§6. An inductive definition of K

The definition of K given in 5.17 is $\Sigma_{\omega}(V_{\Omega+1})$, and therefore much too complicated for some purposes. In this section we shall give an inductive definition of K whose logical form is as simple as possible. Assuming that K^c has no Woodin cardinals, we shall show that $K \cap HC$ is $\Sigma_1(L_{\omega_1}(\mathbb{R}))$ in the codes; Woodin has shown that in general no simpler definition is possible.

The following notion is central to our inductive definition of K.

Definition 6.1. Let \mathcal{M} be a proper premouse such that $\mathcal{M} \models ZF - \{Powerset\}$ and $\mathcal{J}^{\mathcal{M}}_{\alpha}$ is S-sound. We say \mathcal{M} is (α, S) -strong iff there is an $(\omega, \Omega+1)$ iterable weasel which witnesses that $\mathcal{J}^{\mathcal{M}}_{\alpha}$ is S-sound, and whenever W is a weasel which witnesses that $\mathcal{J}^{\mathcal{M}}_{\alpha}$ is S-sound, and Σ is an $(\omega, \Omega+1)$ iteration strategy for W, then there is a length $\theta+1$ iteration tree T on W which is a play by Σ and such that $\forall \gamma < \theta(\nu(E^{\mathcal{T}}_{\gamma}) \geq \alpha)$, and a $Q \leq W^{\mathcal{T}}_{\theta}$, and a fully elementary $\pi: \mathcal{M} \to Q$ such that $\pi \upharpoonright \alpha = \text{identity}$.

We shall see that it is possible to define " (α, S) -strong" by induction on α . First, let us notice:

Lemma 6.2. Let W be an $(\omega, \Omega + 1)$ iterable weasel which witnesses that \mathcal{J}_{α}^{W} is S-sound; then W is (α, S) strong.

Proof. Let R be a weasel which witnesses \mathcal{J}_{α}^{W} is S-sound, and let Σ be an $\Omega+1$ iteration strategy for R. Let Γ be an $\Omega+1$ iteration strategy for W, and let $(\mathcal{T},\mathcal{U})$ be the successful coiteration of R with W determined by (Σ,Γ) . Let Q be the common last model of \mathcal{T} and \mathcal{U} , and let $\pi:W\to Q$ be the iteration map given by \mathcal{U} . By Lemma 5.1, $\pi\upharpoonright\alpha=$ identity.

Lemma 6.2 admits the following slight improvement. Let W witness that \mathcal{J}_{α}^{W} is S-sound, and let Σ be an $(\omega, \Omega+1)$ iteration strategy for W. Let T be an iteration tree played by Σ such that $\forall \gamma < \theta(\nu(E_{\gamma}^{T}) \geq \alpha)$, where $\theta+1=lh\ T$; then W_{θ}^{T} is (α,S) strong. [Proof: Let R be any weasel witnessing \mathcal{J}_{α}^{W} is S-sound. Comparing R with W, we get an iteration tree \mathcal{U} on R and a map $\pi:W\to R_{\eta}^{\mathcal{U}}$, where $\eta=lh\ \mathcal{U}-1$. By 5.1, $\mathrm{crit}(\pi)\geq\alpha$. Let $\sigma:W_{\theta}^{T}\to(R_{\eta}^{\mathcal{U}})_{\theta}^{\pi T}$ be the copy map. Then σ and $\mathcal{U}^{\frown}\pi\mathcal{T}$ are as required in 6.1 for R.] This shows that we obtain a definition of (α,S) strength equivalent to 6.1 if we replace "whenever W is a weasel" by "there is a weasel W" in 6.1. It also shows that there are (α,S) strong weasels other than those described in 6.2. For example, suppose W witnesses that \mathcal{J}_{α}^{W} is S-sound, and E is an extender on the W sequence which is total on W and such that $\mathrm{crit}(E) < \alpha \leq \nu(E)$. Setting $R = \mathrm{Ult}(W,E)$, we have that R is (α,S) strong, but R does not witness that \mathcal{J}_{α}^{R} is S-sound.

In view of the fact that K(S) is independent of S, one might expect the same to be true of (α, S) -strength. This is indeed the case.

Lemma 6.3. Suppose K(S) and K(T) exist, and $\alpha \leq OR \cap K(S) \cap K(T)$; then for any M, M is (α, S) strong iff M is (α, T) strong.

Proof. Suppose \mathcal{M} is (α, S) -strong. Let \mathcal{R} witness that $\mathcal{J}^{\mathcal{M}}_{\alpha}$ is S-sound, and W witness that $\mathcal{J}^{\mathcal{M}}_{\alpha}$ is T-sound. Let Σ be an $(\omega, \Omega+1)$ iteration strategy for W, and Γ an $(\omega, \Omega+1)$ iteration strategy for R. From the proof of 5.16, we get iteration trees T and U on W and R which are plays of two rounds of $\mathcal{G}^*(W,(\omega,\Omega+1))$ and $\mathcal{G}^*(R,(\omega,\Omega+1))$ according to Σ and Γ respectively, and such that T and U have a common last model Q. The proof of 5.16 also shows that the iteration maps $\sigma:W\to Q$ and $\tau:R\to Q$ satisfy $\alpha\leq \min(\mathrm{crit}(\sigma),\,\mathrm{crit}(\tau))$. Since $\alpha\leq\mathrm{crit}(\sigma),\,\nu(E^{\mathcal{T}}_{\gamma})\geq\alpha$ for all $\gamma+1< lh T$.

Now Σ yields an $(\omega, \Omega + 1)$ -iteration strategy Σ^* for Q, and the strategy of copying via τ and using Σ^* on the copied tree is an $(\omega, \Omega + 1)$ -iteration strategy for R; call it Σ^{**} .

According to 6.1, there is an iteration tree \mathcal{V} on R having last model \mathcal{P} which is a play by \mathcal{L}^{**} , and such that $\forall \gamma (\gamma + 1 < lh \ \mathcal{V} \Rightarrow \nu(E_{\gamma}^{\mathcal{V}}) \geq \alpha)$, and an embedding $\pi : \mathcal{M} \to \mathcal{P}'$ for some $\mathcal{P}' \leq \mathcal{P}$ such that $\pi \upharpoonright \alpha = \text{identity}$. Let $\tau^* : \mathcal{P} \to \mathcal{L}$, where \mathcal{L} is the last model of the copied tree $\tau \mathcal{V}$ on Q, be the copy map; thus $\tau^* \upharpoonright \alpha = \tau \upharpoonright \alpha = \text{identity}$. Let $\mathcal{L}' \leq \mathcal{L}$ correspond to \mathcal{P}' . Then \mathcal{L}' is an initial segment of the last model of $\mathcal{T} \cap \tau \mathcal{V}$, which is a play by \mathcal{L} ; moreover $\tau^* \circ \pi$ maps \mathcal{M} into \mathcal{L}' and $(\tau^* \circ \pi) \upharpoonright \alpha = \text{identity}$.

This shows that \mathcal{M} is (α, T) -strong, as desired.

Definition 6.4. Let \mathcal{M} be a proper premouse, and let $\alpha < \Omega$. We say \mathcal{M} is α -strong iff for some S, \mathcal{M} is (α, S) -strong.

П

We proceed to the inductive definition of " α -strong". The definition is based on a certain iterability property: roughly speaking, \mathcal{M} is α -strong just in case \mathcal{M} is jointly iterable with any \mathcal{N} which is β -strong for all $\beta < \alpha$. In order to describe this iterability property we must introduce iteration trees whose "base" is not a single model, but rather a family of models. Such systems were called "psuedo-iteration trees" in [FSIT]. Here we shall simply call them iteration trees, and distinguish them from the iteration trees considered so far by means of their bases.

Definition 6.5. A simple phalanx is a pair $(\langle \mathcal{M}_{\beta} \mid \beta \leq \alpha \rangle, \langle \lambda_{\beta} \mid \beta < \alpha \rangle)$ such that for all $\beta \leq \alpha$, \mathcal{M}_{β} is an ω -sound proper premouse, and

- (1) $\beta \leq \gamma \leq \alpha \Rightarrow (\mathcal{M}_{\gamma} \models \text{``}\lambda_{\beta} \text{ is a cardinal'' and } \rho_{\omega}(\mathcal{M}_{\gamma}) \geq \lambda_{\beta}),$
- (2) $\beta < \gamma \leq \alpha \Rightarrow \mathcal{M}_{\beta}$ agrees with \mathcal{M}_{γ} below λ_{β} , and
- (3) $\beta < \gamma < \alpha \Rightarrow \lambda_{\beta} < \lambda_{\gamma}$.

We have added the qualifier "simple" in 6.5 because we shall introduce a more general kind of phalanx in §9. Since we shall consider only simple phalanxes in this section, we shall drop the "simple" when referring to them.

If $\mathcal{B} = (\langle \mathcal{M}_{\beta} \mid \beta \leq \alpha \rangle, \langle \lambda_{\beta} \mid \beta < \alpha \rangle)$ is a phalanx, then we set $lh \mathcal{B} = \alpha + 1$, $\mathcal{M}_{\beta}^{\mathcal{B}} = \mathcal{M}_{\beta}$ for $\beta \leq \alpha$, and $\lambda(\beta, \mathcal{B}) = \lambda_{\beta}$ for $\beta < \alpha$.

A phalanx of length 1 is just a premouse. Iteration trees on phalanxes are the obvious generalization of iteration trees on premice; the main point is that we use $\lambda(\beta, \mathcal{B})$ to tell us when to apply an extender to $\mathcal{M}_{\beta}^{\mathcal{B}}$, just as we used $\nu(E_{\beta}^{T})$ in the special case of a tree on a premouse. We shall have $\beta T \gamma$ for $\beta < \gamma < lh \mathcal{B}$, but this is only a notational convenience, and it would be more natural to think of a tree with $lh \mathcal{B}$ many roots. Since we only need normal, ω -maximal trees, we shall only define these.

Definition 6.6. Let \mathcal{B} be a phalanx of length $\alpha + 1$, and $\theta > \alpha + 1$. An (ω maximal, normal) iteration tree of length θ on \mathcal{B} is a system $\mathcal{T} = \langle E_{\beta} \mid \alpha+1 < \alpha \rangle$ $\beta + 1 < \theta$ with associated tree order T, models \mathcal{M}_{β} for $\beta < \theta$, and $D \subseteq \theta$ and embeddings $i_{\eta\beta}: \mathcal{M}_{\eta} \to \mathcal{M}_{\beta}$ defined for $\eta T\beta$ with $(\alpha \cup D) \cap (\eta, \beta]_T = \emptyset$,

- (1) $\mathcal{M}_{\beta} = \mathcal{M}_{\beta}^{\mathcal{B}}$ for all $\beta \leq \alpha$, and for β , $\gamma \leq \alpha$, $\beta T \gamma$ iff $\beta < \gamma$; (2) $\forall \beta < \alpha(\lambda(\beta, \mathcal{B}) < lh E_{\alpha})$, and for $\alpha + 1 \leq \beta + 1 < \gamma + 1 < \theta$, $lh E_{\beta} < lh E_{\gamma};$
- (3) for $\alpha + 1 \le \beta + 1 < \theta$: T-pred $(\beta + 1)$ is the least ordinal γ such that $\gamma < \alpha$ and $crit(E_{\beta}) < \lambda(\gamma, \beta)$, or $\alpha \leq \gamma$ and $crit(E_{\beta}) < \nu(E_{\alpha})$. Moreover, letting $\gamma = T$ -pred $(\beta + 1)$ and $\kappa = crit(E_{\beta})$,

$$\mathcal{M}_{\beta+1} = Ult_k(\mathcal{M}_{\gamma}^*, E_{\beta}^{\mathcal{T}}),$$

where \mathcal{M}_{γ}^{*} is the longest initial segment of \mathcal{M}_{γ} containing only subsets of κ measured by E_{β} , and k is largest such that $\kappa < \rho_k(\mathcal{M}_{\gamma}^*)$. Also, $\beta + 1 \in D$ iff $\mathcal{M}_{\gamma} \neq \mathcal{M}_{\gamma}^{*}$, and if $\beta + 1 \notin D$ then $i_{\gamma,\beta+1}$ is the canonical embedding from \mathcal{M}_{γ} into $Ult_k(\mathcal{M}_{\gamma}, E_{\beta})$, and $i_{\eta,\beta+1} = i_{\gamma,\beta+1} \circ i_{\eta\gamma}$ for $\eta T \gamma$ such that $D\cap(\eta,\gamma]_T=\emptyset;$

(4) if $\alpha < \beta < \theta$ and β is a limit, then $D \cap [0,\beta)_T$ is finite, $[0,\beta)_T$ is cofinal in β , and \mathcal{M}_{β} is the direct limit of the \mathcal{M}_{γ} for $\gamma \in [0,\beta)_T$ such that $\gamma \geq \alpha \cup \sup(D)$. Moreover, $i_{\gamma\beta}: \mathcal{M}_{\gamma} \to \mathcal{M}_{\beta}$ is the direct limit map for all $\gamma \geq \alpha \cup \sup(D)$.

In the situation of 6.6, we set $\theta = lh T$, $\mathcal{M}_{\beta} = \mathcal{M}_{\beta}^{T}$, $E_{\beta} = E_{\beta}^{T}$, and so forth. For $\beta < \theta$, we let $\operatorname{root}^{\mathcal{T}}(\beta)$ be the largest $\gamma < lh \mathcal{B}$ such that $\gamma T\beta$.

If B is a phalanx, then $\mathcal{G}^*(\mathcal{B},\theta)$ is the obvious generalization of the length θ normal iteration game on premice: I and II build an iteration tree on \mathcal{B} , with I extending the tree at successor steps and II at limit steps. If at some move $\alpha < \theta$, I produces an illfounded ultrapower or II does not play a cofinal wellfounded branch, then I wins, and otherwise II wins. A winning strategy for II in $\mathcal{G}^*(\mathcal{B},\theta)$ is a θ -iteration strategy for \mathcal{B} , and \mathcal{B} is θ -iterable just in case there is such a strategy.

We wish to state an iterability theorem for phalanxes which are generated from iterates of K^c .

Definition 6.7. Let \mathcal{R} be a proper premouse and Σ an $(\omega, \Omega + 1)$ iteration strategy for R. We say that a phalanx B is (Σ, R) -generated iff for all $\beta < lh \mathcal{B}$, there is an almost normal iteration tree T on \mathcal{R} which is a play according to Σ such that $\mathcal{M}_{\beta} \leq \mathcal{P}$, where \mathcal{P} is the last model of T, and such that (i) if $\beta + 1 < lh \mathcal{B}$, then $\lambda(\beta, \mathcal{B})$ is a cardinal of \mathcal{R} and $\forall \gamma \ (\gamma + 1 < lh \ T \Rightarrow \nu(\mathcal{E}_{\gamma}^T) \geq \lambda(\beta, \mathcal{B}))$, and (ii) if $\beta + 1 = lh \ \mathcal{B}$, then $\forall \gamma \ \forall \alpha < \beta(\gamma + 1 < lh \ T \Rightarrow \nu(\mathcal{E}_{\gamma}^T) \geq \lambda(\alpha, \mathcal{B}))$.

Recall that if K^c has no Woodin cardinals, then there is a unique $(\omega, \Omega+1)$ iteration strategy for K^c (namely, choosing the unique cofinal wellfounded branch).

Definition 6.8. Suppose $K^c \models$ "There are no Woodin cardinals"; then a phalanx \mathcal{B} is K^c -generated iff \mathcal{B} is (Σ, K^c) generated, where Σ is the unique $(\omega, \Omega + 1)$ iteration strategy for K^c .

Our iterability proof for K^c in §9 will actually show:

Theorem 6.9. Suppose $K^c \models$ "There are no Woodin cardinals"; then every K^c -generated phalanx \mathcal{B} such that lh $\mathcal{B} < \Omega$ is $\Omega + 1$ -iterable.

Proof. Deferred to §9.

We shall actually only characterize α strength inductively in the case α is a cardinal of K. In this case we have the following little lemma.

Lemma 6.10. Suppose $K^c \models$ "There are no Woodin cardinals", and let α be a cardinal of K. Suppose $\alpha < OR^{\mathcal{M}}$, and \mathcal{M} is α strong. Then α is a cardinal of \mathcal{M} .

Proof. There is a weasel W which witnesses that $\mathcal{J}_{\alpha}^{W} = \mathcal{J}_{\alpha}^{K}$ is S-sound, and an elementary $\pi: K \to W$ with $\operatorname{crit}(\pi) \geq \alpha$. Since α is a cardinal of K, α is a cardinal of W. But then α is a cardinal of \mathcal{P} , whenever \mathcal{P} is an initial segment of a model on an iteration tree T on W such that $\operatorname{lh}(E_{\gamma}^{T}) \geq \alpha$ for all $\gamma+1 < \operatorname{lh} T$. We have $\sigma: \mathcal{M} \to \mathcal{P}$ with $\operatorname{crit}(\sigma) \geq \alpha$, for some such \mathcal{P} , and this implies that α is a cardinal of \mathcal{M} .

We can now prove the main result of this section.

Theorem 6.11. Suppose K^c has no Woodin cardinals. Let \mathcal{M} be a proper premouse, and let $\alpha < OR^{\mathcal{M}}$ be such that α is a cardinal of K and $\mathcal{J}_{\alpha}^{\mathcal{M}} = \mathcal{J}_{\alpha}^{K}$; then the following are equivalent:

- (1) $\tilde{\mathcal{M}}$ is α strong,
- (2) if $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$ is a phalanx such that \mathcal{N} is β strong for all K-cardinals $\beta < \alpha$, then $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$ is $\Omega + 1$ iterable.

Proof. We show first $(2)\Rightarrow(1)$. Let W witness that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is S-sound, and let Σ be an $\Omega+1$ iteration strategy for W. By 6.2, W is β strong for all $\beta < \alpha$, and so our hypothesis (2) gives us an $\Omega+1$ iteration strategy Γ for the phalanx $(\langle W, \mathcal{M} \rangle, \langle \alpha \rangle)$. We now compare \mathcal{M} with W, using Σ to form an iteration tree \mathcal{T} on W and Γ to form an iteration tree \mathcal{U} on $(\langle W, \mathcal{M} \rangle, \langle \alpha \rangle)$. The trees \mathcal{T}

and \mathcal{U} are determined by iterating the least disagreement, starting from \mathcal{M} vs. W, as well as by the rules for iteration trees and the iteration strategies. (See 8.1 of [FSIT] for an example of such a coiteration.)

Let $lh \ \mathcal{U} = \theta + 1$ and $lh \ \mathcal{T} = \gamma + 1$. We claim that $\mathrm{root}^{\mathcal{U}}(\theta) = 1$. For otherwise $\mathrm{root}^{\mathcal{U}}(\theta) = 0$, and the universality of W implies that $\mathcal{M}^{\mathcal{U}}_{\theta} = \mathcal{M}^{\mathcal{T}}_{\gamma}$, and that $i_{0\theta}^{\mathcal{U}}$ and $i_{0\gamma}^{\mathcal{T}}$ exist. Moreover, the rules for \mathcal{U} guarantee that $\mathrm{crit}(i_{0\theta}^{\mathcal{U}}) < \alpha$. Since W has the S-hull and S-definability properties at all $\beta < \alpha$, we then get the usual contradiction involving the common fixed points of $i_{0\theta}^{\mathcal{U}}$ and $i_{0\gamma}^{\mathcal{T}}$.

Thus $\operatorname{root}^{\mathcal{U}}(\theta) = 1$. Since W is universal, $i_{1,\theta}^{\mathcal{U}}$ exists, and maps \mathcal{M} into some initial segment of $\mathcal{M}_{\gamma}^{\mathcal{T}}$. By the rules for \mathcal{U} , $\operatorname{crit}(i_{1,\theta}^{\mathcal{U}}) \geq \alpha$. Thus \mathcal{T} and $i_{1,\theta}^{\mathcal{U}}$ witness that \mathcal{M} is (α, S) strong.

We now prove $(1)\Rightarrow(2)$. Let us consider first the case α is a successor cardinal of K, say $\alpha=(\beta^+)^K=(\beta^+)^{\mathcal{M}}$ where β is a cardinal of K. Let $(\langle \mathcal{N}, \mathcal{M} \rangle, \alpha)$ be a phalanx such that \mathcal{N} is β -strong. We shall show $(\langle \mathcal{N}, \mathcal{M} \rangle, \alpha)$ is $\Omega+1$ iterable by embedding it into a K^c -generated phalanx, and then using 6.9.

Note that \mathcal{M} and \mathcal{N} agree below α , and since \mathcal{M} is α - strong, $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is A_0 -sound. Let W be a weasel which witnesses that $\mathcal{J}_{\alpha}^{\mathcal{M}}$ is A_0 -sound. By Definition 6.1, there are (finite compositions of normal) iteration trees \mathcal{T}_0 and \mathcal{T}_1 on W, having last models \mathcal{P}_0 and \mathcal{P}_1 respectively, such that $\forall \gamma[(\gamma+1 < lh \mathcal{T}_0 \Rightarrow \nu(E_{\gamma}^{\mathcal{T}_0}) \geq \beta)$ and $(\gamma+1 < lh \mathcal{T}_0 \Rightarrow \nu(E_{\gamma}^{\mathcal{T}_1}) \geq \alpha)]$, and there are fully elementary embeddings τ_0 and τ_1 such that

$$au_0: \mathcal{N} o \mathcal{J}^{\mathcal{P}_0}_{\eta_0} \quad ext{and} \quad au_0 \upharpoonright eta = ext{identity} \,,$$

and

$$au_1: \mathcal{M} o \mathcal{J}^{\mathcal{P}_1}_{\eta_1} \quad ext{and} \quad au_1
estriction lpha = ext{identity} \,.$$

The proof of 5.10 shows that we may assume our A_0 -soundness witness W is chosen so that there is an elementary $\sigma:W\to K^c$. Since α is a cardinal of K, we may also assume that α is a cardinal of W. Let σT_0 and σT_1 be the copied versions of T_0 and T_1 on K^c . Since W has no Woodin cardinals (because K^c has none), the trees T_0 and T_1 are simple. This implies that the copying construction does not break down, and that σT_0 and σT_1 are according to the unique $(\omega, \Omega + 1)$ iteration strategy for K^c . If E is an extender used in σT_0 , then $\nu(E) \geq \sigma(\beta)$, and if E is used in σT_1 , then $\nu(E) \geq \sigma(\alpha)$. Let

$$\psi_0: \mathcal{P}_0 o Q_0 \quad ext{and} \quad \psi_1: \mathcal{P}_1 o Q_1$$

be the copy maps, where Q_0 and Q_1 are the last models of σT_0 and σT_1 respectively. We have $\psi_0 \upharpoonright \beta = \sigma \upharpoonright \beta$ and $\psi_1 \upharpoonright \alpha = \sigma \upharpoonright \alpha$. Let, for $i \in \{0, 1\}$,

$$\mathcal{R}_{i} = \begin{cases} Q_{i} & \text{if} \quad \mathcal{P}_{i} = \mathcal{J}_{\eta_{i}}^{\mathcal{P}_{i}}, \\ \mathcal{J}_{\psi_{i}(\eta_{i})}^{Q_{i}} & \text{otherwise}. \end{cases}$$

We claim that $(\langle \mathcal{R}_0, \mathcal{R}_1 \rangle, \langle \sigma(\alpha) \rangle)$ is a K^c -generated phalanx, the trees by which it is generated being $\sigma \mathcal{T}_0$ and $\sigma \mathcal{T}_1$. For this, we must look more closely

at the extenders used in T_0 . We claim that if E is used in T_0 , then $lh \ E > \alpha$. For if some E such that $lh \ E < \alpha$ is used in T_0 , then there is a $B \subseteq \beta$ such that $B \in \mathcal{J}_{\alpha}^W$ and $B \notin \mathcal{P}_0$. Since \mathcal{M}, \mathcal{N} , and W agree below $\alpha, B \in \mathcal{N}$, so $\tau_0(B) \in \mathcal{P}_0$, so $\tau_0(B) \cap \beta = B \in \mathcal{P}_0$, a contradiction. Also, $lh \ E \neq \alpha$ for all E on the W sequence, since α is a cardinal of W. Thus $lh \ E > \alpha$ for all E used in T_0 . Since α is a cardinal of W, this means $\nu(E) \geq \alpha$ for all E used in T_0 . That implies that $\nu(E) \geq \sigma(\alpha)$ for all E used in σT_0 . The remaining clauses in the definition of " K^c -generated phalanx" hold obviously of $(\langle \mathcal{R}_0, \mathcal{R}_1 \rangle, \langle \sigma(\alpha) \rangle)$.

By 6.9 we have an $\Omega + 1$ iteration strategy Σ for $(\langle \mathcal{R}_0, \mathcal{R}_1 \rangle, \langle \sigma(\alpha) \rangle)$. We can use Σ and a simple copying construction to get an $\Omega + 1$ iteration strategy Γ for $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$. We shall describe this construction now; it involves a small wrinkle on the usual copying procedure, and it shows why it is necessary that \mathcal{M} be α -strong, and not just β -strong.

Our strategy Γ is to insure that if \mathcal{T} is the iteration tree on $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$ representing the current position in $\mathcal{G}^*((\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle), \Omega+1)$, then as we built \mathcal{T} we constructed an iteration tree \mathcal{U} on $(\langle \mathcal{R}_0, \mathcal{R}_1 \rangle, \langle \sigma(\alpha) \rangle)$ such that \mathcal{U} is a play by Σ and has the same tree order as \mathcal{T} , together with embeddings

$$\pi_{\gamma}: \mathcal{M}_{\gamma}^{\mathcal{T}} \to \mathcal{M}_{\gamma}^{\mathcal{U}}$$

defined for all $\gamma < lh T$, satisfying:

(a) for $\eta < \gamma < lh \ T$, $\pi_{\eta} \upharpoonright \nu_{\eta} = \pi_{\gamma} \upharpoonright \nu_{\eta}$, where

$$\nu_{\eta} = \begin{cases} \beta & \text{if} \quad \eta = 0, \\ \nu(E_{\eta}^{\mathcal{T}}) & \text{if} \quad \eta > 0 \text{ and } E_{\eta}^{\mathcal{T}} \text{ is} \\ & \text{of type III}, \\ lh(E_{\eta}^{\mathcal{T}}) & \text{otherwise}; \end{cases}$$

moreover, $E_{\eta}^{\mathcal{U}} = \pi_{\eta}(E_{\eta}^{\mathcal{T}})$;

(b) for all $\gamma < lh \ T$ such that $\gamma \ge 2$, π_{γ} is a $(\deg^{T}(\gamma), X)$ embedding, where $X = (i_{\eta\gamma}^{T} \circ i_{\eta}^{*})''(\mathcal{M}_{\eta}^{*})^{T}$, for η the least ordinal such that $i_{\eta\gamma}^{T} \circ i_{\eta}^{*}$ exists; for $\gamma \in \{0,1\}, \pi_{\gamma}$ is fully elementary;

(c) for $\eta < \gamma < lh \mathcal{T}$, if $i_{\eta\gamma}^{\mathcal{T}}$ exists, then $i_{\eta\gamma}^{\mathcal{U}}$ exists and $\pi_{\gamma} \circ i_{\eta\gamma}^{\mathcal{T}} = i_{\eta\gamma}^{\mathcal{U}} \circ \pi_{\eta}$. These are just the usual copying conditions, except that the agreement-of-embeddings ordinal ν_0 is β , rather than α .

We have $\mathcal{M}_0^{\mathcal{T}} = \mathcal{N}$, $\mathcal{M}_1^{\mathcal{T}} = \mathcal{M}$, $\mathcal{M}_0^{\mathcal{U}} = \mathcal{R}_0$, and $\mathcal{M}_1^{\mathcal{U}} = \mathcal{R}_1$ to begin with, and we set

$$\pi_0 = \psi_0 \circ \tau_0$$
 and $\pi_1 = \psi_1 \circ \tau_1$.

Since $\pi_0 \upharpoonright \beta = \pi_1 \upharpoonright \beta$ and π_0 , π_1 are fully elementary, our induction hypotheses (a) - (d) hold.

[To see π_0 and π_1 are fully elementary, notice that \mathcal{M} and \mathcal{N} satisfy ZF-Powerset, and τ_0 and τ_1 are fully elementary according to 6.1. If $\mathcal{J}^{\mathcal{P}_i}_{\eta_i} = \mathcal{P}_i$, this means $\mathcal{P}_i \models \text{ZF-Powerset}$, so $\deg^{\mathcal{T}_i}(\xi_i) = \omega$, where $\mathcal{P}_i = \mathcal{M}^{\mathcal{T}_i}_{\xi_i}$, and thus ψ_i is fully elementary $(i \in \{0,1\})$. On the other hand, if $\mathcal{J}^{\mathcal{P}_i}_{\eta_i}$ is a proper

initial segment of \mathcal{P}_i , then $\psi_i \upharpoonright \mathcal{J}_{\eta_i}^{\mathcal{P}_i}$ is obviously fully elementary. So in any case π_0 and π_1 are fully elementary.]

Now suppose we are at a limit step λ in the construction of \mathcal{T} and \mathcal{U} . Σ chooses a cofinal wellfounded branch b of $\mathcal{U} \upharpoonright \lambda$, and we let Γ choose b as its cofinal wellfounded branch of $\mathcal{T} \upharpoonright \lambda$. It is cofinal because \mathcal{T} and \mathcal{U} have the same tree order, and wellfounded because we have an embedding $\pi: \mathcal{M}_b^{\mathcal{T}} \to \mathcal{M}_b^{\mathcal{U}}$ given by

$$\pi(i_{\gamma b}^{\mathcal{T}}(x)) = i_{\gamma b}^{\mathcal{U}}(\pi_{\gamma}(x))$$

defined for $\gamma \in b$ sufficiently large. Setting $\pi_{\lambda} = \pi$, we can easily check (a) - (d).

Now suppose we are at step $\eta+1$ in the construction of \mathcal{T} and \mathcal{U} . Player I in $\mathcal{G}^*(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$ has just played $E_{\eta}^{\mathcal{T}}$, and thereby determined $\mathcal{T} \upharpoonright \eta+2$. We must determine $\mathcal{U} \upharpoonright \eta+2$ together with $\pi_{\eta+1}$. In the case that T-pred $(\eta+1)\neq 0$, we can simply quote the shift lemma, Lemma 5.2 of [FSIT], and obtain the desired $\mathcal{M}_{\eta+1}^{\mathcal{U}}$ and $\pi_{\eta+1}$. We omit further detail, and go on to the case T-pred $(\eta+1)=0$. [Unfortunately, the agreement-of-embeddings hypothesis for the copying construction was mis-stated in [FSIT], because squashed ultrapowers were overlooked. We only get $\pi_{\eta} \upharpoonright \nu(E_{\eta}^{\mathcal{T}}) = \pi_{\gamma} \upharpoonright \nu(E_{\eta}^{\mathcal{T}})$, for $\eta<\gamma$, in the case $E_{\eta}^{\mathcal{T}}$ is type III, rather than $\pi_{\eta} \upharpoonright (lh(E_{\eta}^{\mathcal{T}})+1) = \pi_{\gamma} \upharpoonright (lh\ E_{\eta}^{\mathcal{T}}+1)$ as claimed in [FSIT] (after 5.2, in the definition of π \mathcal{T}). This weaker agreement causes no new problems, however.]

Let $\kappa = \operatorname{crit}(E_{\eta}^{T})$, so that $\kappa < \alpha$ and hence $\kappa \leq \beta$. To simply quote the Shift lemma we would need that $\pi_0 \upharpoonright (\kappa^+)^{\mathcal{M}_{\eta}^{T}} = \pi_{\eta} \upharpoonright (\kappa^+)^{\mathcal{M}_{\eta}^{T}}$, and that is more than we know. Still, the proof of the Shift lemma works: set

$$\mathcal{M}_{\eta+1}^{\mathcal{U}} = \mathrm{Ult}_{\omega}(\mathcal{R}_0, \pi_{\eta}(E_{\eta}^{\mathcal{T}})).$$

From 6.6 (2), we get $\nu_1 \geq \alpha$, and our agreement hypothesis (a) then gives $\pi_1 \upharpoonright \alpha = \pi_\eta \upharpoonright \alpha$. Thus $\pi_\eta(\kappa) = \pi_1(\kappa) < \pi_1(\alpha)$. Also, $\pi_1(\alpha) = \sigma(\alpha)$. (Since $\tau_1 \upharpoonright \alpha =$ identity and $\psi_1 \upharpoonright \alpha = \sigma \upharpoonright \alpha$, $\pi_1(\beta) = \sigma(\beta)$. But $\pi_1(\alpha)$ is the \mathcal{R}_1 -successor cardinal of $\pi_1(\beta)$, and $\sigma(\alpha)$ is the K^c -successor cardinal of $\sigma(\beta)$, and since all extenders used in σT_1 have length $> \sigma(\alpha)$, these are the same.) Since $\mathcal{M}^{\mathcal{U}}_{\eta}$ agrees with \mathcal{R}_1 , and hence \mathcal{R}_0 , through $\sigma(\alpha) = \pi_1(\alpha)$, $\mathcal{M}^{\mathcal{U}}_{\eta}$ and \mathcal{R}_0 have the same subsets of $\pi_{\eta}(\kappa)$, and the ultrapower defining $\mathcal{M}^{\mathcal{U}}_{\eta+1}$ makes sense.

We can now define $\pi_{\eta+1}: \mathcal{M}_{\eta+1}^{\mathcal{T}} \to \mathcal{M}_{\eta+1}^{\mathcal{U}}$ by:

$$\pi_{\eta+1}([a,f]_{E_\eta^{\mathcal{T}}}^{\mathcal{T}}) = [\pi_{\eta}(a),\pi_0(f) \upharpoonright [\pi_{\eta}(\kappa)]^{|a|}]_{\pi_{\eta}(E_\eta^{\mathcal{T}})}^{\mathcal{R}_0}.$$

The shift lemma argument shows that $\pi_{\eta+1}$ is well defined, fully elementary, and has the desired agreement with π_{η} . To see this, recall that $\nu(E) \geq \alpha$ for all E used in σT_0 . This implies that $\psi_0 \upharpoonright \alpha = \sigma \upharpoonright \alpha$, and thus ψ_0, ψ_1, π_1 , and π_{η} all agree with σ on α . Now $\kappa \leq \beta$, and for any $A \subseteq \beta$ in \mathcal{N} ,

$$\pi_0(A) \cap \pi_\eta(\beta) = \pi_0(A) \cap \psi_0(\beta)$$

$$= \psi_0(\tau_0(A)) \cap \psi_0(\beta)$$

$$= \psi_0(\tau_0(A) \cap \beta)$$

$$= \psi_0(A)$$

$$= \pi_\eta(A).$$

Thus, for example, if f = g on $A \subseteq [\kappa]^{|a|}$ with $A \in (E_{\eta}^{\mathcal{T}})_a$, then $\pi_0(f) = \pi_0(g)$ on $\pi_0(A)$, and hence $\pi_0(f) = \pi_0(g)$ on $\pi_0(A) \cap [\pi_{\eta}(\kappa)]^{|a|}$. But then $\pi_0(f) = \pi_0(g)$ on $\pi_{\eta}(A)$, and $\pi_{\eta}(A) \in (\pi_{\eta}(E_{\eta}^{\mathcal{T}}))_{\pi_{\eta}(a)}$. This shows that $\pi_{\eta+1}$ is well defined, and the other conditions on it can also be checked easily.

This completes the proof of $(1)\Rightarrow(2)$ in the case that α is a successor cardinal of K. It is worth noting that we really used that \mathcal{M} was α -strong, and not just β -strong. This guaranteed $\tau_1 \upharpoonright \alpha = \mathrm{id}$, and thus $\pi_1 \upharpoonright \alpha = \sigma \upharpoonright \alpha$. That in turn gave $\pi_{\eta} \upharpoonright \alpha = \psi_0 \upharpoonright \alpha$, which was crucial. It is not true that if \mathcal{M} is β -strong, where β is a cardinal of K, and $\mathcal{J}_{\alpha}^{\mathcal{M}} = \mathcal{J}_{\alpha}^{K}$ for $\alpha = (\beta^+)^K$, then \mathcal{M} is α -strong.

The case α is a limit cardinal of K is similar. Let \mathcal{N} be β -strong for all K-cardinals $\beta < \alpha$, and $\mathcal{J}_{\alpha}^{\mathcal{N}} = \mathcal{J}_{\alpha}^{\mathcal{M}}$. Let W witness that $\mathcal{J}_{\alpha}^{\mathcal{M}} = \mathcal{J}_{\alpha}^{K}$ is A_0 -sound, and let $\sigma: W \to K^c$. For each K-cardinal $\beta \leq \alpha$ let \mathcal{T}_{β} be an iteration tree on W with last model \mathcal{P}_{β} , and let $\tau_{\beta}: \mathcal{N} \to \mathcal{J}_{\eta_{\beta}}^{\mathcal{P}_{\beta}}$ with $\tau_{\beta} \upharpoonright \beta = \mathrm{id}$ for $\beta < \alpha$. Let $\tau_{\alpha}: \mathcal{M} \to \mathcal{J}_{\eta_{\alpha}}^{\mathcal{P}_{\alpha}}$ with $\tau_{\alpha} \upharpoonright \alpha = \mathrm{id}$. For $\beta \leq \alpha$, let $\sigma \mathcal{T}_{\beta}$ be the copied tree on K^c , Q_{β} its last model, $\psi_{\beta}: \mathcal{P}_{\beta} \to Q_{\beta}$ the copy map, and $\mathcal{R}_{\beta} = \mathcal{J}_{\psi_{\beta}(\eta_{\beta})}^{Q_{\beta}}$ or $\mathcal{R}_{\beta} = Q_{\beta}$ as appropriate. Then $(\langle \mathcal{R}_{\beta} \mid \beta \leq \alpha \land \beta \text{ a cardinal of } K \rangle)$ is a K^c -generated phalanx, and therefore $\Omega + 1$ iterable. But then we can win the iteration game $\mathcal{G}^*((\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle), \Omega + 1)$ just as before; letting $\pi_{\beta}: \mathcal{N} \to \mathcal{T}_{\beta}$ be given by $\pi_{\beta} = \psi_{\beta} \circ \tau_{\beta}$, for $\beta \leq \alpha$, and defining the remaining π 's inductively, we copy the evolving \mathcal{T} on $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$ by applying $\pi_{\eta}(E_{\eta}^{\mathcal{T}})$ to the model required by the rules for trees on $(\langle \mathcal{R}_{\beta} \mid \beta \leq \alpha \land \beta \text{ a } K$ -cardinal \rangle , $\langle \sigma(\beta) \mid \beta < \alpha \land \beta \text{ a } K$ -cardinal \rangle). Since for $\beta \leq \alpha$, $\pi_{\beta} \upharpoonright \beta = \psi_{\beta} \upharpoonright \beta = \sigma \upharpoonright \beta$, we have enough agreement to simply quote the shift lemma. Although \mathcal{T} and its copy \mathcal{U} have slightly different tree orders, this causes no problems.

This completes the proof of 6.11.

To see that 6.11 gives on inductive definition of K, assuming K^c has no Woodin cardinals, suppose that α is a cardinal of K and we know which premice are α -strong. Then

$$\exists \beta < (\alpha^+)^K (\mathcal{P} = \mathcal{J}_{\beta}^K) \Leftrightarrow \exists \mathcal{M} (\mathcal{M} \text{ is } \alpha \text{ -strong } \wedge \exists \beta < (\alpha^+)^{\mathcal{M}} (\mathcal{P} = \mathcal{J}_{\beta}^{\mathcal{M}})) .$$

(We get \Rightarrow from 6.2. We get \Leftarrow easily from the definition of " α -strong".) We can determine $(\alpha^+)^K$ and $\mathcal{J}^K_{(\alpha^+)^K}$ using this equivalence. Using 6.11, we can then determine which premice are $(\alpha^+)^K$ -strong. The limit steps in the inductive definition of " α is a cardinal of K" and " \mathcal{M} is α -strong" are trivial modulo 6.11.

This definition still involves quantification over $V_{\Omega+1}$. In order to avoid that, we must show that if \mathcal{M} is of size α , and 6.11 (2) fails, then there is an \mathcal{N} of size α and an iteration tree \mathcal{T} of size α on $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$ witnessing the failure of iterability. (We shall actually get a countable \mathcal{T} .) This is a reflection result much like lemma 2.4.

Definition 6.12. A premouse \mathcal{M} is properly small iff $\mathcal{M} \models$ "There are no Woodin cardinals \land there is a largest cardinal". A phalanx \mathcal{B} is properly small iff $\forall \alpha < lh(\mathcal{B})$ ($\mathcal{M}_{\alpha}^{\mathcal{B}}$ is properly small).

The uniqueness results of §6 of [FSIT] easily yield the following.

Lemma 6.13. Let \mathcal{B} be a properly small phalanx, and let \mathcal{T} be an iteration tree on \mathcal{B} ; then \mathcal{T} is simple.

Proof (Sketch). Suppose b and c are distinct branches of T with $\sup(b) = \lambda = \sup(c)$, b and c existing in some generic extension of V. If b and c do not drop, then $\delta(T \upharpoonright \lambda) < \operatorname{OR}^{\mathcal{M}_b^T}$ and $\delta(T \upharpoonright \lambda) < \operatorname{OR}^{\mathcal{M}_c^T}$ because \mathcal{M}_b^T and \mathcal{M}_c^T have a largest cardinal. (This is why we included this condition.) From 6.1 of [FSIT] we get that $\delta(T \upharpoonright \lambda)$ is Woodin in \mathcal{M}_b^T if $\operatorname{OR}^{\mathcal{M}_b^T} \leq \operatorname{OR}^{\mathcal{M}_c^T}$, and Woodin in \mathcal{M}_c^T otherwise. This contradicts the proper smallness of the premice in \mathcal{B} . If one of b and c drops, then we can argue to a contradiction as in the proof of 6.2 of [FSIT].

We thank Kai Hauser for pointing out that our original version of 6.13 was false. (We had omitted having a largest cardinal from the definition of properly small.)

By 6.13, a properly small phalanx can have at most one $\Omega + 1$ iteration strategy, that strategy being to choose the unique cofinal wellfounded branch.

Lemma 6.14. Suppose K^c has no Woodin cardinals, and that α is a cardinal of K. Let \mathcal{M} be a properly small premouse of cardinality α such that $\mathcal{J}^{\mathcal{M}}_{\alpha} = \mathcal{J}^{K}_{\alpha}$ but \mathcal{M} is not α -strong. Then there is a properly small premouse \mathcal{N} of cardinality α such that $\mathcal{J}^{\mathcal{N}}_{\alpha} = \mathcal{J}^{K}_{\alpha}$ and \mathcal{N} α -strong, and a countable putative iteration tree \mathcal{T} on $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$ such that either \mathcal{T} has a last, illfounded model, or \mathcal{T} has limit length but no cofinal wellfounded branch.

Proof. Let W be a weasel which witnesses that \mathcal{J}_{α}^{K} is A_{0} -sound. By 6.2, W is α -strong. From the proof of $(2) \Rightarrow (1)$ in 6.11, we have that $(\langle W, \mathcal{M} \rangle, \langle \alpha \rangle)$ is not $\Omega + 1$ iterable. It follows that there is a putative iteration tree \mathcal{U} of length $\leq \Omega$ on $(\langle W, \mathcal{M} \rangle, \langle \alpha \rangle)$ which is bad; i.e., has a last, illfounded model or is of limit length and has no cofinal wellfounded branch.

Since Ω is weakly compact, $lh \ \mathcal{U} < \Omega$. This means that for all sufficiently large successor cardinals μ of W, we can associate to \mathcal{U} a tree \mathcal{U}_{μ} on $(\langle \mathcal{J}_{\mu}^{W}, \mathcal{M} \rangle, \langle \alpha \rangle)$. \mathcal{U}_{μ} has the same tree order and uses the same extenders as

 \mathcal{U} ; the models on \mathcal{U}_{μ} are initial segments of the models on \mathcal{U} . We claim that there is a μ such that \mathcal{U}_{μ} is bad. If \mathcal{U} has successor length this is obvious, as the last model of \mathcal{U} is the union over μ of the last models of the \mathcal{U}_{μ} . Suppose \mathcal{U} has limit length, and b_{μ} is a cofinal wellfounded branch of \mathcal{U}_{μ} , for all $\mu < \Omega$ such that μ is a successor cardinal of W. Notice that if $\mu < \eta$, then b_{η} is a cofinal wellfounded branch of \mathcal{U}_{μ} , and thus by 6.13, $b_{\eta} = b_{\mu}$. Letting b be the common value of b_{μ} for all appropriate μ , we then have that b is a cofinal wellfounded branch of \mathcal{U} , a contradiction.

Let $\mathcal{V}=\mathcal{U}_{\mu}$ and $\mathcal{P}=\mathcal{J}_{\mu}^{W}$, where μ is a successor cardinal of W large enough that \mathcal{V} is a bad tree on $(\langle \mathcal{P}, \mathcal{M} \rangle, \langle \alpha \rangle)$. Note that \mathcal{P} is α -strong, and $(\langle \mathcal{P}, \mathcal{M} \rangle, \langle \alpha \rangle)$ is properly small. Let $X \prec V_{\eta}$, for some η , with $\mathcal{V}, \mathcal{P}, \mathcal{M}, \alpha \in X$, and X countable. Let $\pi: R \cong X$ be the transitive collapse, and $\pi(\bar{\mathcal{V}}) = \mathcal{V}$, etc. Let $\lambda \in X \cap \Omega$ be such that $\mathcal{V}, \mathcal{P}, \mathcal{M}, \alpha \in V_{\lambda}$; then $V_{\lambda}^{\sharp} \in X$, and thus $R \models V_{\bar{\lambda}}^{\sharp}$ exists. Because π embeds $(V_{\bar{\lambda}}^{\sharp})^{R}$ into V_{λ}^{\sharp} , we have $(V_{\bar{\lambda}}^{\sharp})^{R} = (V_{\bar{\lambda}}^{R})^{\sharp}$, and so R[x] is correct for Π_{2}^{1} assertions about x, whenever x is an R-generic real coding $V_{\bar{\lambda}}^{R}$. But now R satisfies " $\bar{\mathcal{V}}$ is a bad tree on $(\langle \bar{\mathcal{P}}, \bar{\mathcal{M}} \rangle, \langle \bar{\alpha} \rangle)$ ", and because $\bar{\mathcal{V}}$ is simple by 6.13, R[x] must satisfy the same. Thus $\bar{\mathcal{V}}$ is indeed a bad tree on $(\langle \bar{\mathcal{P}}, \bar{\mathcal{M}} \rangle, \langle \bar{\alpha} \rangle)$.

Now let $X \prec Y \prec V_{\eta}$, where $(\alpha+1) \cup \mathcal{M} \subseteq Y$ and $|Y| \leq \alpha$. Let $\sigma: S \cong Y$ be the transitive collapse, and $\psi: R \to S$ be such that $\pi = \sigma \circ \psi$. Notice that $\psi(\bar{\mathcal{M}}) = \mathcal{M}$ and $\psi(\bar{\alpha}) = \alpha$. Let $\mathcal{N} = \psi(\bar{\mathcal{P}})$. Using ψ we can copy $\bar{\mathcal{V}}$ as a tree $\psi \bar{\mathcal{V}}$ on $(\langle \mathcal{N}, \mathcal{M} \rangle, \alpha)$, noting that because $\bar{\mathcal{V}}$ is simple, $\psi \bar{\mathcal{V}}$ can never have a wellfounded maximal branch. It follows that $\psi \bar{\mathcal{V}}$ is a bad tree on $(\langle \mathcal{N}, \mathcal{M} \rangle, \langle \alpha \rangle)$. Since $\sigma: \mathcal{N} \to \mathcal{P}$ and $\sigma \upharpoonright (\alpha+1) = \text{identity}$, \mathcal{N} is α -strong. This completes the proof of 6.14.

Clearly, if α is a cardinal of K and $\beta < (\alpha^+)^K$, then there is a properly small, α -strong \mathcal{M} such that $\mathcal{J}_{\beta}^{\mathcal{M}} = \mathcal{J}_{\beta}^{K}$ and $\beta < (\alpha^+)^{\mathcal{M}}$. So in our inductive definition of K we need only consider properly small mice. Thus 6.11 and 6.14 together yield:

Theorem 6.15. Suppose K^c has no Woodin cardinals; then there are formulae $\psi(v_0, v_1)$, $\varphi(v_0, v_1)$ in the language of set theory such that whenever G is V-generic/ \mathbb{P} , where $\mathbb{P} \in V_{\Omega}$, then V[G] satisfies the following sentences:

- (1) $\forall x, y \in {}^{\omega}\omega \, \forall \alpha < \omega_1 \, [(L_{\alpha+1}(\mathbb{R}) \models \varphi[x,y]) \Leftrightarrow \exists \delta \leq \alpha \, (x \, codes \, \delta \, \land y \, codes \, a \, \delta\text{-strong, properly small premouse)}];$
- (2) $\forall x, y \in {}^{\omega}\omega \ \forall \alpha < \omega_1 \ [(L_{\alpha+1}(\mathbb{R}) \models \psi[x,y]) \Leftrightarrow \exists \delta \leq \alpha (x \ codes \ \delta \land y \ codes \ \mathcal{J}_{\delta}^K)].$