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§6. An inductive definition of K

The definition of K given in 5.17 is Σω(Vn+ι), and therefore much too
complicated for some purposes. In this section we shall give an inductive
definition of K whose logical form is as simple as possible. Assuming that Kc

has no Woodin cardinals, we shall show that K Π HC is ΣΊ(LW l(M)) in the
codes; Woodin has shown that in general no simpler definition is possible.

The following notion is central to our inductive definition of K.

Definition 6.1. Lei M be a proper premouse such that M. \= ZF —
{Powerset} and j£* is S-sound. We say M is (a^S)-strong iff there is an
(ω, f?+1) iterable weasel which witnesses that j£* is S-sound, and whenever
W is a weasel which witnesses that j£* is S-sound} and Σ is an (ω,Ω+ 1)
iteration strategy for W, then there is a length 0 + 1 iteration tree T on W
which is a play by Σ and such that V γ < θ(ι/(E^) > α), and a Q < Wj,
and a fully elementary π : M —»• Q such that π \ a — identity.

We shall see that it is possible to define "(α, S)-strong" by induction on
α. First, let us notice:

Lemma 6.2. Let W be an (ω,β+ 1) iterable weasel which witnesses that
J^f is S-sound] then W is (α, S) strong.

Proof. Let R be a weasel which witnesses J™ is S-sound, and let Σ be an
β+1 iteration strategy for R. Let Γ be an β+1 iteration strategy for W, and
let (T,l() be the successful coiteration of R with W determined by (Σ,Γ).
Let Q be the common last model of T and ZY, and let π : W —» Q be the
iteration map given by U. By Lemma 5.1, TT \ a = identity. D

Lemma 6.2 admits the following slight improvement. Let W witness that J^f
is S-sound, and let Σ be an (ω, Ω + 1) iteration strategy for W. Let Ί be an
iteration tree played by Σ such that Vγ < θ(v(Ej ) > α), where θ+l = lhT;

then Wj is (α,5) strong. [Proof: Let R be any weasel witnessing J™ is 5-
sound. Comparing R with W, we get an iteration tree U on R and a map
π:W-+O%, where η = lhU-l.By 5.1, crit(ττ) > α. Let σ : Wj -* (Λ^)JT

be the copy map. Then σ and IC^πT are as required in 6.1 for R.] This shows
that we obtain a definition of (α, 5) strength equivalent to 6.1 if we replace
"whenever W is a weasel" by "there is a weasel W" in 6.1. It also shows
that there are (α,5) strong weasels other than those described in 6.2. For
example, suppose W witnesses that J™ is S-sound, and E is an extender
on the W sequence which is total on W and such that cήt(E) < a < v(E).
Setting R = Ult(W9E)t we have that R is (a,S) strong, but R does not
witness that j£ is S-sound.

In view of the fact that K(S) is independent of S, one might expect the
same to be true of (α, S)-strength. This is indeed the case.
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Lemma 6.3. Suppose K(S) and K(T) exist, and a < ORΓ\K(S) Π K(T);
then for any M, M is (α,5) strong iffM is (α,T) strong.

Proof. Suppose M is (α,S)-strong. Let Ίl witness that j£* is S-sound, and
W witness that J*4 is T-sound. Let Σ be an (ω, Ω + 1) iteration strategy
for Wj and Γ an (ω, Ω + 1) iteration strategy for R. From the proof of 5.16,
we get iteration trees T and U on W and R which are plays of two rounds of
g*(W, (ω, β + 1)) and Q*(R, (ω,Ω+ 1)) according to Σ and Γ respectively,
and such that T and U have a common last model Q. The proof of 5.16
also shows that the iteration maps σ : W —»• Q and r : R —>• Q satisfy
α < min(crit(σ), crit(r)). Since α < crit(σ), v(E%) > a for all 7+ 1 < lh Ί.

Now Σ1 yields an (ω, β -f l)-iteration strategy JC* for Q, and the strategy
of copying via τ and using 17* on the copied tree is an (ω, Ω + 1 ̂ iteration
strategy for R] call it Σ**.
According to 6.1, there is an iteration tree V on R having last model P which
is a play by Σ1**, and such that 77(7 + 1 < lh V => ι>(j£Jf) > α), and an
embedding π : M —> P' for some P' < P such that TT f α = identity. Let
r* : P —» £, where £ is the last model of the copied tree rV on Q, be the
copy map; thus τ* \ a = T \ a = identity. Let £' < C correspond to P1.
Then £' is an initial segment of the last model of T~rV, which is a play by
Σ] moreover r* o π maps M into £' and (T* o TT) \ a = identity.

This shows that M is (α,T)-strong, as desired. D

Definition 6.4. Let M be a proper premouse, and let a < Ω. We say M is
a-strong iff for some S, M is (a,S)-strong.

We proceed to the inductive definition of "a-strong". The definition is
based on a certain iterability property: roughly speaking, M is a-strong just
in case M is jointly iterable with any λf which is /?-strong for all β < a.
In order to describe this iterability property we must introduce iteration
trees whose "base" is not a single model, but rather a family of models.
Such systems were called "psuedo-iteration trees" in [FSIT]. Here we shall
simply call them iteration trees, and distinguish them from the iteration trees
considered so far by means of their bases.

Definition 6.5. A simple phalanx is a pair ((Mβ | / ? < α ) , (λ/? | β < α})
such that for all β < a, Mβ is an ω-sound proper premouse, and

(1) β < 7 < <* => (MΊ \= "\β is a cardinal" and pω(MΊ] > λ/j),
(2) β < 7 < a => Mβ agrees with MΊ below λβ, and
(3) β < 7 < α => A/? < λ7.

We have added the qualifier "simple" in 6.5 because we shall introduce
a more general kind of phalanx in §9. Since we shall consider only simple
phalanxes in this section, we shall drop the "simple" when referring to them.

If B = ((Mβ I β < α), (λβ I β < α}) is a phalanx, then we set lh B = α+1,
Mf = Mβ for β < α, and λ(/?,B) = λ^ for β < α.
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A phalanx of length 1 is just a premouse. Iteration trees on phalanxes
are the obvious generalization of iteration trees on premice; the main point
is that we use λ(/?, β) to tell us when to apply an extender to M®, just as we

used v(Ej) in the special case of a tree on a premouse. We shall have βTj
for β < 7 < Ih B, but this is only a notational convenience, and it would be
more natural to think of a tree with Ih B many roots. Since we only need
normal, ω-maximal trees, we shall only define these.

Definition 6.6. Let B be a phalanx of length a + 1, and θ > a + 1. An (ω-
maximal, normal) iteration tree of length θ on B is a system T = (Eβ \ α-fl <
β + I < θ) with associated tree order T, models Mβ for β < θ, and D C θ
and embeddings iηβ : Mη — »• Mβ defined for ηTβ with (a U D) Π (77, β]τ — 0,
such that

(1) Mβ = M^ for all β<ct, and for β, 7 < α, βTj iff β < r,
(2) V/7 < a(λ(β,B) < Ih Ea), and for a + 1 < β + 1 < 7 + 1 < θ,

Ih Eβ < Ih £7;
(3) for a + 1 < β + 1 < θ : T pred (β + 1) is the least ordinal j such that

7 < α and crit(Eβ) < λ(7,/?), or a < 7 and crit(Eβ) < v(Ea). Moreover,
letting 7 - T-pred (β + 1) and K = crit(Eβ),

where M^ is the longest initial segment of MΊ containing only subsets of K
measured by Eβ, and k is largest such that K < pk(M^). Also, β + 1 £ D
iff MΊ φ Mj, and if β + 1 ^ D then i-γβ+i is the canonical embedding
from MΊ into Ultk(MΊ,Eβ), and iηtβ+\ = ij,β+ι ° ̂ 7 for ηTj such that

(4)ifa<β<θ and β is a limit, then D Π [0,/?)τ w finite, [Q,β)τ is
cofinal in β, and Mβ is the direct limit of the MΊ for 7 £ [0,/?)τ such that
7 > α Usup(Z)). Moreover, iΊβ : MΊ -* Mβ is the direct limit map for all
7 > αUsup(D).

In the situation of 6.6, we set θ — Ih T, Mβ = ΛίJ, Eβ — Ej , and so

forth. For β < θ, we let rootr(/?) be the largest 7 < Ih B such that jTβ.
If β is a phalanx, then (?*(#, θ) is the obvious generalization of the length

θ normal iteration game on premice: I and II build an iteration tree on β,
with I extending the tree at successor steps and II at limit steps. If at some
move a < θ, I produces an illfounded ultrapower or II does not play a cofinal
wellfounded branch, then I wins, and otherwise II wins. A winning strategy
for II in G*(B, θ) is a θ-iteration strategy for B, and B is θ-iterable just in case
there is such a strategy.

We wish to state an iterability theorem for phalanxes which are generated
from iterates of Kc.

Definition 6.7. Let It be a proper premouse and Σ an (ω,Ω + 1) iter-
ation strategy for H. We say that a phalanx B is (Σ, IV) -generated iff for
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all β < Ih B, there is an almost normal iteration tree T on ΊZ which is
a play according to Σ such that Mβ < P, where P is the last model of
T, and such that (i) if β + 1 < Ih B, then X(β, B) is a cardinal of U and
Vγ (7 + 1 < Ih T => ι/(JE^) > λ(/?,β)), and (11) if β + 1 = Ih B, then

Vγ Vα < β(j + K Ih T => v(f%) > λ(α, B)).

Recall that ifKc has no Woodin cardinals, then there is a unique (ω, β-fl)
iteration strategy for Kc (namely, choosing the unique cofinal wellfounded
branch).

Definition 6.8. Suppose Kc (= "There are no Woodin cardinals"] then a
phalanx B is Kc -generated iff B is (Σ,KC) generated, where Σ is the unique
(ω, β + 1) iteration strategy for Kc.

Our iter ability proof for Kc in §9 will actually show:

Theorem 6.9. Suppose Kc \= "There are no Woodin cardinals"] then every
Kc-generated phalanx B such that Ih B < Ω is Ω + l-iterable.

Proof. Deferred to §9. D

We shall actually only characterize a strength inductively in the case α
is a cardinal of K. In this case we have the following little lemma.

Lemma 6.10. Suppose Kc \=" There are no Woodin cardinals" , and let a be
a cardinal of K. Suppose a. < ORM , and M is a strong. Then a is a cardinal

ofM.

Proof. There is a weasel W which witnesses that J™ — j£ is 5-sound, and
an elementary π : K — > W with crit(ττ) > α. Since a is a cardinal of K, a,
is a cardinal of W. But then α is a cardinal of P, whenever P is an initial
segment of a model on an iteration tree T on W such that Ih(E^) > a for
all 7 + 1 < Ih T . We have σ : M — > V with crit(σ) > α, for some such P,
and this implies that α is a cardinal of M . D

We can now prove the main result of this section.

Theorem 6.11. Suppose Kc has no Woodin cardinals. Let M be a proper
premouse, and let a < ORM be such that a is a cardinal of K and
J^ — j£ ] then the following are equivalent:

(1) M is a strong,
(2) if ((λf,λ4)> (α)) is a phalanx such that M is β strong for all K-

cardinals β < a, then ((ΛΓ, Λ4), {«}) is Ω -\- 1 iterable.

Proof. We show first (2)=>(1). Let W witness that J^ is 5-sound, and let Σ
be an β 4- 1 iteration strategy for W. By 6.2, W is β strong for all β < α, and
so our hypothesis (2) gives us an β + 1 iteration strategy Γ for the phalanx
((VFjΛί), (α)). We now compare M with W, using Σ to form an iteration
tree T on W and Γ to form an iteration tree U on ((W, M), (a)). The trees T
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and U are determined by iterating the least disagreement, starting from M
vs. VF, as well as by the rules for iteration trees and the iteration strategies.
(See 8.1 of [FSIT] for an example of such a coiteration.)

Let Ih U = θ + 1 and Ih Ί = 7 + 1. We claim that rootw(0) = 1. For
otherwise τootu(θ) = 0, and the universality of W implies that Mfg — Λ4^,

and that i^θ and ijγ exist. Moreover, the rules for U guarantee that crit(^) <
a. Since W has the S-hull and 5-definability properties at all β < α, we then
get the usual contradiction involving the common fixed points of i^θ and z^.

Thus rootw(0) = 1. Since W is universal, i^ θ exists, and maps M into

some initial segment of M^ . By the rules for ZY, crit(i^) > α. Thus T and
ZM witness that -M is (<*,S) strong.

We now prove (1)^(2). Let us consider first the case α is a successor
cardinal of K, say a = (β+)κ = (β+)M where β is a cardinal of K. Let
({.V, Λ4), α) be a phalanx such that λί is /?-strong. We shall show ({Λ/*, M), α)
is β+ 1 iterable by embedding it into a A'c-generated phalanx, and then using
6.9.

Note that M and λf agree below α, and since M is α- strong, J"^
is Ao-sound. Let W be a weasel which witnesses that j£* is Ao-sound. By
Definition 6.1, there are (finite compositions of normal) iteration trees Ί~Q and
TI on W, having last models PQ and PI respectively, such that Vγ[(γ + 1 <
Ih TO => ι/(JE7^°) > /?) and (7 + 1 < Ih T0 =^ i/ί^1) > α)], and there are fully
elementary embeddings TO and TI such that

r0 : Λf -» J °̂ and TO f /? = identity ,

and
TΊ : Λί — > J^1 and TI f α = identity .

The proof of 5.10 shows that we may assume our Ao-soundness witness W is
chosen so that there is an elementary σ : W — > Kc. Since α is a cardinal of A",
we may also assume that α is a cardinal of W. Let σTo and σΊ\ be the copied
versions of To and TI on Kc. Since V7 has no Woodin cardinals (because
Kc has none), the trees TO and TI are simple. This implies that the copying
construction does not break down, and that σTo and σΊ\ are according to
the unique (ω, Ω + 1) iteration strategy for Kc. If E is an extender used in
σT0, then v(E) > σ(β), and if E is used in σTi, then ι/(£) > σ(α). Let

ΨQ'.PQ^ Qo and ψi PI ~> Qι

be the copy maps, where Q0 and Qι are the last models of σT0 and σΊ\
respectively. We have ψQ \ β = σ \ β and ψι \ a = σ \ a. Let, for i G {0, 1},

otherwise .

We claim that ((7£0,7£ι), (^(»)}) is a /ic-generated phalanx, the trees by
which it is generated being σT0 and σΊ\. For this, we must look more closely
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at the extenders used in T0. We claim that if E is used in T0, then Ih E > a.
For if some E such that Ih E < a is used in T0, then there is a B C β such
that B G J™ and B £ PQ. Since M,λf, and W agree below α, 5 G -V,
so τ0(B) G PO, so r0(5) Γ\ β = 5 G PO, a contradiction. Also, Ih E ^ a
for all E1 on the W sequence, since α is a cardinal of W. Thus Ih E > a
for all # used in TQ. Since α is a cardinal of W, this means ι/(£") > α for
all E used in T0. That implies that v(E) > σ(α) for all E used in σT0. The
remaining clauses in the definition of "/^-generated phalanx" hold obviously

By 6.9 we have an Ω + I iteration strategy Σ for ({7^0,^1}, (σ(°t))) We
can use Σ and a simple copying construction to get an Ω+l iteration strategy
Γ for ((Λf, Λ4), (α)). We shall describe this construction now; it involves a
small wrinkle on the usual copying procedure, and it shows why it is necessary
that M. be α-strong, and not just /J-strong.

Our strategy Γ is to insure that if T is the iteration tree on ({Λf, ΛΊ), (a))
representing the current position in G*(((λf, Λί), {α}), β+1), then as we built
T we constructed an iteration tree U on ((72,o>7£ι}5 (σ(α))) such that U is a
play by Σ and has the same tree order as T, together with embeddings

πΊ : Mr

Ί -* MU

Ί

defined for all 7 < Ih T, satisfying:
(a) for η < 7 < Ih T, πη \ vη = πΊ \ vη, where

β if 17 = 0,
_ ί/(£,r) if η > 0 and ̂  is

"" * of type III,
Λ(ί?^) otherwise;

moreover, E^ = ̂ (E^)

(b) for all 7 < Ih Ί such that 7 > 2, ττ7 is a (degr(7),X) embedding,
where X = (ί^Ί o ̂ )"(Λ<*)r , for 77 the least ordinal such that i*Ί o ij exists;
for 7 G {0, 1}, π7 is fully elementary;

(c) for η < 7 < Ih T, if i^ exists, then î 7 exists and πΊ o i^ = i^ o πη.
These are just the usual copying conditions, except that the agreement-

of-embeddings ordinal z/o is /?, rather than α.
We have ΛίJ' = λf, M\ = M, M% = 7e0, and M^ = K\ to begin with,

and we set
τr0 = -00 ° τ"o and ττι = -01 ° rι

Since TΓQ Γ β = ?TI f /? and TTO, ττι are fully elementary, our induction hypothe-
ses (a) - (d) hold.

[To see πo and ?TI are fully elementary, notice that M and λί satisfy ZF-
Powerset, and TO and τ\ are fully elementary according to 6.1. If J^ = Pj,

this means Pi (= ZF-Powerset, so degTt(^ ) = ω, where ̂  = -ΛΛ^, and thus

t/>t is fully elementary (i G {0, 1}). On the other hand, if j£* is a proper
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initial segment of Pi , then ψi \ J^v is obviously fully elementary. So in any
case TΓo and ?TI are fully elementary.]

Now suppose we are at a limit step λ in the construction of T and U.
Σ chooses a cofinal wellfounded branch 6 of U \ λ, and we let Γ choose 6
as its cofinal wellfounded branch of T f λ. It is cofinal because T and U
have the same tree order, and wellfounded because we have an embedding
π : Ml — > M^ given by

defined for 7 E b sufficiently large. Setting TΓΛ = π, we can easily check (a) -
(d).

Now suppose we are at step η -f 1 in the construction of T and U. Player
I in G * ( ( λ f ) M ) , {α}) has just played E^ and thereby determined T \ η +
2. We must determine U \ η + 2 together with TT^+I. In the case that T-
pred(/7 + 1) φ 0, we can simply quote the shift lemma, Lemma 5.2 of [FSIT],
and obtain the desired M^+ι and TT^+I. We omit further detail, and go on
to the case T-pred(τ7 + 1) = 0. [Unfortunately, the agreement-of-embeddings
hypothesis for the copying construction was mis-stated in [FSIT], because
squashed ultrapowers were overlooked. We only get πη \ v(E^} — πΊ \

v(f%), for η < 7, in the case E% is type III, rather than πη \ (lh(E%) + 1) =

π7 ί (Ih E* + 1) as claimed in [FSIT] (after 5.2, in the definition of πT).
This weaker agreement causes no new problems, however.]

Let K = crit(E^), so that K < a. and hence K < β. To simply quote the

Shift lemma we would need that TΓQ \ (κ+)Mr> = πη \ (κ+)Mr> , and that is
more than we know. Still, the proof of the Shift lemma works: set

From 6.6 (2), we get v\ > α, and our agreement hypothesis (a) then gives
τrι \ a = πη \ a. Thus ^(/c) = ττι(/c) < ττι(α). Also, ττι(α) = σ(α). (Since
Π \ a. = identity and ψ\ \ a = σ \ α, ττι(/?) = <τ(β). But ττι(α) is the li\-
successor cardinal of ττι(/?), and σ(α) is the /<c-successor cardinal of σ(/?),
and since all extenders used in σTi have length > σ(α), these are the same.)
Since M% agrees with 7£ι, and hence T^o, through σ(α) = τrι(α), M^ and

7£o have the same subsets of τr^(κ), and the ultrapower defining .M^+i makes
sense.

We can now define πη+ι : M^^ — > M^+l by:

The shift lemma argument shows that πη+ι is well defined, fully elementary,
and has the desired agreement with πη. To see this, recall that v(E} > a for
all E used in σTό. This implies that ΨQ \ a = σ \ α, and thus T/ΌJ ψι> ^
πη all agree with σ on α. Now K < /?, and for any A C β in Λf,
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Thus, for example, if / = g on A C [κ]\a\ with A E (E*)a, then π0(/) =

7Γ0(0) on τr0(A), and hence π0(/) = τr0(#) on ττ0(A) Π [^(/c)]'"1- But then
πo(/) = tfo(0) on τr^(A), and ^(A) G (πί?(£r^))πj?(α). This shows that πη+ι
is well defined, and the other conditions on it can also be checked easily.

This completes the proof of (1)=>(2) in the case that a is a successor

cardinal of K. It is worth noting that we really used that M was α-strong,
and not just /?-strong. This guaranteed τ\ \ a = id, and thus ?TI \ a — σ \ a.
That in turn gave πη \ a. = ψo \ α, which was crucial. It is not true that if
M is /?-strong, where β is a cardinal of K, and j£* = J* for α = (β+)κ ,
then M is α-strong.

The case α is a limit cardinal of K is similar. Let J\f be /?-strong for

all A-cardinals β < α, and J^ = J^. Let H^ witness that J^ - J*
is Ao-sound, and let σ : W — »• Ac. For each A'-cardinal /? < α let Tβ be

an iteration tree on W with last model Pβ, and let 7/3 : λf — > J^/ with
r/j f /? = id for β < α. Let τa : M -+ J^« with τa \ a = id. For β < α,
let σ7^ be the copied tree on Kc , Qβ its last model, ψβ : Pβ — >• Q/^ the

copy map, and 7£/3 = J^ /̂ . oτ Ίlβ = Qβ as appropriate. Then ((Hβ \ β <

a f\β a cardinal of A"), (<τ(/?) | β < a /\β a cardinal of A")) is a Arc-generated
phalanx, and therefore Ω + 1 iterable. But then we can win the iteration

game (/"(((ΛΛΛ'ί), (»}), β -h 1) just as before; letting TT^ : λf — > Tβ be given
by πβ — ψβ o Tβ, for β < α, and defining the remaining TT'S inductively,

we copy the evolving T on ({Λ/", Λi), {α}) by applying πη(E%) to the model

required by the rules for trees on ((Tlβ \ β < α Λ /? a A-cardinal), (<τ(^) |
β < a /\β 3, A-cardinal)). Since for β < α, π/? \ β = ψβ \ β = σ \ /?, we have
enough agreement to simply quote the shift lemma. Although T and its copy
£/ have slightly different tree orders, this causes no problems.

This completes the proof of 6.11. D

To see that 6.11 gives on inductive definition of K, assuming Kc has no
Woodin cardinals, suppose that α is a cardinal of K and we know which
premice are α-strong. Then

3β < (a+)K(P = Jf} & 3M(M is α -strong Λ 3β < (a+)M(P = jj4)) .

(We get =ϊ from 6.2. We get <= easily from the definition of "α-strong".)

We can determine (a+)κ and J^+^K using this equivalence. Using 6.11,

we can then determine which premice are (α+)κ-strong. The limit steps in



The Core Model Iterability Problem 51

the inductive definition of "α is a cardinal of K" and "M is α-strong" are
trivial modulo 6.11.

This definition still involves quantification over VΩ+I. In order to avoid
that, we must show that if M is of size α, and 6.11 (2) fails, then there is an
J\f of size a and an iteration tree T of size α on ({Λ/*, M), {α}) witnessing the
failure of iterability. (We shall actually get a countable T.) This is a reflection
result much like lemma 2.4.

Definition 6.12. A premouse M is properly small iffM |= "There are no
Woodin cardinals Λ there is a largest cardinal". A phalanx B is properly small

i j f fVα < lh(B) (Ma is properly small).

The uniqueness results of §6 of [FSIT] easily yield the following.

Lemma 6.13. Let B be a properly small phalanx, and let T be an iteration
tree on B] then T is simple.

Proof (Sketch). Suppose 6 and c are distinct branches of T with sup(6) =
λ = sup(c), 6 and c existing in some generic extension of V. If 6 and c do

not drop, then δ(Ί \ λ) < ORM* and δ(Ί \ λ) < ORM° because Mξ and
MΊ

C have a largest cardinal. (This is why we included this condition.) From

6.1 of [FSIT] we get that 6(T \ λ) is Woodin in Mξ if OΈiM> < ORM*,
and Woodin in M^ otherwise. This contradicts the proper smallness of the
premice in B. If one of 6 and c drops, then we can argue to a contradiction
as in the proof of 6.2 of [FSIT]. D

We thank Kai Hauser for pointing out that our original version of 6.13
was false. (We had omitted having a largest cardinal from the definition of
properly small.)

By 6.13, a properly small phalanx can have at most one Ω + 1 iteration
strategy, that strategy being to choose the unique cofinal wellfounded branch.

Lemma 6.14. Suppose Kc has no Woodin cardinals, and that a. is a cardinal
of K. Let M be a properly small premouse of cardinality a such that j£* —
j£ but M is not ot-strong. Then there is a properly small premouse λί of
cardinality a such that J*f = J* and λί a-strong, and a countable putative
iteration tree T on ( ( λ f , M ) , ( a ) ) such that either T has a last, illfounded
model, or T has limit length but no cofinal wellfounded branch.

Proof. Let W be a weasel which witnesses that J*f is A0-sound. By 6.2, W
is α-strong. From the proof of (2)=»(1) in 6.11, we have that ((W,M), (a))
is not Ω + 1 iterable. It follows that there is a putative iteration tree U of
length < Ω on ((W, M), (a)) which is bad] i.e., has a last, illfounded model
or is of limit length and has no cofinal wellfounded branch.

Since Ω is weakly compact, Ih U < Ω. This means that for all suffi-
ciently large successor cardinals μ of VF, we can associate to U a tree Uμ on
((Jμ , M), {«)). Uμ has the same tree order and uses the same extenders as
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U\ the models on lίμ are initial segments of the models on U. We claim that
there is a μ such that Uμ is bad. If U has successor length this is obvious, as
the last model of U is the union over μ of the last models of the lίμ. Suppose
U has limit length, and bμ is a cofinal wellfounded branch of Uμ, for all μ < Ω
such that μ is a successor cardinal of W. Notice that if μ < η, then bη is a
cofinal wellfounded branch of Uμ, and thus by 6.13, bη = bμ. Letting 6 be the
common value of bμ for all appropriate μ, we then have that 6 is a cofinal
wellfounded branch of ZY, a contradiction.

Let V = Uμ and P = J™, where μ is a successor cardinal of W large
enough that V is a bad tree on ((P,M), (α)). Note that P is α-strong, and
((P, Λί), {α}) is properly small. Let X x Vη, for some η, with V, P, M,a £ X,
and X countable. Let π : R = X be the transitive collapse, and ττ(V) = V,

etc. Let λ £ X Π Ω be such that V,P,M,a eVχ then V J £ X, and thus

Λ |= 1/J exists. Because TT embeds (V*)R into Fλ

B, we have (V^)R = (V^)B,

and so R[x] is correct for Π\ assertions about z, whenever x is an Λ-generic
real coding V^. But now R satisfies "V is a bad tree on ((P,M), (α))", and

because V is simple by 6.13, R[x] must satisfy the same. Thus V is indeed a
bad tree on ((P,M), (a)).

Now let X -4 Y -< Vη, where (α + l)uM C Y and \Y\ < a. Let σ : 5 S Y
be the transitive collapse, and ψ : R —> S be such that π = σ o ψ. Notice
that ψ(M) = M and ψ(ά) — a. Let λί = ψ(P). Using ψ we can copy V as
a tree ψV on ({Λ/*,Λ^),α), noting that because V is simple, ψV can never
have a wellfounded maximal branch. It follows that *φ V is a bad tree on
((N,M), (α)). Since σ : N -+P and σ f (α + 1) = identity, W is α-strong.
This completes the proof of 6.14. D

Clearly, if a is a cardinal of K and /? < (α+)x, then there is a properly
small, α-strong M such that Jβ* = J^ and /? < (α+)<>M. So in our inductive
definition of K we need only consider properly small mice. Thus 6.11 and 6.14
together yield:

Theorem 6.15. Suppose Kc has no Woodin cardinals; then there are formu-
lae V'(^θ)^ι), ^(^Oj ^i) in the language of set theory such that whenever G is
V-generic/ P, where P £ Vfa, then V[G] satisfies the following sentences:

(1) Vz ; y £ ωω Vα < ωι [(Lα+ι(ffi) |= <f>[x,y]) & 3δ < a (x codes δ Λ y
codes a δ-strong} properly small premouse)];

(2) Vx, y e ωω Vα < ωι [(Lα+ι(M) |= ^[«,y]) <ί=> 36 < a(x codes δ Λ y
codes Jδ

κ)}.




