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Preface 

This monograph is based primarily on material presented at the CBMS Summer 
Course on Inferences from genetic data on pedigrees given at Michigan 
Technical University, Hougton, Michigan, in July 1999. This monograph is not 
a textbook; it contains no exercises, and is insufficiently detailed for that purpose. 
However, it could be used as a textbook, either in conjunction with the excellent 
texts of Weir (1996), Lange (1997) and Ott (1999), or by advanced students who 
will consult the cited literature for details. 

The notes used at the Summer Course have been augmented by material from 
two lecture classes given at the University of Washington. A Special Topics class 
was given in January-March, 1999, and additional background on Markov chain 
Monte Carlo and Monte Carlo EM are included from that class. Some details 
were also first presented at a SEMSTAT workshop in Eindhoven in March 1999 
(Thompson, 2000b). Although material has been added, the examples in Chapter 10 
and on identity by descent under interference (section 11.2) were first presented at 
a Royal Statistical Society Meeting in London, in March 1999 (Thompson, 2000a). 
Versions of Figures 9.1, 10.1, 10.2, 10.6, and 10.7 first appeared in Thompson 
(2000a). However, the 11-chapter monograph follows closely the ten sessions of the 
Summer Course presentations, with chapter 2 being the only addition, providing 
statistical background with genetic examples. The order of Chapters 8 and 9 has 
been reversed from the Summer Course; a case can be made for either ordering. 

A more basic Statistical Genetics class was given in Fall 1999, at University of 
Washington, and led to extensive revision of Chapters 1-4. It is hoped that the 
monograph can thus serve two purposes. For example, a more introductory course 
could cover of Chapters 1-4, with final material taken from sections 6.1, 6.2, 7.1, 
and 7.2. More advanced students could skip Chapters 1-2, skim Chapters 3-5, and 
study the later chapters more thoroughly. 

I would like to thank Dr.Anant Godbole and Dr.JianPing Dong, for their 
excellent organization of the CBMS Regional Research Conference at Michigan 
Technical University. I am also grateful to the many students who attended this 
course, and to students attending the two University of Washington courses, for 
their helpful comments and criticisms. In particular, I would like to thank Eric 
Anderson, Nicky Chapman and Dr.Ellen Wijsman for help with LaTeX, BibTeX, 
Xfig, and GENEHUNTER, and for many discussions. I am grateful to Amy 
Anderson for her thorough and critical reading of Chapters 1 to 5, and to Eric 
Anderson, Dr.Erin Conlon, Dr.Mary Kuhner, Anne-Louise Leutenegger, and Jessica 

xi 
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Maia, who all read and commented on other chapters. 
Some of the MCMC work was undertaken in collaboration with Dr. Simon Heath. 

In particular, the implementation of the algorithm described in section 3.6 and the 
initial incorporation of the 1-sampler of Heath (1997) into our M-sampler software 
to create the 1M-sampler (section 10.6) are both due to Dr.Heath. Figures 1.1, 1.2, 
3.4, 3.5, and 10.3, first appeared in Thompson and Heath (1999), and are also due 
to Dr.Heath. I am grateful to Dr.Heath for our continuing collaboration. 

The CBMS Regional Research Conference was funded by NSF grant number 98-
13767 to Dr.Jianping Dong and Dr.Anant Godbole of The Mathematical Sciences 
Department of Michigan Technical University, Houghton, MI. 
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Table of Notation 

Since there are an insufficient number of user-friendly letters and symbols, some 
must be used for more than one purpose. However, for convenience, we summarize 
the principal usages here 

Notation Usage 
Parameters 
f) the general (set of) parameters of a model 

a recombination frequency parameter 
a (trait) locus location 
a marker map; set of arker locations 
a trait model penetrance parameter 
number of multinomial outcomes (or phenotypes) 
probabilities of multinomial outcomes 
number of alleles at a locus 

Q1, ... , Qk population allele frequencies at this locus 
q an allele frequency, often for a recessive allele 
'lj; a kinship coefficient 
cjJ chiasmata avoidance function 
K-;, i = 0, 1, 2 gene-identity probabilities 
Indices and labels 

j 
k, k; 
L 
m 
v 
n 
F 
M 

N 

T 

T 
v 
Variables 
A1, ... ,Ak 
Y, value y 
YM 
Yr 
X, value x 
xt 
X* 
G {Gi} 
g 

an index used primarily for individuals or meioses 
an index used primarily for alleles or loci 
a label for a gene 
a number of loci ordered on a chromosome 
a count, often of the number of meioses 
miscellaneous other counts, of genes for example 
sample size 
father, or paternal, often as subscript 
mother, or maternal, often as subscript 
also marker, as in marker data Y M 

Monte Carlo sample size 
also (Chapter 5) the random number of chiasmata) 
an index of Monte Carlo or MCMC realizations 
a set of indices of latent variables 
a set of indices of data observations 

the alleles at a locus 
the data random variables (usually phenotypes) 
phenotypes at marker loci, in linkage mapping 
trait phenotypes; Y = (Y r, Y M) 
latent variables 
a proposed value of X in Monte Carlo sampling 
a sampled or resampled value of X in Monte Carlo 
the set of genotypes of individuals i 
a genotype- a possible value of G; 
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Notation 
Variables continued 
S = {8;,1 } 

s.,J 
s.,. 
G.,,, Gt,• 
Y.,;, Y.,. 
y(J) 

J =J(S) 
/l, ... ,h-1 

NOTATION 

Usage 

set of meiosis indicators for meioses i and loci j 
the vector of 8;,1 at given locus j 
the vector of 8,,1 at given meiosis i 
similarly for genotypes, locus j, individual i 
similarly for phenotypes, locus j, individual i 
the data {Y.,1 , Y.,2 , ... , Y.,1 }; Y = y(L) 

a gene ibd pattern, a function of S 
the intervals between L ordered loci 

R = (Rj; j = 1, ... , L- 1) the recombination indicators in intervals 11 

r a vector of recombination indices; value of R 
C = (C3 ; j = 1, ... , L- I) the chiasmata presence/absence indicators m 

c 
T, value t 

tJ 

intervals 13 

a vector of chiasma indices; value of C 
a count (often binomial) 
a multinomial count, e.g. of latent genotypes; 
also (Chapter 5) a set of binary indicators 
multinomial data counts, of observable phenotypes 
or genotypes 

rn3 multinomial counts, often of alleles 
Functions and probabilities 
Pr probability, when not indexed by a parameter 
Pr(E; 0) probability of event E under model 0 
Po(·) a probability distribution, indexed by 0 
P* ( ·) a probability distribution, used for the sampling or 

Et~(·) 
If>(-) 

I(·) 
L( 0) or Ly ( 0) 
L(O; Y) 

lor £(0) 
Kn(O;Oo) 
Ky(O;Oo) 
Hy(O;Oo) 

R(-) and R*(-) 

Q(·), Q*(·), Qt(·) 

h(Xt; X) 
q(Xt; X) 
a 

resampling distribution in Monte Carlo methods 
Expectation, under a model indexed by 0 
the standard Normal (Gaussian) cumulative 
distribution function 
the indicator function of an event 
the likelihood for parameter 0 given data y 
the likelihood function, considered also as a 
function of data random variables Y 
the log-likelihood function for parameter 0 
Kullback-Leibler information in a sample size n 
K-1 information in latent X given data y 
expected complete-data log-likelihood given 

Y = y: Et~0 (logPII(X, Y) I Y = y) 
cumulative probabilities of data used in computing 
probabilities on graphs or pedigrees 
cumulative conditional probabilities of latent 
variables given data on graphs or pedigrees 
Hastings ratio for proposed xt when at state X 
proposal probability for xt when at state X 
the Metropolis-Hastings acceptance probability 
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