ON CH + 2™ — (a)? FOR « < w;
SAHARON SHELAH!

§1. Introduction.
We prove the consistency of
CH + 2™ is arbitrarily large 4+ 2% /£ (w; x w)2

(Theorem 1). In fact, we can get 2% 4 [w; x w]k,, see 1A. In addition to this
theorem, we give generalizations to other cardinals (Theorems 2 and 3). The
w; X w is best possible as CH implies

w3 = (w x n)2.

We were motivated by a question of J. Baumgartner, in his talk in the
MSRI meeting on set theory, October 1989, on whether w3 — (a)3 for a < w;
(if 2% = Ry, it follows from the Erdés-Rado theorem). Baumgartner proved the
consistency of a positive answer with CH and 2™ large. He has also proved [BH]
in ZFC + CH a related polarized partition relation:

()= ).,
—
RZ Nl Ro

Note. The main proof here is that of Theorem 1. In that proof, in the
way things are set up, the main point is proving the Rz-c.c. The main idea in
the proof is using P (defined in the proof). It turns out that we can use as
elements of P (see the proof) just pairs (a,b). Not much would be changed if
we used ((an,an) : n < w), an a good approximation of the nth part of the

suspected monochromatic set of order type w; X w. In 1A, 2, and 3 we deal with
generalizations and in Theorem 4 with complementary positive results.

§2. The main result.

THEOREM 1. Suppose
(a) CH
(b) ¥ = A,
Then there is an X;-c.c., Ry-complete forcing notion P such that
(i) Pl =X
(i) Fp “2% =X, XA 4 (0 X w)3”
(iii) I-p CH

(iv) Forcing with P preserves cofinalities and cardinalities.

1 Publication number 424. Partially supported by BSF.
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Proof. By Erdds and Hajnal [EH] there is an algebra B with 2% = ¥,
w-place functions, closed under composition (for simplicity only), such that
® If ap, < A for n < w, then for some k

ap€cg{ay:k<l<w}
(® implies that for every large enough k, for every m, aj € clg{ay:m <1<
w}.) Let
Rs={b:bC )\ otp(b) =6, a€b=>bCclg(b\a)}.
So by ® we have
@ If « is a limit ordinal, b C A, otp(d) = a,
then for some a € b, b\ a € |J;Rs.

Let Recw, = U Ra. Let P be the set of forcing conditions

(w7 C, P)

where w is a countable subset of A, ¢ : [w]? — {red,green} = {0,1} (but we

write c(a, 8) instead of ¢({a,f})), and P is a countable family of pairs (a,b)

such that

(i) a, b are subsets of w

(i1) b € R<w, and a is a finite union of members of R<,,

(iii) sup(a) < min(b)

(iv) if sup(a) < 4 < min(b), ¥ € w, then ¢(v,-) divides a or b into two infinite
sets.
We use the notation

a<lw;

p = (w?,c?,PP)
for p € P. The ordering of the conditions is defined as follows:
p<qg = w Cwl&c? CcI&PP CPI.
Let
e=J{":peGp}.

FacT A. P is ®y-complete.

Proof. Trivial—take the union. O

FACT B. Fory< A, {g€P:y€w'} is open dense.

Proof. Let p € P. If v € wP, we are done. Otherwise we define ¢ as
follows: w? = wP U {y}, P?=PP, c? | wP = cP and c?(¥,-) is defined so that
if (a,b) € P9, then c¥(v,-) divides a and b into two infinite sets. O

Fact C. IFp “2% > ) and ¢: [A\]* — {red, green}.”
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Proof. The second phrase follows from Fact B. For the first phrase, define
P, € “*2, for a < A, by: p_(i) = ¢(0,a + 7). Easily

e “p, € “*2andfora < f < A, p_ # Bﬂ”
solkp “2% >\ O
FAcT D. P satisfies the Rp-c.c.

Proof. Suppose p; € P for ¢ < R;. For each ¢ choose a countable family A’
of subsets of wP¢ such that A* C R<w, and (a,b) € PPi implies b € A* and aisa
finite union of members of A’. For each v € ¢ € A’ choose a function F} . (from
those in the algebra B) such that F.';’c(c \ (7 + 1)) = 4. Let v; be the closure of
w; (in the order topology).

We may assume that (v; : ¢ < wy) is a A-system (we have CH) and that
otp(v;) is the same for all i < w;. Without loss of generality (w.l.o.g.) for i < j
the unique order-preserving function k; ; from v; onto v; maps p; onto pj, A’
onto A7, wPi N wPi = wP° NwP! onto itself, and

[ n¥]
Fe = Fhi () ,hose

for v € ¢ € A (remember: B has 2% = R, functions only). Hence
®1 hi j is the identity on v; Nv; for i < j.
Clearly by the definition of R<., and the condition on F :

®q Fac A, i#jand a € wP Nwbi,
then a \ (w?* N w?7) is infinite.

We define g as follows.

wd = wPo U wh.

P9 = Ppreypr,

c? extends c?® and c?! in such a way that, for e € {0, 1},

(*) for every v € wPe \ wPi-< and every a € A'~°, cI(y,-) divides a into

two infinite parts, provided that

(**) a\ wPe is infinite.

This is easily done and py < ¢, p1 < ¢, provided that ¢ € P. For this the
problematic part is ¢? and, in particular, part (iv) of the definition of P. So
suppose (a,b) € PI, e.g., (a,b) € PP°. Suppose also v* € w? so that sup(a) <
v* < sup(b). If v* € wPo, there is no problem, as pp € P. So let us assume
7* € wiN wP = wPr N wPo. If a\ wP* or b\ wP! is infinite, we are through
in view of condition () in the definition of ¢?. Let us finally assume a \ w?! is
finite. But a C wP°. Hence a \ (w?® N w??) is finite and ®, implies it is empty,
i.e., a C wP° NwPt. Similarly, b C w?* NwP. So ho; | (aUb) is the identity.
But (a,b) € PPo. But h;; maps p; onto p;. Hence (a,b) € PP. As p; € P, we
get the desired conclusion. [
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FacT E. IFp “There is no ¢c-monochromatic subset of A of order-type wy X

w-”

Proof. Let p force the existence of a counterexample. Let G be P-generic
over V with p € G. In V[G] we can find A C ) of order-type w; x w such that
¢ I [A]? is constant. Let A = |J,,, An Where otp(4,) = w; and sup(4,) <
min(A,+1). We can replace A, by any A;, C A, of the same cardinality. Hence
we may assume w.l.o.g.

(*)1 A, € R, forn < w.
Let 6, = sup(A4y) and
Bn =min{f:6, < B <A, d(B,-) does not
divide U A; into two infinite sets },
I<n

where d = ¢. Clearly 8, < min(Ap41). Hence 8, < Bn+1. Let d, € {0,1}
be such that d(8,,7v) = dn for all but finitely many v € |J,<, Ai. Let u be an
infinite subset of w such that d, is constant for n € u and {8, : n € u} € R,.
Let A; = {a! :i{ < w; } in increasing order. So p forces all this on suitable names

(B,:n<w), (af:i<w), (6,:n<w).

As P is Ry-complete, we can find py € P with p < pg so that pg forces @I =pH
and §,, = é, for some §; and §,. We can choose inductively conditions px € P
such that px < pr41 and there are 14 < ji and aﬁ (for ¢ < j§) with

Pr+1 “afk > sup(wP* N §;),
af € wP*+! for i < jy,
{al:i<iy}Cca{al:it<i<ji},
o! = a! for i < ji,
&(Bn,al) = d, for 1 < n,i > iy, and
¥ € [6m, Bm) N wP* implies ¢(v,-) divides
{a!:i<jx, 1 <m} into two infinite sets”
(remember our choice of ,,). Let
I(*) = min(u)
a={al:1<I(%), i<Ujk}
k

b={pfi:leu}
q9= (meaUcpkaU'Ppk u {(a’b)})
k k k

Now g € P. To see that ¢ satisfies condition (iv) of the definition of P, let
sup(a) < ¥ < min(b). Then sup{ aﬁ') tk<w} <9< Py But y € w? =
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Uy wP*, so for some k, v € wPt. This implies

v ¢ (aﬁ:_),a‘sl(t)) )
whence v > §;(,) and
{ad:1<I(*), i<jr} Ca,

which implies the needed conclusion.
Also ¢ > px 2 p. But now, if »r > ¢ forces a value to «
contradiction. [

1)

Usjni We get a

Remark 1A. Note that the proof of Theorem 1 also gives the consistency of
A # w1 xw]},: replace “c(v,) divides a set z into two infinite parts” by “c(7,-)
gets all values on a set z.”

§3. Generalizations to other cardinals.

How much does the proof of Theorem 1 depend on R;? Suppose we replace
Ny by p.

THEOREM 2. Assume2* = ut < A = M and 2 < k < u. Then for some
ut-complete ut*-c.c. forcing notion P of cardinality 2*:

IFp 2 = ), XA [ut x p)k.

Proof. Let B and R; be defined as above (for § < u*). Clearly

@®  If a C ) has no last element, then for some a € a, a\ a € |J;Rs.

Hence, if § = otp(a) is additively indecomposable, then a \ o € Rs for some
a € a.
Let P, be the set of forcing conditions
(w,¢,P)
where w C A, |w| < g, c:[w]? — k, and P is a set of < p pairs (a, b) such that
(i) a, b are subsets of w
(i) b € Ry, and a is a finite union of members of |J, <5 ,+ Rs
(i1i) sup(a) < min(b)
(iv) if sup(a) < ¥ < min(b), vy € w, then the function ¢(y,-) gets all values
(< &) on a oron b.
With the same proof as above we get

P, satisfies the u**-c.c.,
P, is u*-complete,

(so cardinal arithmetic is clear) and
Fe, A7 [ut xulk.

a
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What about replacing u* by an inaccessible 87 We can manage by demand-
ing

{an(@8): (@) € P, (Jotp(an (@,8)) x n = otp(a)
(a, 8) maximal under these conditions }

is free (meaning there are pairwise disjoint end segments) and by taking care in
defining the order. Hence the completeness drops to 6-strategical completeness.
This is carried out in Theorem 3 below.

THEOREM 3. Assume 8 = 6<% > Ry and A = A<®. Then for some 6% -c.c.
0-strategically complete forcing P, |P| = A and

Fp 26 =X, X/ (8 x 9)2.

Proof. For W a family of subsets of A, each with no last element, let

Fr(W) = { f: f is a choice function on W such that
{a~ f(a) : a € W} are pairwise disjoint }.
If Fr(W) # 0, W is called free.
Let P<g be the set of forcing conditions
(w,e,P, W)

where w C A, |w| < 8, c: [w]? — {red,green}, W is a free family of < 6
subsets of w, each of which is in (J;.4 Rs, and P is a set of < 6 pairs (a,b) such
that

(i) a, b are subsets of w
(i) b€ Ry
(ili) sup(a) < min(b) and for some §y < § < --- < 85, 8o < min(a), sup(a) <
bn, an [6[,61+1) ew

(iv) if sup(a) < 7 < min(b), v € w, then ¢(7,-) divides a or b into two infinite
sets.

We order Py as follows:

p<q iff w? Cw? P Ccl, PPC P!, WP C W? and every
f € Fr(W?) can be extended to a member of Fr(W?).
a

§4. A provable partition relation.

CLAIM 4. Suppose 6 > Ry, n,r <w, and A = A<®. Then

(At xn—(0xn,0xr).
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Proof. We prove this by induction on r. Clearly the claim holds for
r=0,1. So w.l.o.g. we assume r > 2. Let ¢ be a 2-place function from (A*)" x n
to {red, green}. Let x = J2(A)*. Choose by induction on ! a model N; such that

Nl < (H(X)’ €7<*)7

Ml =X A+1C N, N® C Ni, ¢ € Nyand N; € Niyy. Here <* is a
well-ordering of H(x). Let

A= (M) x 1, () x (1+1)),

and let §; € A; \ N; be such that §; ¢ = whenever z € N is a subset of 4; and
otp(z) < (A*)". W.lo.g. we have § € Ni41. Now we shall show

(*) Y €Ny, YCAn, [Y|=At and 6, €7,
then we can find B € Y such that ¢(8,6;) = red for all | < n.

Why does (x) suffice? Assume (*) holds. We can construct by induction
on ¢ < 6 and for each ¢ by induction on ! < n an ordinal a;; such that
(a) a; € Ajandj <i=> a1 < @)
(b) @i € No
(c) (ait,bm) =red form < n
(d) c(aip, aiyp,) =red when <ioriy =:i&l <l
Accomplishing this suffices as a;; € 4; and

l<m=supA; <minA,,.
Arriving in the inductive process at (¢,1), let
Y={B€A:c(Bajm)=red ifj<i,m<n,orj=i m<l}
Now clearly Y C A;. Also Y € Ny as all parameters are from Ny, their number

is < 6 and N0<0 C Ny. Also §; € Y by the induction hypothesis (and & € A;).
So by (*) we can find a;; as required.

Proof of (). Y € Ny, because §,, €Y and Y € Ny. As [Y| = A*, we have
otp(Y) > At. But A* — (A*,0)?, so there is B C Y such that |[B| = At and
¢ | B x B is constantly red or there is B CY such that |B| =68 andc | Bx B is
constantly green. In the former case we get the conclusion of the claim. In the
latter case we may assume B € Ny, hence B C N, and let £ < n be maximal
such that

B'={¢€B: | c(8,£) =red}

<k

has cardinality . If ¥ = n, any member of B’ is as required in (*). So assume
k < n. Now B' € Ni, since B € Ny < Ni and {N;, A;} € N and §; € Ni
for I < k. Also

{€€ B :c(bk,€) =red}
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is a subset of B' of cardinality < 6 by the choice of k. So for some B" € N,
c | {6x} x (B' ~ B") is constantly green (e.g., as B’ C No, and N&% C Ny). Let
Z ={6€ Ax:c | {6} x (B' \ B") is constantly green }

and

Z'={6€eZ:(VaeB \B")Y§<a& b <a)}

So Z C A, Z € Ni, & € Z and therefore otp(Z) = otp(4i) = (A*)".
Note that k # m = Z' = Z and k = m = Z' = Z ~sup(B' \ B"), so Z'
has the same properties. Now we apply the induction hypothesis; one of the
following holds (note that we can interchange the colours): (a) Thereis Z" C Z',
otp(Z") =6 xn, ¢ | 2" x Z" is constantly red, w.l.o.g. Z" € Ng, or (b) there
isZ"C2Z' otp(Z")=0x(r—1), c| Z" x Z" green and w.lo.g. Z" € Ni. If
(a), we are done; if (b), Z" U(B'\ B") is as required. O

Remark 4A. So (A*)"*! — (@ x n)? for A = A<?, 0 = cf(6) > R, (eg.,
A =2%8),

Remark 4B. Suppose A = A<% 8 > R,. If ¢ is a 2-colouring of (A*")* x n
by k colours and every subset of it of order type (A\*("~1))* x n has a monochro-
matic subset of order type 6 for each of the colours, one of the colours being red,
then by the last proof we get
(a) There is a monochromatic subset of order type 6 x n and of colour red or
(b) There is a colour d and a set Z of order type (A*")* and a set B of order

type 6 such that B < Z or Z < B and

{(eB):a€B, BEZora+# e B}
are all coloured with d.
So we can prove that for 2-colourings by & colours ¢

AT xn — (0 xny,...,0 x ng)?

when r, s, n are sufficiently large (e.g., n > min{n;: l=1,...,k, s> Zf:: n})
by induction on Y, ny.
Note that if c is a 2-colouring of A*2*¥, then for some [ < k and A C \1t2*
of order type At(2+2) we have
(x) If A’ C A, otp(A’) = AT and d is a colour which appears in A, then there
is B C A’ of order type 6 such that B is monochromatic of colour d.
We can conclude At2¥ — (8 x n)2.
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