Satisfaction classes and
automorphisms of models of PA

Roman Kossak

1 Introduction

In recent years we have learned a lot about countable recursively saturated
models of PA and their automorphisms. We know that there are contin-
uum many nonisomorphic automorphism groups of such models, and we
know that each of them contains a copy of the automorphism group of the
order preserving permutations of the rationals. We can classify the closed
normal subgroups of a given automorphism group, and we have a great
deal of information about open maximal subgroups. We know much about
the model theory of the arithmetically saturated countable models of PA;
in particular we know that the automorphism group of a countable arith-
metically saturated model of PA has the small index property. But still
many questions remain open: Can we classify all normal and all maximal
subgroups of the automorphism group a given model? Do non arithmeti-
cally saturated models have the small index property? Is the automorphism
group of a countable recursively saturated model decidable?

Many other results and questions could be mentioned here. However, the
purpose of this paper is not to give a complete survey; this has been done
recently by Kotlarski in [17]. Instead, I will concentrate on a specific feature
of countable recursively saturated models of PA — inductive satisfaction
classes and their use.

My goal is twofold. Often satisfaction classes allow one to give easy an-
swers to questions that otherwise seem difficult. A list of examples is pre-
sented in section 4. I hope those who work in the model theory of recursively
saturated models of PA will find this list useful. The other goal is to propose
the following problem. Much of the model theory of countable recursively
saturated models of PA is based on specific techniques (resplendency argu-
ments, special ‘back-and-forth’ constructions), but a significant number of
results can be obtained as corollaries of classical results concerning models
of PA* applied to structures of the form (M, .S), where M is a recursively
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saturated model of PA and S is an inductive satisfaction class for M. A
short survey such results constitutes sections 2 and 3. The advantage this
approach is the availability of all the techniques developed for models of
PA*, in particular the powerful machinery of definable types of Gaifman [1].
(PA* is Peano Arithmetic formulated in a language extending the language
of PA.) The problem, I propose, is to determine what part of the model
theory of countable recursively saturated models of PA can be obtained in
this way. Of course, the answer might depend on the definition of model
theory, and, perhaps, the biggest challenge is to give a precise formulation
of the problem.

My presentation of the material will be a bit informal, as it is intended for
an easy reading by the reader not necessarily interested in technical details.
I assume that the reader is familiar with the notions of recursive saturation
and of the standard system of a model of PA. I will also use the notion
of arithmetic saturation. A model M of PA is arithmetically saturated if
it is recursively saturated and its standard system satisfies the arithmetic
comprehension schema. Definitions of all other concepts discussed here can
be found in [3].

I will only discuss those problems concerning recursively saturated mod-
els of PA that can be formulated without direct references to satisfaction
classes. There are many interesting results on the theory of satisfaction
classes, most of them due to Kotlarski, Ratajczyk, and Smith. The inter-
ested reader should consult [17] and [20].

2 Recursive saturation and satisfaction classes

The notion of a satisfaction class requires an arithmetization of the lan-
guage of arithmetic. The specifics of the arithmetization are not important,
as long as it is can be formalized within PA. In what follows we will identify
formulas and sentences of PA with their Gédel numbers.

Definition 2.1 A set S C M PA is an inductive satisfaction class for
M i

’l,) Th(M, a)aeM C S,

1) S satisfies Tarski’s inductive definition of a satisfaction relation;

i) (M, S) EPA*.

Tarski’s argument shows that no inductive satisfaction class can be de-
fined in a model of PA. The same argument can be applied to prove that
if S extends Th(M,a)sem, and S does not contain sentences false in M,
then S is undefinable in M. Definability here, and elswhere in the paper,
means definability with parameters.

Here is the basic fact relating inductive satisfaction classes to recursive
saturation.
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Proposition 2.2 Let M be a model of PA. i) If M has an inductive sat-
isfaction class, then M is recursively saturated. ii) If M is countable and
recursively saturated, then M has an inductive satisfaction class.

The easy proof consists of an overspill argument in 4, and a resplendency
argument in .

It should be mentioned that the second part of proposition 2.2 is false
for uncountable models. There are uncountable (even w;-like ones) recur-
sively saturated models of PA without satisfaction classes. A rather class-
less model of Kaufmann [2] has this property. Direct constructions of such
models can be found in [12] and [14].

If S is an inductive satisfaction class for a model M, then, by overspill
S decides all 3. sentences, with parameters, in the sense of M, for some
nonstandard e. Also, either S decides all sentences in the sense of M, in
this case we say that S is full, or there is the largest e such that S decides
all ¥, sentences of M, in such a case we will say that S is a X.-inductive
satisfaction class for M.

To illustrate how inductive satisfaction classes are used, I will now prove
four well-known results, whose first proofs did not use satisfaction classes
explicitely. These results form a basis for the model theory of recursively
saturated models of PA. The original proofs are not very difficult, so the
point here is not that the proofs involving satisfaction classes offer signif-
icant simplification (although the new proofs are shorter). What is inter-
esting about the proofs I want to present, is that no reference to recursive
saturation is made directly, and that they only use standard results con-
cerning models of PA*,

One of the results, which turns out to be applicable in many situations,
and which the reader might not be familiar with, is the following version of
Gaifman’s theorem on cofinal extensions, due to Kotlarski [16] and Schmerl
(18].

Lemma 2.1 If (M, X) is a model of PA* and N is a cofinal extension of
N, then there exists (ezactly one) Y C N such that (M, X) < (N,Y).

Model theory of recursively saturated models of arithmetic started with
Smoryriski’s paper [21]. One of the important results of that paper was the
following analog of the MacDowell-Specker theorem.

Theorem 2.3 Every countable recursively saturated model of PA has a
proper countable recursively saturated elementary end exrtension.

Proof: Let M be a countable recursively saturated model of PA. Let S be
an inductive satisfaction class for M. By the MacDowell-Specker theorem
(M, S) has a countable elementary end extension (N, T). Since T is an
inductive satisfaction class for N, N is recursively saturated and the result
follows. 0O
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The next result that contributed much to further developments is known
as the Smoryriski-Stavi theorem [22].

Theorem 2.4 Every cofinal extension of a recursively saturated model is
recursively saturated.

Proof: We will consider the countable case first. Let M be a countable
recursively saturated model of PA, and let N be its cofinal extension. Let
S be an inductive satisfaction class for M. By lemma 2.1 there is T C N
such that (M, S) < (N,T), hence N is recursively saturated.

If M is not countable then M is a union of a tower of elementary sub-
models each of which has a cofinal countable recursively saturated cofinal
submodel, and the result follows, by the previous argument. O

The two theorem quoted above seem to indicate that the model theory
of recursively saturated models of PA does not differ much from the model
theory of PA. The next proposition, first noted in [5], shows that it is not
SO.
Recall that if M < N, then a subset X of M is codedin N if X = MNY
for some set Y which is definable in N. We say that N is a conservative
extension of M if the only subsets of M coded in N are the definable
subsets of M, or, equivalently, the type of every element of N \ M over M
is definable. If NV is a conservative extension of M, then N must be an end
extension. Also, by a suitable version of the MacDowell-Specker theorem,
every model of PA has a conservative elementary end extension.

Proposition 2.5 If N is a recursively saturated model of PA and M < N,
then N is not a conservative extension of M.

Proof: W.l.o.g. we can assume that N has a cofinal countable elementary
submodel; hence, by proposition 2.2 and lemma 2.1, N has an inductive
satisfaction class S. Let T = M NS. Since (M, T) =PA¥*, it is easy to show
that T is coded in M. T might not be an inductive satisfaction class for
M (and indeed, it is not an inductive satisfaction class for M if M is not
recursively saturated), but still by Tarski’s argument T is undefinable in
M and the result follows. O

According to proposition 2.5, recursively saturated elementary end ex-
tension of a model M always codes a nondefinable subset of M, but still we
have a weak version of conservativeness for recursively saturated elemen-
tary end extensions: if M is countable, then every nondefinable subset of
M can be omitted in a recursively saturated elementary end extension of
M. This lemma was proved first by Kaufmann [2] using different methods,
another short proof using satisfaction classes can be found in [18].

Lemma 2.2 Let X be a nondefinable subset of a countable recursively sat-
urated model M of PA, then there is a countable recursively saturated ele-
mentary end extension N of M in which X is not coded.
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Proof: Let us first suppose that (M, X) is not recursively saturated. Let
S be an inductive satisfaction class for M such that (M, S) is recursively
saturated. Such satisfaction classes exist by chronic resplendency of count-
able recursively saturated models (see [3]). Let (N, K) be a conservative
elementary end extension of (M, S). Then, if Y is a subset of M coded in N,
then Y must be definable in (M, S); hence (M, Y) is recursively saturated.
Thus X is not coded in N.

Suppose now that (M, X) is recursively saturated. Consider the theory
Y saying that S is an inductive satisfaction class and X is undefinable
in (M, S). Each finite fragment of ¥ is modeled by (M,Tr,), for n large
enough, where Try, is the universal ¥, relation (n is standard here). Hence
M can be expanded to a model of X. If (M, S) is such an expansion, then
we again take (N,T) to be a conservative extension of (M, S), and the
result follows. O

3 Minimal satisfaction classes and s-ultrapowers

In the last proof of the previous section we have, tacitly, used definable
ultrapowers of structures of the form (N, S). A definable ultrapower of a
structure A is an ultrapower of A built using the set of definable functions
of A and an ultrafilter on the definable subsets of .A. For brevity, we will
call a recursively saturated model N an s-ultrapower if there is a recursively
saturated model M and an inductive satisfaction class S for M such that
(N, T) is a definable ultrapower of (M, S), for some T' C N.

It is shown in [6] that every countable recursively saturated model of PA
can be expanded by adding an inductive satisfaction class in continuum
many elementary inequivalent ways. Also, for every such expansion (M, S)
there are continuum many nonisomorphic expansions (M, T') which are all
elementarily equivalent to (M, S). Using this variety of satisfaction classes it
is not difficult to show that for every countable recursively saturated model
M, there are continuum many nonisomorphic pairs of the form (M, K)
where K <cnq M and M is an s-ultrapower of K. Thus, the question to
consider is: Suppose M and N are countable recursively saturated models
of PA and M <eng N, is N an s-ultrapower of M? The answer to such a
general question is negative. For a model M and a € M, let M|a] denote
the largest elementary submodel of M not containing a (if there is such a
model). If M is a recursively saturated model of PA, then, for every a € M,
M is not a s-ultrapower of M|a], an outline of the argument proving this
is given in the discussion of question 4.1 in section 4. We also have the
following proposition.

Proposition 3.1 If M is countable recursively saturated but not arithmeti-
cally saturated, model of PA then there is a recursively saturated K <ena M
such that none of the inductive satisfaction classes of K is coded in M.
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For a proof see proposition 4.6 of [7]. Clearly, if K is as in the above
proposition, then M is not an s-ultrapower of K.

Problem 3.2 For a given countable recursively saturated model M of PA,
classify all recursively saturated K <enq M such that M is an s-ultrapower
of K.

An important class of s-ultrapowers is obtained by using minimal satis-
faction classes.

For a structure A, DEF(.A) will denote the family of sets definable in A
(with parameters), and Def(.4) will be the set of points definable without
parameters in A.

Definition 3.3 An inductive satisfaction class S for a model M is mini-
mal, if Def(M,S) = M.

Theorem 3.4 Every countable recursively saturated model of PA has a
minimal inductive satisfaction class. Moreover, if M has a X. inductive
satisfaction class, for some e € M, then M has continuum many pair-
wise elementarily inequivalent structures of the form (M, S), where S is a
minimal X, inductive satisfaction class for M.

Theorem 3.4 was proved in a slightly weaker form in [6], the present for-
mulation is taken from [14]. Here is the outline of the proof. Start with the
theory To= Th(M) plus the set of sentences saying that S is a ¥, induc-
tive satisfaction class. T is coded in the standard system of M. The crucial
point now is that one can find a complete consistent theory T extending
T, and such that the family of sets of natural numbers represented in T is
exactly the standard system of M. If (Mp, Sp) is the minimal model of T,
then Sy is a minimal inductive satisfaction class for My. My is elementar-
ily equivalent to M, both models are recursively saturated, and they have
the same standard systems, hence Mj is isomorphic to M, and the result
follows.

To obtain the second part of the theorem it is enough to notice that
the completion T in the above proof can be obtained in continuum many
different ways.

If S is a minimal inductive satisfaction class for a model M, then the
srtucture (M, S) is rigid (i.e. has no nontrivial automorphisms). But we
can prove more.

Proposition 3.5 If S is a minimal inductive satisfaction class for a model
M, then the structure (M,DEF (M, S), €) is rigid.

The key to the proof of 3.5 is the following lemma:

Lemma 3.1 If S is a . inductive satisfaction class for a model M, then
there ezists a X, inductive satisfaction class that is definable in (M, S) iff
a < e+ n for some standard n.
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Proofs of 3.5 and 3.1 are not difficult, they can be found in [14].

If K and M are countable recursively saturated models of PA, and M
is an elementary end extension of K, then it is important to know which
automorphisms of K can be extended to M.

Let Coded s (K) denote the family of those subsets of K which are coded
in M .If f €Aut(K) extends to M, then, f must be an automorphism of
(K, Codedp(K), €). In most cases the converse is also true [10]:

Lemma 3.2 Let M be a countable recursively saturated model of PA, then
for all but countably many recursively saturated K <eng M, an automor-
phism f of K can be extended to an automorphism of M iff f is an auto-
morphism of (K, Codedpy (K), €).

See [11] for the discussion of the special cases in which lemma 3.2 fails.

The interesting problem is: What are the groups of automorphisms of
structures of the form (K, Codeds(K), €)7. It turns out that they can be
almost anything, and the key to this result is an application of minimal
satisfaction classes. First an extreme example:

Theorem 3.6 If M is an s-ultrapower of a recursively saturated model K,
built with a minimal inductive satisfaction class for K, then no nontrivial
automorphism of K can be extended to M.

Theorem 3.6 is an easy consequence of 3.5. The proof is given in [14].

Let M be a given countable recursively saturated model of PA, and let
G be the automorphism group of M. For X C M let G(x} be the setwise
stabilizer of X and let G(x) be the pointwise stabilizer of X. According
to lemma 3.2, for most elementary initial segments K <.,q M the group
G(k}/G k) is isomorphic to Aut(K, Codeds (K), €), in particular, theo-
rem 3.6 can be reformulated as follows. There is K <.nq M such that
the quotient group Gk}/G k) =Aut(K, Codedy (K), €) is trivial. Much
more can be done in this direction. Using minimal satisfaction classes and
a result of Gaifman [1] we have shown in [9] that:

Theorem 3.7 For every countable recursively saturated model M and for
every countable linearly ordered set (I, <) there is K <ena M such that M
is an s-ultrapower of K, and Gk}/G k) ZAuY(I, <).

Since the models K obtained in the proof of 3.7 satisfy the assumptions
of lemma 3.2 (i.e. they are not among the special cases), theorem 3.7 also
provides information about the groups Aut(X, Codedy (K), €).

One of the consequences of theorem 3.7 is that the group G is not divisi-
ble; hence it is not elementarily equivalent to the group of order preserving
permutations of the rationals.

Recently Schmerl [19] has shown that in the formulation of theorem 3.7
“linearly ordered set (I,<)” can be replaced by “linearly ordered structure
(I,<,...).” Schmerl’s proof uses s-ultrapowers.
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4 Examples and counterexamples

Throughout this section, let M be a countable recursively saturated model
of PA, and let G =Aut(M).

Question 4.1 Can every recursively saturated K < M be represented as
Def(M, S) for some inductive satisfaction class S for M ?

Answer: In general the answer is negative. If K =Def(M, S) for some
inductive satisfaction class S, then (K,T) < (M,S), where T = SN K
is an inductive satisfaction class for K coded in M. Thus, the answer is
provided by proposition 3.1. Also, since in (M, S) one can define functions
majorizing all definable functions of M, if (K, T) < (M, S), and K <enq M,
then for every a € M \ K there is b € M \ K such that t(b) < a, for every
function ¢ definable in M without parameters. Hence models M{a] cannot
be represented as Def(M, S).

However, if K is a cofinal submodel of M, then the answer is positive. In
this case, let T be a minimal inductive satisfaction class for K. By lemma
2.1, there is S C M such that (K,T) < (M, S). Thus, Def(M,S) =K. O

Question 4.2 Let f be an automorphism of M. Is there an inductive sat-
isfaction class such that fS = S?

Answer: If M is arithmetically saturated, then the answer is negative. By
fix(f) we will denote the set of points fixed by f. We will consider fix(f)
as a submodel of M. Clearly, fix(f) < M. If fS = S for some inductive
satisfaction class S for M, fix(f) N S, is an inductive satisfaction class for
fix(f). Thus, if fix(f) is nonstandard it is recursively saturated. It is well-
known that if M is arithmetically saturated then there are f € G such that
fix(f) is nonstandard and not recursively saturated (cf.[15], [4]), and the
result follows.

If M is not arithmetically saturated, then, for every f € G, fix(f) & M,
hence the previous argument cannot be applied. The problem is still open
in this case. g

Question 4.3 Suppose M is arithmetically saturated. Is every K < M of
the form fix(f) for some f € G?

Answer: The answer is negative. It is shown in [15] that if K =Def(M, S)
for an inductive satisfaction class S such that (M, S) is recursively sat-
urated, then K has continuum many elementary substructures which are
not of the form fix(f). O

Question 4.3 is related to the following important open problem posed
in [4].

Problem 4.4 Characterize elementary submodels of M which are of the
form fix(f), for f € G.
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Question 4.5 Suppose that M is a model of true arithmetic. Is there an
f € G such that f(a) > a for all nonstandard a € M ?

Answer: In [15] a special ‘back-and-forth’ argument was designed to show
that the answer to the question is positive iff M is arithmetically saturated.
Here is a much shorter proof using satisfaction classes. The proof is due to
Jim Schmerl.

Let M be a countable arithmetically saturated model of true arithmetic.
Let Ag, A1,... be an enumeration of the standard system M. By a result
of Gaifman [1], we can find an elementary extension N of (N,Ag, A1,...),
which is generated by a set of indiscernibles of the order type of the integers.
Hence, N has an automorphism f such that f(a) > a for all nonstandard
a. Let N be the reduct of NV to the language of PA. To finish the proof we
have to make two observations. Since M is a recursively saturated model
of true arithmetic, the list Ag, Aj,... contains the standard satisfaction
class for N, hence N is recursively saturated. Also, since NV is generated by
elements realizing a minimal (hence definable) type over (IN,Ap, 4;,...),
the standard system of A/ (which is the same as the standard system of
N) is {Aog, Ai,...}. Here we are using the fact that {Ag, A1,...} is closed
under arithmetic comprehension. Thus N is isomorphic to M and the result
follows. (]

Inductive satisfaction classes can be also applied to problems concerning
isomorphism types of structures of the form (M, K), where K <cng M.
Two such applications are given in [8]. They both involve the following
concept.

Definition 4.6 For K <.nq M, let S(K) be the set of those e € M for
which there erists a X, inductive satisfaction class for K, which is coded
in M.

The cut S(K) is definable in (M, K), hence it can be used, in a way sim-
ilar to that in which the cofinality of a cut is used, to construct structures
(M, K) of different isomorphism types. Arguments using the cofinality of
a cut apply to non-semiregular cuts only; arguments using S(K) apply to
a much larger family of cuts.

Problem 4.7 Characterize cuts of the form S(K) for a given countable
recursively saturated model of PA.
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