5. PARTIAL CONSERVATIVITY

A sentence @ is I'-conservative over T if for every I' sentence 6, if T + ¢+ 6, then TH
0. In this chapter we study this phenomenon for its own sake. Results on I'-con-
servativity are, however, also very useful in many contexts, in particular in con-
nection with interpretability (see Chapters 6 and 7).

Our task in this chapter is to develop general methods for constructing partial-
ly conservative sentences satisfying additional conditions such as being nonprov-
able in a given theory.

We assume throughout that PA- T. The results of this chapter do not depend on
the assumption that T is reflexive.

A first example of a IT;—conservative sentence is given in the following:

Theorem 1. -Conr is II;—conservative over T.

Proof. Suppose 6 is I1; and

(1) T+ -~Contt 6.

From (1) we get PAlF Prp(-6) — Prr(Cong), whence

(2) PAF Prp(-6) » ~Cong +=Con-

By provable Z;—completeness,

(3) PAF -6 — Pr(-9).

By Corollary 2.2,

4)  PA+ Conth Congycony-

Combining (2), (3), (4) we get PAF -6 — —-Cony and so by (1), T- 6. &

By Corollary 2.4, Theorem 1 provides us with an example of a (Z;) sentence ¢
which is IT)—conservative over T and nontrivially so, i.e. such that T¥ ¢, even if T
is not X;-sound.

If ¢ is [—conservative over T and v is I'd, then clearly ¢ is ['-conservative over
T + y. Also note that if T is Z;-sound and = is IT;, then & is X;—conservative over T
iff m is true iff T + m is consistent.

Let us now try to construct a sentence ¢ which is nontrivially I'-conservative
over T. Thus, given that
1) T+eko,
where 0 is I', we want to be able to conclude that T+ 6. This follows if (1) implies
that
(2 T+-6Fo.

The natural way to ensure that (1) implies (2) is to let ¢ be a sentence saying of itself
that there is a false I' sentence (namely 8) which ¢ implies in T. Thus, let ¢ be such
that

(3) PAF ¢ & Fu(u) A Prrio(u) A ~Trp(w)),

where I'(x) is a PR binumeration of the set of I' sentences. Then (1) implies (2).
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It is, however, not generally true that T¥ . This holds if T is true, since ¢ is then
false. But, for example, T + ~Congl ¢, and so if TF ~Conr, then T+ ¢. To prevent
this from happening, we redefine ¢ as follows: let ¢ be such that

PAF ¢ & JyFuvsy(T(u) A Prfr,o(u,v) A =Trp(u) A Vz<y-Prir(e,z)).
Then TF ¢ and ¢ is '—conservative over T. Also, if T" = IT,,, then ¢ is £, which is
optimal; in fact, this is the sentence used in the proof of Theorem 2 (a), below, for
=11,

From our present point of view the proof of Theorem 4.2 with S = T can be
understood as follows (see the remarks following Corollary 4.1). Let y be as in that
proof. It is sufficient to show that -y is I'd—conservative over T: in fact, that is exact-
ly what is done in the proof of Theorem 4.2. This also follows from the fact that (3)
with ¢ replaced by -y and " by I'd is true.

Let [Tg(x,y) :=

Vuvsy(['(u) A Prfg,,(u,v) = Trp(u)).
This formula is constructed to yield the following:

Lemma 1. [T'lp(x,y) is a I' formula such that

@) PAF [T]1(x,y) A z<y = [T]1(x,2),

(ii)) T+ ¢F [I'p(e,m) for all ¢ and m,

(iii) ifyisTand T + @k v, there is a q such that PA + [Tlp(e,q)F w.

Proof. (i) is clear. (ii) Let 6y,...,8) be all " sentences < m provable in T + ¢ and whose
proofs are < m. Then
PAF YVuvsm(I'(u) A PrfT+(p(u,v) —u=06yv.vu=0).
Also clearly, by Fact 10 (a) (ii),
T+ oFu=6yv..vu=6; - Trp(w).
It follows that T + ¢ + [T]1(p, m).
(iii) Suppose y is I"and T + @+ y. Let p be a proof of y in T + ¢ and let q =
max{y,p}. Then PA + [T'](9,q)t Trp(y) and so PA + [I'(e,q)F v. B
S is a T—subtheory of T, SHr T, if every I' sentence provable in S is provable in T.
We write [T](x,y) for [[](x,y).

Lemma 2. Suppose x(x,y) is I'd. There is then a I'? formula &(x) such that for all k
and m,

(@ T+E&KF x(km),

(i) T+E&KArT+ {xk,q): qeN}.

Proof. Case 1. T' = Z,,. Let §(x) be such that
(1)  PAF&(k) & Vy([Z,]EK)y) = x(ky))-
Then (i) follows from Lemma 1 (ii) and (1). To prove (ii), suppose v is X, and
T + E(k)F y. By Lemma 1 (iii), there is a q such that
PA + [Z,]E(k). @t .
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Hence, by Lemma 1 (i),
PA + Vysqu(ky) + ~yk Vy([Z,]EX)y) = x(ky))
and so, by (1),
PA + Vy<qy(k,y) + ~yt E(k).
But then, since T + &(k)F v, it follows that T + {y(k,q): g N}I- y, as desired.
Case 2. T =1I1,,. Let &(x) be such that
PAF &(k) & Jy(-[TT,](E(k),y) A Vz<yy(k,2)).
The proof that £(x) is as claimed is then almost the same as in Case 1. B
From Lemma 2 we derive the following result on numerations of r.e. sets.

Lemma 3. Let X be an r.e. set. There is then a I'd formula &(x) such that
(i) if keX, then TF =§(k),
(i)  if ke X, then (k) is T—conservative over T.

Proof. Let p(x,y) be a PR formula such that X = {k: 3mPAF p(k,m)} and let {(x) be
as in Lemma 2 with x(x,y) := -p(x,y). B

For extensions of PA Lemma 3 implies Theorem 3.1.

We can now prove our first general theorem on the existence of nontrivially par-
tially conservative sentences.

Theorem 2. (a) There is a I'd sentence ¢ such that TF ¢ and ¢ is [~conservative over
T.

(b) If X is r.e. and monoconsistent with T, there is a I'd sentence ¢ such that g X
and ¢ is I'-conservative over T.

Proof. (a) is the special case of (b) where X = Th(T). ¢

(b) Let £(x) be as in Lemma 3 and let ¢ be such that PAF ¢ < &(9). If 9 X, then,
by Lemma 3 (i), TF —&(¢) and so T+ —¢, which is impossible. Thus, ¢¢ X and so, by
Lemma 3 (ii), ¢ is '-conservative over T. &

Of course, the I'd sentence mentioned in Theorem 2 (a) is not I'T (compare
Corollary 2.5).

The following result is a natural strengthening of Theorem 2.

Theorem 3. (a) There is a T sentence ¢ such that ¢ is [d—conservative over T and
-¢ is '-conservative over T.

(b) If X is r.e. and monoconsistent with T, there is a I sentence ¢ such that ¢ is
I'd—conservative over T, =@ is '-conservative over T, and ¢, ~¢¢ X.

We derive Theorem 3 from:

Lemma 4. Suppose 3o(x,y) is I'd and x;(x,y) is T. Then there is a " formula &(x) such
that fori=0, 1,
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()  T+E(KF Vysmyky) = x-itkm),
() ifyisTdand T+ El(k)F i, then T + {x1_i(k,q): g€ N}F wi.

Proof. We need only prove this for I' = Z. Let §(x) be such that
(1) PAFEK) & Iy((ITLIE®X)y) v oky)) A Y2<y([Zal(-EK)2) A x1(k.2))).
We verify (i) and (ii) for i = 0 and leave the case i = 1 to the reader.
(i) By Lemma 1 (ii),
T + E(K)F [T, ]EK),y) >y >m.
It follows that
T + &(k) + Vysmyy(ky)F (=[IT,]EK),y) v ~xoky)) =y > m.
But then, by (1),
T + §(k) + Vysmyy(k,y)F x1(km),
as desired.
(ii) Suppose y is IT, and
2) T+EKFw.
By Lemma 1 (iii), there is a q such that T + [II](§(k),q)F v and so
3) T+ -yk ~[MIE®,Q.
By Lemma 1 (ii), for every m,
@)  T+-EW0F [Z,](=&(K),m).
By (3), (4), Lemma 1 (i), and (1), it follows that
T + =y + ~E(k) + Vy<qx, (k;y)F &(K)
and so
T + -y + Vy<qx; (ky)k &(k).
But then, by (2), T + Vy<qy,(k,y)F v, as desired. B
Proof of Theorem 3. (a) is a special case of (b). ¢
(b) Let p;(x,y),i=0, 1, be PR binumerations of relations R;(k,m) such that X = {k:
ImRy(k,m)} and {o: ~¢e X} = {k: ImR;(k,m)}. Let §(x) be as in Lemma 4 with x;(x,y)
= 2p1_i(x,y). Let ¢ be such that PAF ¢ < &(9). Suppose e X or ~@e X. Let m be the
least number such that Ry(¢,m) or R;(¢,m). Suppose R;(¢,m). Then not Ry_;(¢,n) for
n <m. (We may assume that Ry(k,n) implies not R (k,n).) But then, by Lemma 4 (i),
Tk -Ei(p), whence Tk -l But this is impossible, since gle X. It follows that ¢,
-@¢ X. But then, by Lemma 4 (ii), ¢ is I'd—conservative over T and -¢ is ['-conser-
vative over T. B
Let Prffm-(x,y) =
Juvsy(I'(u) A Trp(u) A Prfp,, (x,v));
a slight modification of the formula Prf(x,y) defined in Chapter 4. In the proofs
of Lemmas 2 and 4 [I'](x,y) can be replaced by -|Prff[,1—d(—|x,y). Then, for example,
formula (1) in the proof of Lemma 4 becomes:
(Sm) PAF g(k) & Eiy((Prffrlzn(-»ﬁ(k),y) v xky)) A
Vz<y(~Prfrp, EK)y) A x,(k2)-
This formula may be compared with formula (1) in the proof of Theorem 3.2 and
(R") following the proof of Theorem 2.2.
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Our next result is related to Theorem 4.3; it will be used several times, in some
cases indirectly, in Chapters 6 and 7.

S is a I'—conservative extension of T if T4 SHrT. By Theorems 4.4 (a) and 4.5, T +
Rfny is a I1;—conservative extension of PA + Con‘.?.

Theorem 4. (a) Let X be an r.e. set of I' sentences. There is then a I" sentence 6 such
that T + 0 is a ['d—conservative extension of T + X.

(b) Let y(x,y) be any I" formula. There is then a I" formula n(x) such that for every
k, T + n(k) is a 'd—conservative extension of T + {y(k,m): me N}.

Proof. (a) By Craig’s theorem, we may assume that X is primitive recursive. Let
1n(x) be a PR binumeration of X. Then for every q,
(1)  PA+XFn(q) = Trp(q)-
By Lemma 2 with (T replaced by I'd and) x(x,y) := n(y) = Tr(y), there is a I sen-
tence 0 such that for all o,
@ T+6Fn(g) > Trrlo),
(3) T+64dT+{n(q) = Trp(q): qe N}
From (2) it follows that T + 6F X and from (1) and (3) it follows that T + 8-d
T+X o

(b) Left to the reader. B

So far there has been no indication that the properties of Z, and IT,, n > 1, in
terms of partial conservativity may be different, but we shall now show that they
are.

Let yg and y; be I sentences. If
1O Thyovvy,
then, trivially,
(2)  v;is '-conservative over T + ~y;_;,i=0, 1.
If ' = I1,, the converse of this is true. This follows from our next:

Lemma 5. Let y; and y, be any I1,, sentences. There are then I1,, sentences 8 and
0, such that

(i) TF6gv8y,

(i) Try;—6,i=0,1,

(iii) TF 6y A 01— YoAy;.

Proof. By Fact 5, we may assume that y; := VxJ;(x), where 8;(x) is Z,_;. Let 6; :=
Vx(=0;(x) — Jy<x+i—d1(y)).
Then (i), (ii), (iii) are easily verified (cf. Lemma 1.3). B
From (ii) and (iii) of Lemma 5 it follows that T + —; + y;_;+ -6;. Hence, assum-
ing (2), T + ~y; —6;. It follows that TF 6, v 8; = g v y; and so, by Lemma 5 (i),
we get (1).
We now prove that if I' = X, then (2) does not imply (1).
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Theorem 5. (a) There are X, sentences y, y; such that
(i) Tk =(yo A yy),
(i) TH yo vy,
(iii) ;is [T ;—conservative over T + —y;_;,i=0, 1.
(b) Suppose X is r.e. and monoconsistent with T. Then there are X, sentences v,
y; such that (i) and (iii) hold and

(iv)  wovwvieX
We derive this theorem from:

Lemma 6. Let X be an r.e. set. There are then X, formulas &y(x) and &;(x) such that
fori=0,1,

B T =(E0) A &),

(i) if ke X, then Tk =E;(k),

(i)  if ke X, then &;(k) is IT,—conservative over T + —&;_;(k).

Proof. Let p(x,y) be a PR formula such that X = {k: 3ImPAF p(k,m)}. Fori=0, 1, let
&(x), x;(%), 8;(x,y) be, respectively, £, Z,, and IT,_; formulas such that
(1) PAF (k) & 3y(-[T]E(K).y) A Yz<y-p(k,2)),
(2)  PAF x;(x) © Jydi(xy),
Ei(x) == Fy(§i(x,y) A Vz<y+i=d,_i(x,2)).
This application of (double) self-reference is more complicated than any we have
encountered so far and it requires some thought to see that it is admissible. But in
view of Fact 5 it is.
(i) is then clear. To prove (ii), suppose ke X. Let m be such that
PAF p(k,m). By Lemma 1 (ii),
T + &i(F -[I,]Ei(k)y) > m <y
So, by (1),
(B T+E(F (k).
Also, by (2), PAF &;(x) — x;(x). Now (ii) follows from this and (3).
Finally, to prove (iii), suppose k¢ X. Now suppose V is IT,, and
T + =&1_i(k) + E;(K)F .
By (i), it follows that
@ T+EWF .
But then, by Lemma 1 (iii), there is a q such that T + [IT,](§;(k),q)}F y. Also
TF =p(k,m) for all m. By (1), it now follows that T + -y ;(k). Thus, by (2),
T + —yt Jyd;(k,y). But then
T + -y + =& (KF &(k).
Combining this with (4) we get T + =&;_j(k)F- y. This proves (iii). B
Proof of Theorem 5. (a) follows from (b). ¢
(b) We may assume that if ye X and T+ y — 8, then 8eX. Let &;(x) be as in
Lemma 6. Let ¢ be such that
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PAF ¢ & Ey(9) v &;(9).
Set y; := &;(¢). If pe X, then, by Lemma 6 (ii), TF =&;(9) for i = 0, 1, and so T+ -,
impossible. Thus, ¢¢ X and so (iv) holds. (i) and (iii) follow from Lemma 6 (i) and
(iii), respectively. B
Theorem 5 (b) will be used in the proof of Theorem 7.7 (b), below. Note that, by
Theorem 5, Lemma 5 with IT;, replaced by X is false.
We can now partially improve Corollary 2.5 as follows:

Corollary 1. There are X, sentences y, V¥, such that T yy — -y, and there is no
A,, sentence ¢ for which T yy — ¢ and Tk ¢ — ;.

Proof. Let y, W be as in Theorem 5 (a). Suppose ¢ is A, TF yy — ¢, and TF ¢ —
—y;. Then TF -y; — ¢ and TF -y — -¢ and so Tk yj v vy, a contradiction. B
Let Cons(I,T) be the set of sentences '-conservative over T. It is clear from the
definition of Cons(I',T) that it is a Hg set. We now show that this classification is
correct.
Our next lemma follows at once from Lemma 3.2 (b) but has a simpler direct
proof which we leave to the reader.

Lemma 7. Let R(k,m) be any r.e. relation. There are then formulas pg(x,y) and
p1(x,y) such that py(x,y) is 1, p1(x,y) is I}, pg(x,y) numerates R(k,m) in T, PAF
polk,m) = p;(k,m), and if not R(k,m), then T¥ p;(k,m).

Theorem 6. (a) Cons(I',T) is a complete l’Ig set.
(b) If ' £ X4, then I'd A Cons(I',T) is a complete H(z) set.

Proof. Let X be any I'Ig set and let R(k,m) be an r.e. relation such that X =
{k: VmR(k,m)}. Let p(x,y) be a formula numerating R(k,m) in T, which is Z; if ' =
%, and Iy if T = IT,. Let (x) be as in (the proof of) Lemma 2 with (x,y) := p(x,y).
To prove (a) it is now sufficient to show that
(1) keXiff §(k)e Cons(T,T).
By Lemma 2,
@ T+&RF plkm),
@) T+E&I)r T +{p(kq): qeN}.
If ke X, then Tt p(k,q) for every q and so, by (3), §(k)e Cons(I',T). If ke X, there is
an m such that T¥ p(k,m) and so, by (2), (k)¢ Cons(I",T) (in fact, §(k) is not ;- or
not IT;—conservative over T, as the case may be). Thus, (1) holds.This proves (a).
If T is %, or [T, with n > 2, then &(x) is I'd as claimed in (b). Finally, suppose I' =
I1;. Let py(x,y) and pq(x,y) be as in Lemma 7. Let p(x,y) := pg(X,y). Then &(x) is Z;.
By Lemma 7, §(k)e Cons(IT,T) if ke X. Thus, (b) holds in this case, too. B
Suppose T is £j-sound and 6 is I1;. Then 6 is Z;—conservative over T iff 8 is true.
Thus, IT; N Cons(Z,,T) is I1.
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We conclude this chapter with a proof of Theorem 4.8. We derive this result
from the following lemma; a refinement of this lemma (for n = 1) will be proved in
Chapter 7 (Lemma 7.22).

Lemma 8. There is a IT, formula §(x) such that for every k,
@)  T¥EK),

(i) Tk &(k+1) - E(k),

(i)  &(k) is Z,—conservative over T + —§(k+1).

Proof. In a first attempt to prove Lemma 8 it is natural to let £(x) be such that
PAF (k) © E(k+1) v VV([Z,](=E(k+1)AE(K),v) = ~Prfr(§(k),v)).
But then (i) does not follow and so we have to proceed in a more indirect way.
Let 3(u) be any formula. Let x(z,x,y) be a IT,, formula such that
(1) PAF -x(z,x,0),
(2)  PAF k@ ky+1) & x(8,k+1,y) v VV([Z,](msk)aEs(k),v) = —Prfp(€s(k),v)),
where
Es(x) := Vu(d(u) - x(d,x,(u = x) + 1)),
ns(x) := Vu(d(u) — k(§,x+1,u = x)).
(+is the function such that k +m = k - m if k > m and = 0 otherwise.) In (2) sety =
u =+ k. Then, since neither y nor u is free in the second disjunct of (2), by predicate
logic, we get
(3)  PAF E5(k) & n5(k) v WV([Z](~5()AE5(K),v) = ~Pr(Es(k),v).
It follows that
(4)  if TF &g(k), then TF ng(k).
For let p be a proof of (k) in T. By Lemma 1 (ii),
T+ -5(k) A E(k)F ~Prir(Es(k),p),
whence T + &5(k)F ns(k) and so TF ng(k).
Clearly
(5)  if TF 8(u) = u >k, then Tk ng(k) <> Eg(k+1).
Suppose now d(u) is PR. Then
(6)  if Jud(u) is true, then TH E5(0).
Suppose Fud(u) is true and T+ E5(0). Let m be the least number such that §(m) is
true. Then TF 8(u) —» u 2 m. By (4) and (5), it follows that Tk ng(m). But also TH
&(m) and so, by (1), T+ -mg(m), a contradiction. Thus, (6) is proved.
Now let &’(u) be a PR formula such that
(7)  PAF 3ud’(u) & Pr(€g(0)).
If 3ud’(u) is true, then, by (6), Pr(Es(0)) is false and, by (7), it is true. Thus, Fud’(u)
is false, whence, by (7), Pr(€s/(0)) is false and so T &g/(0).
Let §(x) := &5,(x) and n(x) := ng (x). Then T £(0). Hence, by (3) and (5) with 3(u)
:= 8’(u), we get (i) and (ii).
(iii) can be verified as follows. Suppose
8) T+ -&k+1) +E(k)F o,
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where 6 is Z. Then, by (5), T + m(k) + §(k)F 0. Hence, by Lemma 1 (iii), there is a
q such that

T + [Z)(-nAEK)QF .
But then, by (i), (3), and Lemma 1 (i), T + —ot &(k), whence T + =§(k)F- 6 and so, by
8), T + “¢(k+1)F o, proving (iii). H
Proof of Theorem 4.8. Let £(x) be as in Lemma 8. By Lemma 8 (i) and (iii), TH &(k)
— E(k+1). It follows that T + &(0) + {€(k) — &(k+1): ke N} is an axiomatization of T
+ {€(k): ke N} which is irredundant over T. Let my, ke N, be IT;, sentences such that
T + {m: ke N} is an axiomatization of T + {(k): ke N}. Let r be arbitrary. By Lemma
8 (ii), there is an m such that T + §(m)F n,. Let s be such that T + my A...A g E(m+1).
We may assume that s > r. It follows that

T + &(m) A ~E(m+1)F =(Tg A A T g A Topyq AcA T).
But then, by Lemma 8 (iii),

T + Mg A A Ty ATl A T E(m+1).
It follows, by Lemma 8 (ii), that T + {m: k # r}F m,. Thus, T + {m,: ke N} is not irre-
dundant over T. B

We have actually proved more than is stated in Theorem 4.8. First of all, for

every r, T + {m: k # r}l ; in fact, for every m, T + {my: k > m} 7. Secondly, this
holds for all, not necessarily r.e., sets {m,: ke N} of IT, sentences such that T + {m:
keN} 4k T + {£(k): ke N}. The theory T + {n(k): ke N} constructed in the proof of
Theorem 4.7, on the other hand, is deductively equivalent to T + {n(k): ke H} and
{n(k): ke H} is irredundant over T. (The set {n(k): k¢ H} is not r.e. (cf. Lemma 4.6).)

Exercises for Chapter 5.
In the following exercises we assume that PAH T.

1. Let 0 be a I1; Rosser sentence for T. Show that -0 is not I1;—conservative over T
(compare Exercise 2 (c)).

2. Suppose T is not Z;-sound.

(a) Show that Cont is not X;—conservative over T. [Hint: Let &(y) be a PR for-
mula such that Jyd(y) is false and provable in T. Let  be as in Exercise 2.21. Then
TH x and T + =+ Prp(x) A Pro(=y).]

(b) Improve (a) by showing that if T# ~Conr, there is a Z; sentence 6 such that
T + Contt Prr(c) and T# Prr(c).

(c) Improve (a) by showing that if 8 is a I; Rosser sentence for T, 8 is not £;—con-
servative over T. [Hint: Let y := Ju(Prf(-6,u) A Vz<u-Prfr(6,z)). T + ~y is consis-
tenl’f. T+ —-]\v + 8k Cont,gand T + -6t -y. Thus, T + ~y + 6F Cong,,. Apply (a)
toT + .

3. Show that the result of replacing X, by IT, in Corollary 1 is false.
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4. ¢ is a self-prover in T if TF @ — Pr(g). Every Z; sentence is a self-prover.

(a) Show that ¢ is a self-prover in T iff there is a sentence 6 such that
Tk ¢ < (6 A Pr(6)).

(b) Show that for every n > 0, there is a X, (I, ;) self-prover in T which is not
Ty (Zhet)-

5. (a) Show that Lemma 2 (ii) can be replaced by
if PAAS 4 T, then S + §(k)1r S + {x(k,q): qe N}.

(b) ¢ is hereditarily T—conservative over T if ¢ is '—conservative over S for every
S such that PA4 S4 T. Show that in Lemma 3 and Theorem 2 we can replace
“T'd—conservative over T” by “hereditarily I'd—conservative over T”.

(c) Show that in Theorem 3 we cannot in general replace “I'- (I'd-) conserva-
tive” by “hereditarily I'- (I'd-) conservative”. [Hint: Let ¢ be a Z; sentence and y a
IT; sentence such that PA + ¢ A y is consistent and PAF ¢ v y. Let T=PA + ¢ A y.]

6. (a) Show that there are sentences ¢ and y such that, T + oFt y, T + yl* @, ¢ is
IT,—conservative over T + y, and y is X —conservative over T + ¢.
(b) Improve (a) by showing that there are sentences ¢ and v as in (a) such that
¢ is X, and y is IT,. [Hint: Let
Tk ¢ & 3z(-[I,]T +y(9,2) A Vu<z-Prfr(p,u)),
TFy e Vz([Zn]THp(\u,z) — -Prfr(y,z)).
Use Exercise 5 (b).]

7. Show that there are X, sentences y, y; as in Theorem 5 satisfying the addition-
al condition that -y, is X ,—conservative over T,i =0, 1.

8. (a) S is a proper T-subtheory of T if Sk TAr S. Suppose A4 BAp, A. Show that
there is a sentence ) such that A is a proper I1;-subtheory of A + i and A + ! 4
B,i=0, 1

(b) Show that there are sentences ¢, ¢ such that ¢y, ¢1, ~¢g v —¢; are I'-con-
servative over T and —~@g, ~@;, @y A @; are not IT;—conservative over T. [Hint: Use
Lemma 4.]

9. (a) Show that there is a A, ; sentence ¢ such that ¢ and —¢ are IT,—conservative
over T. [Hint: Let ¢ be such that
PAF ¢ & Iy(-[IT,J(9,y) A Vz<y[I1,](-¢,z)).]

(b) Show that if T is X ,—sound, there is no A, ,; sentence ¢ such that ¢ and -¢
are X —conservative over T.

(c) Show that there is no B,, sentence ¢ such that ¢ and —¢ are IT,— (£,-) con-
servative over T. Conclude that there is a A, sentence which is not B} (compare
Corollary 2.5). [Hint: Suppose not. Let ¢ := (T A Gp) V...V (T, A Op). In the IT;, case,
for k < n+1, show that
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Tk V{j/e\x—'cj: X € {0,...n} & X has exactly k elements}.]
10. Let Xj and X; be disjoint r.e. sets.

(a) Show that there is a X, formula &(x), such that £i(x) numerates X; in T, i = 0,
1, and if ke X U Xy, then §(k) is IT,—conservative over T and -§(k) is Z,—conserva-
tive over T.

(b) Show that there is a formula &(x) such that (i) if ke Xy, then TF &(k), (ii) if
ke X;, then Tk -§(k), (iii) if Yy and Y; are any disjoint finite subsets of (X, U X;)S,
then A{E(k): ke Yg} A A{=E(k): ke Y1} is T'—conservative over T. [Hint: First define a
formula n(k) such that all the sentences (-)n(0) A...A (=)n(k) are I'-conservative
over T. Then let £(x) := (§g(X) v N(X)) A ~&;(X) for suitable Ey(x), &;1(x).]

11. (a) Let X and Y be r.e. sets of I and I'd sentences, respectively, such that if pe X
and yeY, then TF ¢ v y. Show that there is a " sentence 6 such that T + 0 is a
I'd—conservative extension of T + X and T + -0 is a I~conservative extension of T
+Y.

(b) Let 6y, 61, 0,,... be a recursive sequence of I" sentences such that T+
(6 A 8y, for k # m. Let Xy and X; be disjoint r.e. sets. Show that there is a sen-
tence ¢ such that X; = {k: Tk 6, — ¢} and X; = {k: TF 8, = —o}.

12. Suppose T is not X;—sound. Show that IT; N Cons(Z,T) is a complete Hgset.
[Hint: Let R(k,m) and S(k,m,n) be an r.e. and a primitive recursive relation such
that X = {k: VmR(k,m)} and R(k,m) iff 3nS(k,m,n). Let o(x,y,z) be a PR binumera-
tion of S(k,m,n). Let ¥(x) be a PR formula such that 3xy(x) is false and provable in
T. Let pg(x,y), p1(x,y), and 8(x,y,z) be such that

PAF po(x,y) « Vz(Prfp(p(Xy),z) = Juszo(x,y,u)),

po(xy) := Vzd(x,y,2),

p1(x,y) == 3z(1(z) A Vu<zd(x,y,z)).
Then

Tk PO(XIY) - p1(xy),

if R(k,m), then TF py(k,m),

if not R(k,m), then T p;(k,m).]

13. (a) Let HCons(T',T) be the set of sentences hereditarily I'-conservative over T.
Suppose I' # ;. Show that 'l n HCons(I',T) is a complete Hg set.
(b) Show that
4 A Cons(I,T) N {¢: ~@e Cons(I'4,T)}
is a complete l'[.f,_) set.
(c) Show that
Xy X Zp N {<@p,91>: ¢ Cons(IT,, T + ~¢y;),1=0, 1}
is a complete Hg set.
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14. (a) Suppose ¢ is X, and Il —conservative over T. Let y be any II,, sentence
which is Z ~conservative over T + @. Show that T + -t y. Conclude that no IT,
sentence is nontrivially X ,—conservative over T + ¢ and T + -¢. [Hint: Let ¢ :=
Ixy(x) and y := Vxd(x), where y(x) and §(x) are IT,_; and Z,_;, respectively. Then T
+ @ + Yk 3x(Y(x) A Vy<xd(y)).]

(b) Show that there is an r.e. family of consistent extensions of PA such that for
no I' does there exist a I' sentence which is nontrivially I'—conservative over every
member of the family. [Hint: Let ¢ be a I1; sentence undecidable in PA. Then

{PA + -6: PAF 6 — ¢} U {PA + 6: PAF ¢ — 6}
is an r.e. family of extensions of PA. Suppose 0 is I1,, and nontrivially £ ,—conserv-
ative over all members of this family. Then PA + ¢l 6. 8 is £ —conservative over T
+ (0 A @). It follows that PA + ¢} 6, a contradiction. The dual case is similar.]

15. This exercise may be compared with Theorems 2.13, 2.14.

(a) For each T, there is a primitive recursive function f such that for every I sen-
tence o, f(¢) is a proof in PA of ¢ <> Trp(¢). Use this to show that there is a " sen-
tence 0 and a primitive recursive function g(k) such that 8 is '—conservative over
T and if y is any I'd sentence and q a proof of y in T + 6, then g(q) is a proof of y
inT.

(b) Let f be any recursive function. Show that there are sentences ¢, y such that
¢ is I'—conservative over T, y is I', TF v, and there is a proof p of y in T + ¢ such
that q > f(p) for every proof q of yin T.

Notes for Chapter 5.

The general concept I'—conservative is due to Guaspari (1979). Theorem 1 is due to
Kreisel (1962). Lemma 2 is due to Lindstrém (1984a). Lemma 3 and Theorem 2 with
X = Th(T) are due to Guaspari (1979); for somewhat stronger results, also due to
Guaspari (1979), see Exercise 5 (b). The proofs of Lemma 3 and Theorem 2 are from
Lindstrom (1984a). Lemma 4 is due to Lindstrom (1984a). (Lemmas 2 and 4 and
their proofs are similar to and were inspired by results of Guaspari (1979), Solovay
(cf. Guaspari (1979)), and Héjek (1971); for further applications, see e.g. Hajek and
Pudlék (1993).) Theorem 3 less the references to the set X is due to Solovay (cf.
Guaspari (1979); see also Jensen and Ehrenfeucht (1976); the full result is proved in
Smoryriski (1981a) and Lindstrém (1984a). The formula Prf Cr,p(x,y) was introduced
by Smoryriski (1981a); (Sm) and the fixed point mentioned in Exercise 3.7 (a) are
special cases of a very general construction due to Smoryriski (1981a); however, in
the proof of his main theorem Smoryriski has to assume that the formulas y;(x,y)
are PR. Theorem 4 is due to Lindstrom (1984a). Lemma 6 and Theorem 5 are due
to Bennet (1986), (1986a). Corollary 1 with X, replaced by I1,, is false (Exercise 3).
Theorem 6 for ' = I1; and for ' = I, are essentially due to Solovay (cf. Hajek
(1979)) and Hajek (1979), respectively, (in both cases with different proofs);
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Theorem 6 for I' = %, n > 1, is due to Quinsey (1980), (1981) (with a different proof);
the present proof is due to Lindstrém (1984a). For more information on Cons(I',T)
and related sets, see Exercises 12 and 13. Lemma 8 is due to Lindstrom (1993);
Lemma 8 with IT, and X, interchanged and restricted to Z,—sound theories is also
true but the proof is quite different.

An alternative concept of partial conservativity has been introduced and studied
by Hajek (1984).

Exercise 2 (a) is due to Smoryriski (1980); Exercise 2 (c) is due to §vejdar (cf.
Hajek and Pudlédk (1993)). Exercise 4 is due to Kent (1973). Exercise 5 (b) is due to
Guaspari (1979). Exercise 7 is due to Bennet (1986). Exercise 10 (a) is due to
Smoryriski (1981a). Exercise 12 is due to Quinsey (1981); the suggested proof is due
to Bennet. Exercise 13 (c) is due to Bennet (1986). Exercise 14 is due to Misercque
(1983).





