b}. It is obvious that C is
recursively presentable, so let U be a universal set for C and let Cn = Z7(-n) and
cn = degΊ(Cn). The sequence {c,}i€N is obviously recursive and (Vn)[ cn <
Cn+i < a, b ].

Furthermore, for any d G C = { c | c < a & c < b } w e have d < cn for
some n. Thus a and b are an exact pair for {ct }t €N, and since a and b have
no infimum then C has no greatest element. Therefore, the sequence {c, }t.€N is
ascending. Q

LEMMA 14. Let {cj}i€N be a recursive ascending sequence of 7-degrees
such that (Vn)[ cn < b ] for some recursive j-degree b. Then there exists a
recursive ^-degree a such that a and b are an exact pair for {cj}ί€N.

Thus, every non-zero recursive 7-degree is half of an exact pair.

PROOF. Pick recursive sets C and B such that (Vn)[ C^ € cn ] and 5Gb.
Define B by

( B(x) if H < n

\ C(n\x) if \x\ > n



302 A. SILVER

Clearly B is recursive as "|x| < n" is a recursive test and B and C are recursive
sets. Since, by definition, B(^n} =* Cn, we have £ ( ^ n ) €c n . Furthermore,
B <*B via θ(x) = (M,z), so we have that B <Ί B.

Now apply Theorem 10 with C = 0. This gives a recursive set A such
that (Vn)[ A(n) =* S<n) ]. Thus A (^n ) =* B<*n) so Λ (^n) Gc n for all n. Also,
(VD)[[ £> <7 A & I> <7 £ ] =Φ> (Ξn)[ I> <7 B

(^n) ]], so for any recursive
7-degree d < a, b we have d < cn for some n.

Thus a and dtgΊ(B] are an exact pair for {cj}i€N, and since b < degΊ(B)
then a and b are also an exact pair for {ci}i6N. D

It is clear from the above that every recursive ascending sequence of 7-
degrees possesses an exact pair and that, given recursive 7-degrees c < b, there
is some recursive 7-degree a > c such that a and b have no infimum. Thus
(ΐ^yj <Ύ) is n°^ a lattice.

Remarks. There has been much debate, in the unbounded case, about
the question of <-degrees within some <R-degree, where <=^<κ In particular,
Zakharov [10] proved that any non-zero ̂ -degree contains at least two <-degrees.
He also showed that there are infinitely many <m-degrees within any Σ2 <.-
degree. This was followed by Watson [8] who showed that any ^-degree that is
Δ2 or Σ2-high contains an infinite number of <-degrees. Finally, we know from
Copestake [3] that all 1-generic ^-degrees contain infinitely many <-degrees.
However, she also showed that there exists a Σ2 1-generic <.-degree that is not
in Δ2, so it is still an open question as to whether there exists a non-zero <e-
degree that only contains finitely many <-degrees.

It is clear from the Density Theorem that any recursive <^p-degree that
contains at least two distinct <7-degrees actually contains infinitely many <7-
degrees. Since <^is the polynomial time bounded version of 5 ,̂ then this result
is clearly of some interest. However, none of the known proofs of Zakharov's
theorem (e.g., [10] and [8,9]) carry over to the polynomial time bounded case.
We next show that the analogue of this result is actually false and that there
are non-zero <^-degrees that contain exactly one 7-degree. Thus any <^τ-
degree contains either exactly one or infinitely many 7-degrees. This gives an
interesting contrast to the unbounded case. It should be noted that the reason
that this result works is due to the fact that we can construct sets such that
any reduction to them requires only one oracle question. This depends upon the
fact that we are working with time bounded reducibilities as this result would
obviously contradict Zakharov's theorem if it carried over to the unbounded
case. Finally, we note that since <7=^<a

p then there are non-zero f^-degrees
that contain exactly one <s

p-degree.

THEOREM 15. (3A€ EXPTIME)[deg?*(A) contains exactly one 7-degree.]

PROOF. Let A be the super sparse II set constructed in Lemma 3. Recall
that A is super sparse II via the function / defined by:

/(O) = 1 and f ( n + 1) = 2/(n)

and that A € EXPTIME.
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We claim (following [2]) that in any oracle reduction to A, there is only one
relevant oracle question, all of the others being redundant.

Recall that A C Zf = {0/(n) | n G N} and let B <r A for some (non-
deterministic) polynomial time bounded reduction <, We assume that the re-
duction is bounded by the polynomial p(n). Now, to compute B(x) we will
perform some (non-deterministic) computation on x and ask at most p(|x|) ora-
cle questions of A. Clearly, since the reduction is bounded by p then the largest
oracle question that can be asked is of length p(|z|), and since we can check in
polynomial time whether or not some y is in Zf then the largest relevant oracle
question is U0/(n) G A?", where n = max{m | /(m) < p(\x\) }.

Now, given n, to compute A(0 ̂ n)) takes less than 2'0/ n I steps, ie less than
2/(n) _ f^ _j_ j) steps To compute A(0/(m)) for any m < n takes < f(m + 1) <

f ( n ) < p(\x\) steps. Thus all oracle questions with the exception of "0/(n) G A?"
can be answered in polynomial time.

In other words, the only relevant oracle question is "0 ̂ n) G -4?", and so
B <RA where <R is a polynomial time bounded reduction procedure that only
allows one oracle question.

Thus, given B <^τ A, we can replace the non-deterministic polynomial
time bounded tt-condition generator by some other generator, #, that outputs
1-tt conditions, and we can replace the conjunctive evaluator by one, e, defined
on αc{0, 1}* such that B <*τ A via g and e.

Now to check ux G BT\ we compute g(x) = acy and then we know that
since we are dealing with a conjunctive reducibility, then:

x G B & e(acCΛ(y)) = 1

& CU(y) = l

Now, define a non-deterministic polynomial time bounded Turing transducer,
M, such that on input x, M first computes g(x) = acy and then outputs y.
Immediately we have that:

(Vx)(3y)[ ( x , y ) € G ( M ) }

and
(V*)(Vy)[ ( x , y) G G(M) =Φ [x G B & y G A]]

Thus B <7 A via M. We have shown that (3A G EXPTIME)(V£)[ B
A =4> B <Ί A }. We now show the complement to this result. Assume that
A <£"* B via a reduction bounded by polynomial q and B <7 A. This latter fact
gives that B <f% A, so using the well-known characteristic of <^τ (see [2] for
example), we know that there exist non-deterministic polynomial time bounded
functions g : Σ* »-> Σ* and h : Σ* x {0,1} *-* {0,1} and a polynomial, p, such
that

(Vx)[ B(x) = h(x, A(g(x))) } & \g(x)\ < P(\x\)

Define mf(x] = max{n \ f ( n ) < p(q(\x\))} and say that a string y (where
if y(y) = 0«m«x» and Λ(y,0)
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If y is not x-relevant then "y G -B?" can be answered in polynomial time

as follows:

i) If fc(y,0) = Λ(y,l) then B(y) = %,0).
ii) If g(y) ϊ {0'<°>, . . . ,0'<m'«>} then </(y) £ A so B(y) = %,0).

iii) If </(y) e {0/<°>, . . . ,0'^W-1)} then £(y) = h(y,A(g(y})} where A(</(y))
can be computed in < p(<?(|#|)) steps. This fact follows since A is super

sparse II, so A(0^m)) can be computed in < f(m + 1) steps. Thus A(g(y})
can be computed in < /(m/(x)) steps. By definition of mf(x) this is

<p(q(\x\)) steps.

So, assuming that we have strings y and y', both x-relevant oracle ques-

tions, we note that B(y) = %,Λ(θ'<m'(*»)), ft(y,0) φ Λ(y,l) and B(y') =

Clearly, if we are given -B(y), then we can compute

O if%,0)

in non-deterministic polynomial time, and consequently we can compute B(y') =

h(y',A(Qf(mf(χ^)) in non-deterministic polynomial time.
Thus, given the answer to any one oracle question, we can efficiently

compute the answer to all others. Thus A <*£ B and so we can find non-
deterministic polynomial time bounded functions #1 and h\ such that A(x) =
h\(x, B(g\ (#))), and a machine M, bounded by polynomial p\ , such that B <Ί A
via M.

Thus, for all z, B(x) = A(M(x)\ so A(x) = hl(x,A(M(gl(x}}}}. [*]
Define mf'(x) = max{n \ f(n) < pι(\x\)} and fix XQ £ B and x\ G B.

Construct a non- deterministic machine as follows; on input x:

i) If ftι(x,0) = /H(Z, 1) then output Xh(x,Q) and halt.

ii) If M(gl(x)) φ Qf(™f'(*» then

a) if hι(x,i) = i output XA(M(9l(*))) and naltί
b) if hι(x,ϊ) = I - i output x\-A(M(9ι(x))} and halt.

iii) Ί f M ( g l ( x ) ) = QfWW then

a) if x φ M(gι(x)) then output XA(X) and halt;
b) if x = M(g\(x)) then output g\(x) and halt.

Note that in step iii) b), we have the case where x = M(gι(x)\ so by [*]
we have that ftι(x,i) = i and so A(x) = B(g\(x)). The machine clearly runs in
non-deterministic polynomial time as all steps are polynomially bounded (note

that A(M(gι(x))) and A(x) can be computed in < pι(|x|) steps as A is super
sparse II), and from [*] it follows immediately that A <Ύ B via this machine.

Thus (VB)[ A <fτ B =» A <Ί B ] and so degΊ(A) = degfτ(A) as
required. Q
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