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§6. An inductive definition of K

The definition of K given in 5.17 is X, (Va+1), and therefore much too
complicated for some purposes. In this section we shall give an inductive
definition of K whose logical form is as simple as possible. Assuming that K¢
has no Woodin cardinals, we shall show that K N HC is X;(L,, (R)) in the
codes; Woodin has shown that in general no simpler definition is possible.

The following notion is central to our inductive definition of K.

Definition 6.1. Let M be a proper premouse such that M | ZF —
{Powerset} and JM is S-sound. We say M is (a, S)-strong iff there is an
(w, 24 1) teradble weasel which witnesses that JIM is S-sound, and whenever
W is a weasel which witnesses that JM 1s S-sound, and X is an (w, 2+ 1)
iteration strategy for W, then there is a length 0 + 1 iteration tree T on W
which is a play by X and such that Vv < e(V(E,Z—) >a), and a Q I W],
and a fully elementary 7 : M — @ such that 7 | a = identity.

We shall see that it is possible to define “(«, S)-strong” by induction on
a. First, let us notice:

Lemma 6.2. Let W be an (w, 2 + 1) iterable weasel which witnesses that
JY is S-sound; then W is (a, S) strong.

Proof. Let R be a weasel which witnesses JY is S-sound, and let £ be an
2+ 1 iteration strategy for R. Let I' be an £2+1 iteration strategy for W, and
let (T,U) be the successful coiteration of R with W determined by (X, I).
Let @ be the common last model of 7 and U, and let # : W — @ be the
iteration map given by &. By Lemma 5.1, 7 | « = identity. O

Lemma 6.2 admits the following slight improvement. Let W witness that 7%
is S-sound, and let X' be an (w, £2 + 1) iteration strategy for W. Let 7 be an
iteration tree played by X' such that Vy < 6'(1/(E_YT) > a), where 6+1=1hT;
then W[ is (@, S) strong. [Proof: Let R be any weasel witnessing J% is S-
sound. Comparing R with W, we get an iteration tree i on R and a map
7:W — RY, where n = lh U/ —1. By 5.1, crit(n) > a. Let 0 : W — (RU;T
be the copy map. Then o and Y ™77 are as required in 6.1 for R.] This shows
that we obtain a definition of («, S) strength equivalent to 6.1 if we replace
“whenever W is a weasel” by “there is a weasel W” in 6.1. It also shows
that there are («,S) strong weasels other than those described in 6.2. For
example, suppose W witnesses that J% is S-sound, and E is an extender
on the W sequence which is total on W and such that crit(E) < a < v(E).
Setting R = Ult(W, E'), we have that R is (o, S) strong, but R does not
witness that JJ is S-sound.

In view of the fact that K(S) is independent of S, one might expect the
same to be true of (a, S)-strength. This is indeed the case.
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Lemma 6.3. Suppose K(S) and K(T) exist, and « < ORN K(S) N K(T);
then for any M, M is (a, S) strong iff M is (a,T) strong.

Proof. Suppose M is («, S)-strong. Let R witness that JM is S-sound, and
W witness that JM is T-sound. Let X be an (w, 2 4 1) iteration strategy
for W, and I' an (w, £2 + 1) iteration strategy for R. From the proof of 5.16,
we get iteration trees 7 and & on W and R which are plays of two rounds of
G*(W,(w, 2+ 1)) and G*(R, (w, £2 + 1)) according to X and I respectively,
and such that 7 and & have a common last model . The proof of 5.16
also shows that the iteration maps ¢ : W — @ and 7 : R — @ satisfy
o < min(crit(s), crit(r)). Since & < crit(o), ¥(ET) > aforally+1< Ik T.

Now X yields an (w, £2 + 1)-iteration strategy 2* for @, and the strategy
of copying via 7 and using X* on the copied tree is an (w, £2 + 1)-iteration
strategy for R; call it I**.
According to 6.1, there is an iteration tree V on R having last model P which
is a play by 2**, and such that Vy(y +1 < A V = II(E'}Y)) > «), and an
embedding 7 : M — P’ for some P’ < P such that 7 [ @ = identity. Let
™ : P — L, where L is the last model of the copied tree 7V on @, be the
copy map; thus 7* | @ = 7 [ @ = identity. Let £’ < L correspond to P’.
Then L’ is an initial segment of the last model of 7™ 7V, which is a play by
X, moreover 7 o 7 maps M into £’ and (7* o 7) | @ = identity.

This shows that M is (a, T)-strong, as desired. a

Definition 6.4. Let M be a proper premouse, and let a < §2. We say M s
a-strong iff for some S, M is (a, S)-strong.

We proceed to the inductive definition of “a-strong”. The definition is
based on a certain iterability property: roughly speaking, M is a-strong just
in case M is jointly iterable with any A which is B-strong for all 8 < «a.
In order to describe this iterability property we must introduce iteration
trees whose “base” is not a single model, but rather a family of models.
Such systems were called “psuedo-iteration trees” in [FSIT]. Here we shall
simply call them iteration trees, and distinguish them from the iteration trees
considered so far by means of their bases.

Definition 6.5. A simple phalanx s a pair (Mg | B < a),(As | B < a))
such that for all § < a, Mp is an w-sound proper premouse, and
(1) B<y<a= My E “Ag is a cardinal” and p,(My) > Ag),
(2) B< v < a=> Mg agrees with M, below Ag, and
B)B<r<a=>d <A,

We have added the qualifier “simple” in 6.5 because we shall introduce
a more general kind of phalanx in §9. Since we shall consider only simple
phalanxes in this section, we shall drop the “simple” when referring to them.

IfB=((Mp|B<a),(ds|B < a))isaphalanx, then we set [h B = a+1,
Mg = Mg for f < @, and A(B,B) = Ag for B < a.
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A phalanx of length 1 is just a premouse. Iteration trees on phalanxes
are the obvious generalization of iteration trees on premice; the main point
is that we use A(8, B) to tell us when to apply an extender to .Mg, just as we
used l/(EZ,—) in the special case of a tree on a premouse. We shall have 8Ty
for B < v < lh B, but this is only a notational convenience, and it would be
more natural to think of a tree with (A B many roots. Since we only need
normal, w-maximal trees, we shall only define these.

Definition 6.6. Let B be a phalanz of length « + 1, and 6 > a + 1. An (w-
mazimal, normal) iteration tree of length 6 on B 1s a system T = (Eg | a+1 <
B+ 1 < 0) with associated tree order T, models Mg for 3 < 6, and D C 6
and embeddings ing : My — Mg defined for nT B with (« UD)N (n,Blr =0,
such that

(1) Mg = Mg forall < a, and for B, vy < a, BTy iff B < 7v;

(2) VB < a(A(B,B) < lh Ey), and fora+1 < f+1 < yv+1 <6,
lh Eg < lh E;

8) fora+1<pB+1<0:T-pred (B+1) is the least ordinal v such that
v < a and crit(Eg) < A(v,B), or a < v and crit(Eg) < v(Eq). Moreover,
letting v = T-pred (B + 1) and k = crit(Eg),

Mgy = Ul (M2, ET),

where M., is the longest initial segment of M., containing only subsets of k
measured by Eg, and k is largest such that k < pk(M;). Also, B+ 1€ D
ff My # M, and if B+ 1 ¢ D then iyp41 is the canonical embedding
from My into Ulty (M., Eg), and inp41 = iy pg+1 © iny for nTy such that
DN (n,7r =0;

(4) if a < B < 0 and B is a limit, then DN [0,B)r is finite, [0,B)r is
cofinal in B, and Mg is the direct limit of the M., for v € [0, B)r such that
v > a Usup(D). Moreover, iyg : My — Mgy is the direct limit map for all
¥ > aUsup(D).

In the situation of 6.6, we set § = lh T, Mg = Mg, Eg = EﬂT, and so
forth. For B < 8, we let root” (8) be the largest 7 < Ih B such that yT8.

If B is a phalanx, then G*(B, 8) is the obvious generalization of the length
6 normal iteration game on premice: I and II build an iteration tree on B,
with I extending the tree at successor steps and II at limit steps. If at some
move « < 8, I produces an illfounded ultrapower or II does not play a cofinal
wellfounded branch, then I wins, and otherwise II wins. A winning strategy
for II in G*(B, 8) is a G-iteration strategy for B, and B is 0-iterable just in case
there is such a strategy.

We wish to state an iterability theorem for phalanxes which are generated
from iterates of K°.

Definition 6.7. Let R be a proper premouse and X an (w,$2 + 1) iter-
ation strategy for R. We say that a phalanz B is (X, R)-generated iff for
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all B < lh B, there is an almost normal iteration tree T on R which 1s
a play according to X such that Mg < P, where P is the last model of
T, and such that (i) if B+ 1 < lh B, then A(B,B) is a cardinal of R and
Vy (v+1 < b T = v(ET) > X(B,B)), and (ii) if B+ 1 = Ih B, then
VyVa < B(y+1<1h T = v(ET) > Xa, B)).

Recall that if K¢ has no Woodin cardinals, then there is a unique (w, £2+1)

iteration strategy for K° (namely, choosing the unique cofinal wellfounded
branch).

Definition 6.8. Suppose K¢ |= “There are no Woodin cardinals”; then a
phalanz B 1s K°-generated iff B is (X, K°) generated, where X is the unique
(w, 2+ 1) dteration strategy for K°.

Our iterability proof for K€ in §9 will actually show:

Theorem 6.9. Suppose K¢ = “There are no Woodin cardinals”; then every
K°-generated phalanz B such that lh B < §2 1s 2 + 1-iterable.

Proof. Deferred to §9. O

We shall actually only characterize o strength inductively in the case «
is a cardinal of K. In this case we have the following little lemma.

Lemma 6.10. Suppose K¢ =“There are no Woodin cardinals”, and let o be
a cardinal of K. Suppose o < ORM, and M is «a strong. Then « is a cardinal
of M.

Proof. There is a weasel W which witnesses that 7% = JX is S-sound, and
an elementary 7 : K — W with crit(7) > «. Since « is a cardinal of K, «
is a cardinal of W. But then « is a cardinal of P, whenever P is an initial
segment of a model on an iteration tree 7 on W such that lh(E'z' ) > « for
all y +1 < lh T. We have ¢ : M — P with crit(¢) > a, for some such P,
and this implies that « is a cardinal of M. O

We can now prove the main result of this section.

Theorem 6.11. Suppose K¢ has no Woodin cardinals. Let M be a proper
premouse, and let & < ORM be such that a 15 a cardinal of K and
J(;” = JX ; then the following are equivalent:

(1) M 1s a strong,

(2) of (N, M), (a)) is a phalanz such that N is B strong for all K-
cardinals B < a, then (N, M), (a)) is 2+ 1 iterable.

Proof. We show first (2)=>(1). Let W witness that JM is S-sound, and let ©
be an 2+ 1 iteration strategy for W. By 6.2, W is 3 strong for all 8 < «, and
so our hypothesis (2) gives us an £2 + 1 iteration strategy I" for the phalanx
(W, M), (a)). We now compare M with W, using X to form an iteration
tree 7 on W and I to form an iteration tree i on ((W, M), (a)). The trees T
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and U are determined by iterating the least disagreement, starting from M
vs. W, as well as by the rules for iteration trees and the iteration strategies.
(See 8.1 of [FSIT] for an example of such a coiteration.)

Let lhid = 0+ 1 and Ih T = v+ 1. We claim that root”(#) = 1. For
otherwise root¥ () = 0, and the universality of W implies that MY = M,{ ,
and that &%, and ig:, exist. Moreover, the rules for i guarantee that crit(i%,) <
a. Since W has the S-hull and S-definability properties at all 8 < a, we then
get the usual contradiction involving the common fixed points of %4, and ig—,y.

Thus rootu(ﬁ) = 1. Since W 1is universal, iLl” o exists, and maps M into
some initial segment of M?; . By the rules for U, crit(iﬁ{’ ) > . Thus 7 and
# o witness that M is (@, S) strong.

We now prove (1)=>(2). Let us consider first the case « is a successor
cardinal of K, say a = (8+)X = (B*)™ where f is a cardinal of K. Let
((N, M), @) be a phalanx such that A is S-strong. We shall show ((V, M), )
is £2+1 iterable by embedding it into a K °-generated phalanx, and then using
6.9.

Note that M and N agree below «, and since M is a- strong, JM
is Ag-sound. Let W be a weasel which witnesses that Jo’(” is Ag-sound. By
Definition 6.1, there are (finite compositions of normal) iteration trees 7o and
71 on W, having last models Py and P; respectively, such that Vy[(y + 1 <
Ih To = v(EI°) > B) and (y+ 1 < lh Ty = v(ET*) > a)], and there are fully
elementary embeddings 75 and 7 such that

0:N — .7,77:" and 79 | 8 = identity,

and
n:M-— J,;’:‘ and 7 | a = identity.

The proof of 5.10 shows that we may assume our Ag-soundness witness W is
chosen so that there is an elementary o : W — K°¢. Since « is a cardinal of K,
we may also assume that « is a cardinal of W. Let 67y and ¢7; be the copied
versions of Tp and 7; on K°. Since W has no Woodin cardinals (because
K¢ has none), the trees Ty and 7; are simple. This implies that the copying
construction does not break down, and that 67y and o7; are according to
the unique (w, 2 + 1) iteration strategy for K¢. If E is an extender used in
0Ty, then v(E) > o(B), and if E is used in 073, then v(E) > o(c). Let

Yo:Po— Qo and ¢ : Py — Qs

be the copy maps, where Qo and @Q; are the last models of 07y and o7;
respectively. We have 1o [ 3 =0 [ B and ¢; [ « = o | a. Let, for ¢ € {0, 1},

) if Pz =Jr )
Ri = §Qz 1 th Jﬂ'
Bu(m) otherwise .

We claim that ((Ro, R1), (0(a))) is a K°-generated phalanx, the trees by
which it is generated being 07y and ¢7;. For this, we must look more closely
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at the extenders used in 7g. We claim that if F is used in 7y, then Ih E > «.
For if some E such that [h E < « is used in 7Ty, then there is a B C 3 such
that B € JY and B ¢ P,. Since M, N, and W agree below a, B € N,
so 1o(B) € Py, so o(B) N = B € Py, a contradiction. Also, [h E # «
for all £ on the W sequence, since « is a cardinal of W. Thus (h E > «
for all E used in 7. Since « is a cardinal of W, this means v(E) > «a for
all E used in 7p. That implies that v(E) > o(«) for all E used in 07,. The
remaining clauses in the definition of “K°-generated phalanx” hold obviously
of ((Ro, R1), (o(ax)))-

By 6.9 we have an 2 + 1 iteration strategy X' for ((Ro,R1), (o(a))). We
can use X' and a simple copying construction to get an 2+1 iteration strategy
I for ((M, M), (a)). We shall describe this construction now; it involves a
small wrinkle on the usual copying procedure, and it shows why it is necessary
that M be a-strong, and not just S-strong.

Our strategy I is to insure that if 7 is the iteration tree on ((N, M), (a))
representing the current position in G*(((NV, M), (a)), 2+1), then as we built
T we constructed an iteration tree i on ((Ro,R1), (0(a))) such that ¢ is a
play by X and has the same tree order as 7, together with embeddings

Ty sz — Ml,’yl
defined for all ¥ < lh T, satisfying:
(a) forn <y <Ih T, m | vy =7y | vy, where
g if 7=0,
v(ET) if n>0and ET is
of type III,
Ih(ET) otherwise;

Vp =

moreover, E¥ = m,(ET) ;

(b) for all v < Ik T such that ¥ > 2, 7, is a (deg” (y), X) embedding,
where X = (zzl; oin)"’ (M:‘,)T, for n the least ordinal such that ig,y o iy exists;
for v € {0, 1}, my is fully elementary;

(c) for n <y < 1h T, if il exists, then & exists and 7, o il = om,.

These are just the usual copying conditions, except that the agreement-
of-embeddings ordinal vy is 3, rather than .

We have M = N, M7 = M, MY = Ry, and M¥ = R; to begin with,
and we set

mo=1%ooToand m; =Yo7 .
Since mg [ 8 = m1 | 8 and mg, m; are fully elementary, our induction hypothe-
ses (a) - (d) hold.

[To see m and m; are fully elementary, notice that M and N satisfy ZF-
Powerset, and 75 and 7 are fully elementary according to 6.1. If J,f =Py,
this means P; | ZF-Powerset, so deg™ (&) = w, where P; = MZ.‘, and thus
%, is fully elementary (i € {0,1}). On the other hand, if J,;’f * is a proper
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initial segment of P;, then ; | J,f' is obviously fully elementary. So in any
case mo and m; are fully elementary.]

Now suppose we are at a limit step A in the construction of 7 and U.
X' chooses a cofinal wellfounded branch b of & | A, and we let I" choose b
as its cofinal wellfounded branch of 7 [ A. It is cofinal because 7 and U
have the same tree order, and wellfounded because we have an embedding
m: MT — MY given by

m(i3y(2)) = &y (14 (2))
defined for v € b sufficiently large. Setting my = 7, we can easily check (a) -
(d).

Now suppose we are at step 7+ 1 in the construction of 7 and U. Player
Iin G*((N, M), (a)) has just played E,,T, and thereby determined 7 | n +
2. We must determine U [ n + 2 together with my4;. In the case that T-
pred(n + 1) # 0, we can simply quote the shift lemma, Lemma 5.2 of [FSIT],
and obtain the desired Mz,fﬂ and 7,4;. We omit further detail, and go on
to the case T-pred(n + 1) = 0. [Unfortunately, the agreement-of-embeddings
hypothesis for the copying construction was mis-stated in [FSIT], because
squashed ultrapowers were overlooked. We only get m, | II(E;J; ) =m |
V(E,,T), for 7 < v, in the case E,T is type III, rather than , | (Ih(E'g—)+ 1) =
my | (Ih E,? + 1) as claimed in [FSIT] (after 5.2, in the definition of 7 7).
This weaker agreement causes no new problems, however.]

Let « = crit(E,,T ), so that k < & and hence k < . To simply quote the

Shift lemma we would need that 7o | (n"’)MZ =y | (n+)MZ, and that is
more than we know. Still, the proof of the Shift lemma works: set

MY, = Ulty(Ro, my(ET)).

From 6.6 (2), we get v1 > «, and our agreement hypothesis (a) then gives
7 | @ = 7, | a. Thus m,(k) = m1(k) < 71(a). Also, m(a) = o(a). (Since
7 | a = identity and ¢ [ @ = o [ a, m(B) = o(F). But m1(a) is the Ry-
successor cardinal of 71(f8), and o(«) is the K°-successor cardinal of o(f),
and since all extenders used in ¢7; have length > o(a), these are the same.)
Since MY agrees with R1, and hence Ry, through o(a) = m1(a), MY and
Ro have the same subsets of 7,(x), and the ultrapower defining Ml,fH makes
sense.
We can now define w4 :/\/l,IT+1 — Ml,fH by:

To+1((a, fIEz) = [mn(a), 7o(f) 1 [my (W70 g -

The shift lemma argument shows that 7,4, is well defined, fully elementary,
and has the desired agreement with 7,. To see this, recall that v(E) > « for
all £ used in 67y. This implies that g | @ = ¢ [ «, and thus g, ¥, 71, and
m, all agree with o on a. Now « < 3, and for any A C fin N,
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mo(A) Ny (B) mo(A4) N ¢o(B)

= o(m0(4)) N¢o(B)
= ¢o(ro(4) N pB)

= to(A)

= m(A).

Thus, for example, if f = gon A C [fc]"'] with 4 € (E?,—)a, then mo(f) =
mo(g) on mo(A), and hence mo(f) = mo(g) on m(A4) N [my()]!l. But then
7o(f) = mo(g) on m,(A), and m,(A) € (7r,,(E,7T)),rn(a). This shows that w4
is well defined, and the other conditions on it can also be checked easily.

This completes the proof of (1)=>(2) in the case that o is a successor
cardinal of K. It is worth noting that we really used that M was a-strong,
and not just S-strong. This guaranteed 7, [ @ = id, and thus m; [a =0 | a.
That in turn gave 7, [ o = %o [ o, which was crucial. It is not true that if
M is B-strong, where 3 is a cardinal of K, and JM = JX for a = (8+)XK,
then M is a-strong.

The case « is a limit cardinal of K is similar. Let N' be (-strong for
all K-cardinals # < «, and ‘7(;’,‘/ = JC;M. Let W witness that Jé"‘ = Jf
is Ag-sound, and let ¢ : W — K°. For each K-cardinal § < a let 73 be
an iteration tree on W with last model Pg, and let 75 : N' — Jps® with
3 [ﬂ:idforﬂ<a.LetTa:M—»an"withra [ @ = id. For 8 < a,
let 075 be the copied tree on K¢, Qg its last model, Y5 : Psg — Qp the
copy map, and Rg = J«l?;zna) or Rp = Qp as appropriate. Then ((Rp | B <
aAB a cardinal of K), (¢(8) | # < a AB a cardinal of K)) is a K°-generated
phalanx, and therefore {2 + 1 iterable. But then we can win the iteration
game G*(((NV, M), (a)), 2+ 1) just as before; letting 7 : N — T3 be given
by mg = 9 o 18, for f§ < «, and defining the remaining 7’s inductively,
we copy the evolving 7 on ({(N, M), (a)) by applying m,(ET) to the model
required by the rules for trees on ((Rg | # < o A B a K-cardinal), (o(f) |
B < aAf a K-cardinal)). Since for § < a, 15 [ B =195 [ B =0 | B, we have
enough agreement to simply quote the shift lemma. Although 7 and its copy
U have slightly different tree orders, this causes no problems.

This completes the proof of 6.11. O

To see that 6.11 gives on inductive definition of K, assuming K¢ has no
Woodin cardinals, suppose that « is a cardinal of K and we know which
premice are a-strong. Then

38 < (MK (P = Jf) © IM(M is  -strong AFB < (etM(P = TM).

(We get = from 6.2. We get < easily from the definition of “a-strong”.)
We can determine (at)X and (7({: +yK using this equivalence. Using 6.11,

we can then determine which premice are (a*)K-strong. The limit steps in
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7

the inductive definition of “a is a cardinal of K
trivial modulo 6.11.

This definition still involves quantification over Vj;4;. In order to avoid
that, we must show that if M is of size «, and 6.11 (2) fails, then there is an
N of size a and an iteration tree T of size a on ((M, M), («)) witnessing the
failure of iterability. (We shall actually get a countable 7".) This is a reflection
result much like lemma 2.4.

and “M is a-strong” are

Definition 6.12. A premouse M is properly small iff M |= “There are no
Woodin cardinals A there is a largest cardinal”. A phalanz B is properly small
iff Va < Ih(B) (ME is properly small).

The uniqueness results of §6 of [FSIT] easily yield the following.

Lemma 6.13. Let B be a properly small phalanz, and let T be an iteration
tree on B; then T is simple.

Proof (Sketch). Suppose b and ¢ are distinct branches of 7 with sup(b) =
A = sup(c), b and ¢ existing in some generic extension of V. If b and ¢ do
not drop, then §(7 | ) < ORM? and (T A< ORM? because MT and
MT have a largest cardinal. (This is why we included this condition.) From
6.1 of [FSIT] we get that §(7 [ A) is Woodin in M7 if ORMY < ORM?
and Woodin in M7 otherwise. This contradicts the proper smallness of the

premice in B. If one of b and ¢ drops, then we can argue to a contradiction
as in the proof of 6.2 of [FSIT]. ]

We thank Kai Hauser for pointing out that our original version of 6.13
was false. (We had omitted having a largest cardinal from the definition of
properly small.)

By 6.13, a properly small phalanx can have at most one {2 + 1 iteration
strategy, that strategy being to choose the unique cofinal wellfounded branch.

Lemma 6.14. Suppose K° has no Woodin cardinals, and that a is a cardinal
of K. Let M be a properly small premouse of cardinality o such that M =
JE but M is not a-strong. Then there is a properly small premouse N of
cardinality o such that Jév = JX and N a-strong, and a countable putative
iteration tree T on ((N, M), (a)) such that either T has a last, illfounded
model, or T has limit length but no cofinal wellfounded branch.

Proof. Let W be a weasel which witnesses that JX is A¢-sound. By 6.2, W
is a-strong. From the proof of (2)=>(1) in 6.11, we have that ((W, M), («))
is not £2 + 1 iterable. It follows that there is a putative iteration tree ¥ of
length < 2 on ((W, M), (a)) which is bad; i.e., has a last, illfounded model
or is of limit length and has no cofinal wellfounded branch.

Since 2 is weakly compact, [h U < 2. This means that for all suffi-
ciently large successor cardinals y of W, we can associate to i a tree U, on
(7Y, M), (a)). U, has the same tree order and uses the same extenders as
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U; the models on U, are initial segments of the models on &. We claim that
there is a u such that U, is bad. If ¥ has successor length this is obvious, as
the last model of U is the union over p of the last models of the ¢,. Suppose
U has limit length, and b, is a cofinal wellfounded branch of U, for all p < 2
such that u is a successor cardinal of W. Notice that if u < 7, then b, is a
cofinal wellfounded branch of &, and thus by 6.13, b, = b,. Letting b be the
common value of b, for all appropriate y, we then have that b is a cofinal
wellfounded branch of U, a contradiction.

Let V=U, and P = JIYV , where p is a successor cardinal of W large
enough that V is a bad tree on ((P, M), («)). Note that P is a-strong, and
((P, M), (a)) is properly small. Let X < V;, for some n, with V,P, M,a € X,
and X countable. Let 7 : R = X be the transitive collapse, and 7(V) =
etc. Let A € X N 2 be such that V,P, M,a € VA, then V € X, and thus
R V;? exists. Because 7 embeds (V")R into V{, we have (Vn)R Vi,
and so R[z] is correct for I3 assertions about z, whenever z is an R-generic
real coding V3. But now R satisfies “V is a bad tree on (P, M) (@))”, and
because V is mmple by 6.13, R[z] must satisfy the same. Thus V is indeed a
bad tree on ((P, M), (@)).

Now let X <Y < V,, where (a+1)UMCY and |[Y|<a.Leto:S=Y
be the transitive collapse, and ¥ : R — S be such that 7 = o o ¢. Notice
that $(M) = M and ¢(a) = a. Let N’ = 9(P). Using ¥ we can copy V as
a tree ¥V on ((N, M), ), noting that because V is simple, ¥V can never
have a wellfounded maximal branch. It follows that 1V is a bad tree on
((N, M), (a)). Since ¢ : N — P and o | (a + 1) = identity, N is a-strong.
This completes the proof of 6.14. 0

Clearly, if « is a cardinal of K and § < (at)X, then there is a properly
small, a-strong M such that Jﬁ“ = ij and B < (a*)M. So in our inductive
definition of K we need only consider properly small mice. Thus 6.11 and 6.14
together yield:

Theorem 6.15. Suppose K¢ has no Woodin cardinals; then there are formu-
lae Y(vo,v1), @(vo,v1) in the language of set theory such that whenever G is
V-generic/ P, where P € Vy, then V[G] satisfies the following sentences:
(1) Vz, y € “wVa < wy [(La+1(R) E ¢lz,y]) © 36 < a (z codes § ANy
codes a §-strong, properly small premouse)];
(2) Ve, y € “w Vo < wy [(Lat1(R) F Y[z, y]) © 36 < a(z codes § Ny
codes JX)).





