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1. Introduction

As Homo sapiens we have always believed that we are higher organisms. After
all, we are more complex, more differentiated, more highly ordered than lower
organisms. As thermodynamicists we recognize these words and realize that the
concept of entropy must somehow enter into the explanation of this.
We have always had the vague notion that as higher organisms have evolved,

their entropy has in some way declined because of this higher degree of organiza-
tion. For example, Schr6edinger made his famous comment that the living organ-
ism "feeds on negative entropy." We reason that this decreasing entropy of
evolving life, if it exists, does not in any way, violate the second law of thermo-
dynamics which states that the entropy of an isolated system never decreases.
The living system is not isolated and the reduction in entropy has been compen-
sated for by a correspondingly greater increase in the entropy of the surround-
ings. It does not violate the letter of the second law, and yet something about it
seems to make us uneasy. Why should the evolution of the living system con-
stantly drive in the direction of increasing organization while all about us we ob-
serve the operation of the entropy maximum principle, which is a disorganizing
principle? I know of no other system except the living system which does this.

First of all, can we establish that the entropy has, in fact, declined in higher
organisms? No one has ever proved this quantitatively. In fact, one can argue
that it is impossible to establish this thesis by classical means because of the
uncertainty principle in its broadest sense. In particular, if we were to make the
precise and extensive measurements necessary to determine accurately the en-
tropy difference between a higher and a lower organism, these measurements
would disturb the living systems so much that they would kill them. So, it is
impossible by classical means to even establish this proposition in which almost
all of us seem to believe.
When concepts break down like this they are of little use to us. I think that

our classical notions of entropy are totally inadequate in dealing with the living
system. This does not mean that there is anything mysterious, supernatural, or
vitalistic about the living system. It simply means that our classical notions of
entropy are inadequate, just as the laws of Newtonian mechanics were inade-
quate in dealing with the interior of the atom.

I shall extend the entropy concept primarily through the apparatus of infor-
mation theory, but I shall extend this also. Shannon [10] gave the most general
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definition of entropy to date and I shall extend the concept of Shannon. Specifi-
cally, I shall show that the entropy function which Shannon called the redun-
dancy is composed of two parts which I call D1 and D2. We must characterize
the redundancy of a sequence of symbols by two independent numbers, one de-
scribing the amount and the other the kind of redundancy of the sequence. I can
state this in terms of entropy. 1 shall show that phrases like, increasing entropy
or decreasing entropy, are not completely definitive. We must ask, in what way
the entropy has increased or decreased or what kind of entropy is it? We do not
encounter such questions in either classical thermodynamics or information
theory. I shall develop a theory which can answer these questions.

In classical thermodynamics we dealt with the ordering of three dimensional
aggregates of matter, but in information theory we begin to grapple with the
concept of ordering of one dimensional sequences of symbols. This is very sig-
nificant because we now know that the DNA molecule is a linear sequence of
symbols which stores the primaiy h-ereditary inforimation from which the entire
living organism is- derived just as a set of axioms and postulates stores the pri-
mary information from which a mathematical system is deduced. Therefore, if
we wish to investigate the organization of liying systems, we must investigate
the ordering of the sequences of symbols which specify them.
DNA stores the hereditary information in a sequence of symbols from an al-

phabet of four letters, the four DNA bases, A, T, C and G. DNA stores its infor-
mation in the particular sequential arrangement of these four letters just as any
language. Therefore we are dealing with language in general although we will
apply it to DNA in particular.

2. Theory
We must first define the alphabet. We let

(1) . S,= {X,i:i= , a},
where the Xi are the letters of the alphabet and a is the number of letters. For
DNA, a = 4.
With each Xi there is associated a probability 0 < Pi _ 1;i

(2) Pi =l1.

Thus, S1 is a finite probability space. The entropy of S1 according to Shannon
[10] is

(3) ~ Hi =-X Pi log Pi.

When K 1 and the logatithm base is 2, the units of H1 are bits. It can be shown
unider very reasonable po'stulates' (Khinchin [6]) that (3) is unique and takes on
its maxcimum value, log a, if and only it all the Pi are equal. Thus, HT¶ =log a.
The inaximniiz ent'ropy state for a sequence of symbols is characterized by

equiprobable, independent single letter elementary events. This statement is not



EVOLUTIONARY INDICES 279

difficult to justify. Almost any game situation illustrates that the most "random"
state is characterized by equiprobable. independent events.
We all know that in any language the single letter frequencies diverge from

equiprobability. For example, in the English language the letter e occurs more
frequently than any of the others. The divergence from the maximum entropy
state due only to this divergence from equiprobability is given by
(4) log a-H1,
where the Pi in H1 are the experimentally observed values for a given language.
Biologists call the distribution of the P. on S1 the "base composition" of DNA.
We are interested in the sequential arrangement of the letters in a sequence.

Therefore, we define a space of n tuples:

(5) Sn = {XiX1 - - Xn:i,j X * n =-1,a}.
There are an n tuples in Sn.

If the letters in the sequence are independent of each other,
(6) Hd = _ .. . EPP *- Pn 10og PiPi ... Pn

ij n

or
(7) Hlnd = nH1.

Let m be the memory of a Markov source. If m = 1, the probability of occur-
rence of a given letter depends only on the letter immediately preceding it in
the sequence. Then the entropy of Sn is given by

(8) Hn - , PiPij ... P(n-1)n log PiPij ... P(n-l)n%
i j n

where PiF is the one step Markov transition probability from letter i to letter j.
Utilizing the summations
(9) Pij = 1-

and

(10) E PiP,, = Pj,
equation (8) reduces to

(11) HnDeP =~~HI + (n-1)HM'
where
(12) HM - PiPij log Pi.

This is just the well-known form for the entropy of a first order Markov source.
If m = 2,
(13) Hn' = _ * * ijPijk * P(n2)(n-l)n

i j n
log P,PijPijk** P(n-2)(n-I)n,

(14) HDePn Hi+ HM + (n-2)HM,
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where
(15) HM= - PiP,Pk log Pijk-

ijk

Following this same pattern, we generalize for an mth order Markov source:
(16) HXPe = Hi + HlM + H2M + * *H( ) + (n - m)HM.(16) x H
If the sequence of symbols diverges from the maximum entropy state due only

to a divergence from independence of the symbols, this divergence must be a
function of the difference between HnDd and H."P.

Since H+i <_ HZ (this is a generalized form of Shannon's fundamental in-
equality; its proof is in Khinchin [6]),
(17) Hn d >Hn
and since both H nd andId eP are monotonically increasing functions of n, I define
the divergence from independence

1 In le)(18) lim - (H,n1 - n
n, n

From (7),

(19) lim Hn = H1,
nx-- n

and from (16) if we impose the condition that m << n,

(20) lim HDep = Hm.
n fl

Therefore,
(21) D2 = H1 - HM,
where the order of HM is understood.
Our condition that m << n holds for DNA. DNA molecules are very long. For

human DNA, n - 4 X 109 and for even a small bacteria such as Eschericia coli,
(22) n- 4 X 106.
At the present time there is no conclusive evidence that the m is any greater

than one for DNA. There are good theoretical arguments for expecting future
evidence that it is greater than this, but it is highly unlikely that m will be of any
greater magnitude than a small integer. Therefore, m << n will almost certainly
hold for DNA. If one knows m for any given language, one can always impose
the condition m << n simply by considering sequences of sufficient length.
The total divergence from the maximum entropy state is D1 + D2, which we

shall call the information density of the sequence Id,
(23) Id = D1 + D2.
I previously called this quantity the "information content" of DNA (Gatlin [2]),
but these are poorly chosen words for a number of reasons.
Now let us show the relationship between this quantity Id and the redundancy
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of Shannon. According to Shannon's [10] definition, the redundancy of a se-
quence of symbols is given by
(24) R 1 HMlog a
From (21) and (4),

(25) R =D + D2
log a

or

(26) Rd=d
log a

The redundancy of Shannon is just the information density expressed as a frac-
tion of its maximum value, log a. This entire picture is illustrated in Figure 1
which is an entropy scale.

log a

R log a
or Id i1 Hl

D2

I ~~~HM

FIGURE, 1
The entropy scale.
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It is clear from the entropy scale that a given value of Id may be achieved with
different relative contributions from DI and D2. Hence, I define the divergence
indices or simply the D indices to characterize this relative contribution:

(27) RD 1 Di Di _ Di
(27) R DI +A Id Rloga
or

_______D 2(28) RD2-Di + D2 Id Rloga

There is, of course, only one independent index being defined and
(29) RD1 + RD2 = 1.

Thus, we have in R and RD1 or RD2 two independent parameters, both dimen-
sionless fractions with a range of zero to one. The R tells us how much the system
has diverged from the maximum entropy state and the D index tells us in what
way this divergence has taken place, that is, primarily through D1 or D2.

Let us now observe how these two parameters describe living systems and
what they tell us about their evolution.

3. Results

Figure 2 is a plot of R versus RD2. There are 34 organisms represented. The
basic data is obtained from the nearest neighbor experiment of Kornberg's group
(Josse, Kaiser, and Kornberg [4] and Swartz, Trautner, and Kornberg [13])
which measures the basic Pi, for a given DNA. We are considering therefore
only a first order Markov dependence, that is, m = 1. Also we should note that
these data do not include any values for satellite DNA's but must be assumed to
represent primarily the main DNA of the organism which carries the hereditary
information.
The circles are bacteriophage, viruses which invade bacteria. They follow an

empirical functional dependence. The squares are bacteria and follow a similar
empirical curve. The vertebrates, however, do not exhibit a similar functional
behavior between R and RD2 but fall into a rather restricted domain.' R lies
between about 0.02 to 0.04 and RD2 lies between about 0.6 to 0.8. There are
some lower organisms with R values as high as or even higher than vertebrates,
but whenever this occurs the RD2 value invariably drops quite low. This means
that whenever lower organisms achieve R values in the vertebrate range they do
so primarily by increasing Di, the divergence from equiprobability of the DNA
symbols (or bases). This confirms a well established experimental fact that the
base composition of lower organisms, particularly bacteria, has a wide variational
range from' almiost 20 to 80 p-e-rcinit-cytosin-e pIus'-guanine while the base com-
position of vertebrates lies within the restricted range of about 40 z1 4 per cent
(C + G) (Arrighi, Mandel, Bergendahl, and Hsu [1]). Therefore, vertebrates
have achieved their higher R values by holding DA relatively constant and in-
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FIGURE 2
R versus RD2

creasing D2 whereas lower organisms use DI as the primary variable. The mech-
anism is fundamentally different.

If this is the case, we should expect to find the vertebrate D2 values higher in
general than-for lower organisms. This is what we observe. Figure 3 is a-plot of R
versus D2.
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FIGURE 3
R versus D2.

The vertebrates are characterized by the highest absolute magnitudes of D2,
the divergence from independence of the bases. We might say that D2 is an evolu-
tionary index which separates the vertebrates from all other "lower" organisms.
In terms of entropy, vertebrate DNA does not necessarily have the lowest values
of Hm, but they have the lowest values of HM relative to Hi, that is, they have
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the highest values of D2 which is a more important measure of the ordering of a
sequence of symbols than any single entropy value.

This situation can be described in terms of game theoretic limits. Table I lists

TABLE I

GA1mi THEoRETIC LIMITS OF D1 AND D2
The t indicates min-max, the asterisk indicates max-min.

DI D,

Phage max .059 .015
min .000 .000
max .129 .027Bacteria min .000 .013
max .026f .047Vertebrates min .011 .029*

Invertebrates max .211 .020
min .005 .007

the maximum and minimum values of D1 and D2 for the groups of bacteriophage,
bacteria, invertebrates and vertebrates. The vertebrates display a max-min of
D2 and a min-max of D1. From the relations we have derived and from an inspec-
tion of the entropy scale this can be stated in terms of entropy. The vertebrates
display a max-min of H1 and a min-max of HM. These game theoretic limits are
indicative of an optimization between the opposing elements of variety versus
reliability which must occur in any sophisticated language (Gatlin [3]).

4. Other evolutionary indices

A statistician might be interested in whether or not the result that vertebrates
have the highest values of D2 could be duplicated by classical statistical pro-
cedures. After all, D2 is a measure of the "deviation from random" of the base
sequence in DNA. Usually when we speak of a "random" sequence, we mean one
where there has been no divergence from independence of the symbols as sepa-
rate and distinct from the divergence from equiprobability.

Figure 4 is a plot of R versus a, where

(30) = { (PiPi-p,p,)2} .

Therefore, a is the standard deviation from the random of the base sequence in
DNA taking into consideration only a first order Markov dependence. This
should be a classical counterpart of our D2 measure. However, a cannot begin to
duplicate the results of the D2 index. There is significant overlap of the bacterial
and vertebrate domains.

It is possible to define arbitrarily other classical evolutionary indices using the
standard root mean square form with a slightly different base. T. F. Smith [11]
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has. defined the followinig evolutionary index. Figure 5 is a plot of R versus e,
w*here
(31)' e X_ (Pij - P.)2o
lere the base, of -the inidex is the transitioni matrix elemenit PGj minus the base
composition value Pj. The results are much better. There is separationi of the
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R versus e.

vertebrate and lower organism domains with only a very slight overlap at the
boundary.
The experimentalist, Subak-Sharpe [12], who has worked extensively with the

nearest neighbor data, has an intuitive, algorithmic procedure by which he ana-
lyzes the data. I have summarized his algorithm and defined the following evolu-
tionary index:
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(32) {= 1 ( PiA }

Figure 6 is a plot of R versus SSe. The SSe index duplicates the result of Smith's
e index. Both of these classical indices come close to mimicing the information
theory index D2. However, they are by no means mathematically equivalent
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because nowhere either in the definition of e or SSe does the concept of entropy
enter in, along with its inevitable logarithmic functional form.
The index D2 is slightly better quantitatively than either of the classical indices

but this is not the primary reason why D2 is vastly superior as an evolutionary
index. It is an entropy function and because of the structure with which it endows
the entropy concept we are left not with just an isolated arbitrary result as we
would have been with the classically defined indices, but with an explanation
of our result and a workable theory which allows us to explore a vast and new
conceptual area.

5. Shannon's second theorem

Let us speculate on the evolutionary implications of our observations. Let us
assume that the first DNA molecules assembled in the primordial soup were
random sequences, that is, D2 was zero, and possibly also D1. One of the primary
requisites of a living system is that it reproduce itself accurately. If this repro-
duction is highly inaccurate, the system has not survived. Therefore, any device
for increasing the fidelity of information processing would be extremely valuable
in the emergence of living forms, particularly higher forms.
Redundancy, or information density, is a measure of all the constraints placed

upon a sequence which make possible error detection and correction. Therefore,
redundancy is in this sense a measure of the fidelity of a message. Lower organ-
isms first attempted to increase the fidelity of the genetic message by increasing
R primarily by increasing D1, the divergence from equiprobability of the sym-
bols. This is a very unsuccessful and naive technique because as D1 increases,
the potential message variety, the number of different words that can be formed
per unit message length, declines. This is not difficult to show (Gatlin [3]) and
in the limit at the maximum divergence from equiprobability, we would have the
distribution where one of the pi is one and all the rest are zero. This is a mono-
tone, a sequence of only one letter which has no message variety at all. Hence,
the lower organisms which have achieved R values in the vertebrate range or
above have purchased them at the expense of a reduction in potential message
variety. This is why they have remained "lower" organisms.
A much more sophisticated technique for increasing the accuracy of the genetic

message without paying such a high price for it was first achieved by vertebrates.
First they fixed D1. This is a fundamental prerequisite to the formulation of any
language, particularly more complex languages. We observe it in human lan-
guages. The particular distribution of the single letter frequencies in human lan-
guage is so stable and characteristic of a given language that this is a fundamental
tool used by cryptographers in decoding messages. When a cryptographer is faced
with an unknown message, he first begins to count the single letter frequencies.
If the message is in English, the letter e will always be the most frequently occur-
ring providing the text is of sufficient length. The distribution of the Pi on SI
is stable and characteristic of a given language. The vertebrates were the first
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living organisms to achieve the stabilization of D1, thus laying the foundation
for the formulation of a genetic language. Then they increased D2 at relatively
constant D1. Hence, they increased the reliability of the genetic message-without
loss of potential message variety. They achieved a reduction in error probability
without paying too great a price for it, and an information theorist would recog-
nize this as the utilization of Shannon's second- theorem, the coding theorem of
information theory.

This kind of sophisticated reduction in the error of a message was first set forth
in the second theorem of Shannon [10] which states that under certain conditions
it is possible to reduce the error of a message to an arbitrarily small value even
in a noisy channel and without reduction in transmission rate provided that the
message has been properly encoded at the source. This statement still reflects
the jargon of the communications engineer, but the second theorem principle is a
broad, fundamental principle which can be stated in many ways. Let us state it
in the language of the biologist.

It is possible' within limits to increase the fidelity of the genetic message with-
out loss of pot-ential message variety provided that the entropy variables change
in just the right way, namely, by increasing D2 at relatively constant D1. This is
what the vertebrates have done. They have utilized Shannon's second theorem.
This is why we are "higher" organisms.

6. Language in general

In review, the theory upon which the definition of D1 and D2 is based is per-
fectly g,nera1 and could be applied to language in general. Then we observed in
the genetic language the increase of D2 at constant D1 as a fundamental mecha-
nism for increasing the fidelity of the genetic message. Now I ask the question:
Is this mechanism a general mechanism for increasing the fidelity of any message?
Is it used ;anywhere in human language? It is.
The human mind is an information processing channel, the most complex in

the universe, and like any channel possesses a certain capacity, an upper limit
to the rate at which it can receive and process information. If information is
transmitted at a rate which overloads this capacity, the result is not that an
amount of information up to the channel capacity is received and processed and
-the rest "spills over;" The result of overloading the channel is utter confusion and
ehaos. Any good teacher knows this, and very carefully and with deliberation
lays a firm foundation of fundamentals before increasing the rate of transmission
of, information to the student. It is extremely important in the initial stages of
this process that error is held to an absolute minimum. Therefore, any device
for increasing the fidelity of a message is extremely useful.
One of the most important learning processes which the human mind under-

goes is when a little child learns to read the written language. He has spoken it
for several years before he learns to read it and this is a major advancement. It
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is obvious that any safeguards against error in the early critical stages of this
learning process would be invaluable.

I shall now show that the writers of children's textbooks intuitively utilize the
basic device of increasing D2 at constant D1 to increase the fidelity of the message.
If selected a series of well-known children's readers beginning with the primer and
continuing through the sixth grade. The series selected is the Ginn Basic Reader
series (Ginn and Company, New York). I calculated the redundancy of each
book by taking texts of increasing length until the R value stabilized taking into
consideration only the first order Markov effect. Figure 7 is a plot of R versus
the grade of the reader. The R value is quite high in the primer and follows a very
smoothly declining curve as the grade of the reader increases. In Figure 8, I have
taken the R value apart into D1 and D2. It is very apparent that the high R value
in the early readers has been achieved by increasing D2 at constant D1, just like
the vertebrates. Therefore, this appears to be a fundamental mechanism, a gen-
eral mechanism, for increasing the fidelity of a message.

7. Second theorem selection

We must now inquire into the detailed evolutionary mechanisms whereby the
Vertebrates have achieved a DNA message with higher R of the high RD2 type.
The fundamental underlying mechanism is natural selection; but it is a different
type of selection than we have considered previously. To define this type of
selection we must be more explicit about the jargon of the communications engi-
neer. This is diagranumed in Figure 9.
Here we have an information processing channel. The source or transmitter is

just any mechanism for generating a sequence of symbols. The encoding of a
message in a particular language occurs at the source. The channel is simply any
medium over which the message is transmitted and finally received at the output
of the channel. Conceptually, it is just anything one regards as intermediate be-
tween the transmitter and receiver, and hence may be sometimes somewhat a
matter of definition. I define the base sequence of DNA as the encoded message
at the source of the living channel and the amino acid sequence of proteins as
the message which is finally received at the output. This is, of course, in a differ-
ent language. The channel consists of the entire mechanics of protein synthesis
which we know a great deal about today due to the massive experimental efforts
expended in this area.

All evolutionary thought to date has focused its attention primarily upon the
output of this channel, the protein. Natural selection acts because of the sequence
of amino acids in proteins. Even the so-called "non-Darwinian" theories of evolu-
tion which have arisen recently still focus their attention on the output of the
channel and it is here that they search for the reason why a mutation is selectively
neutral, the ultimate reason being that the amino acid in the protein is not crit-
ical to the function of the protein.
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R versus grade of reader.

One can pick up any paper in the evolutionary literature, particularly the more
recent ones, and confirm this preoccupation with the output of the channel. For
example, I quote from Ohta and Kimura [9]: "From the point of view of survival
probability, the amino acid substitution between a particular pair has a certain
average probability of being accepted by natural selection." Even survival
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probabilities are conceived of in terms of amino acid substitutions in the protein
at the output of the channel.

I wish to consider a new type of selection which I shall call second theorem
selection because this is the basic principle under which it acts. Second theorem
selection directs our attention for the first time to the input of the channel. I
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define second theorem selection as natural selection which acts not because of the
sequence at the output but because of the informational efficiency with which this
sequence has been encoded at the source under the second theorem principle.
As vertebrates have evolved, they have selected for DNA sequences at the

input of the channel with a higher information density of the high RD2 type be-
cause these sequences have a lower probability of error in the information proc-
essing channel, and they achieve this higher measure of fidelity without paying an
excessive price for it. This type of selection is made possible because of the ex-
tensive degeneracy of the genetic code.
We know that several codons can code for the same amino acid. This means

that for a given protein message at the output of the channel there are a large
number of possible DNA sequences at the input of the channel all of which could
code for it. Under current concepts these sequences are all selectively neutral.
I quote from King and Jukes [8]: "Because of the degeneracy of the genetic
code, some DNA base-pair changes in structural genes are without effect on
protein structure. . . . As far as is known, synonymous mutations are truly
neutral with respect to natural selection." This is not the case with respect to
second theorem selection. The different DNA sequences coding for the same
amino acid sequence could have significantly different R and D values, and hence
different probabilities of error in the channel.

I have calculated the R and D values for a set of DNA base sequences, all of
which could code for the same amino acid sequence in protein (Gatlin [2]). I
chose arbitrarily a sequence of equiprobable, independent amino acids in protein
and constructed from the genetic code, a dozen arbitrary types of DNA base se-
quences, all of which could code for this same amino acid sequence. For this small
sample of DNA sequences the B. value ranged from 0.021 to 0.224, a variation
of 20.3 per cent of the entire theoretical range of R. This is a very significant
variation. The RD2 values ranged from 0.58 to 0.97 which is very close to the
vertebrate range of RD2 values. Thus, there is adequate variation for second
theorem selection to act upon. Therefore, second theorem selection can distin-
guish between different DNA;base sequences all of which give rise to the same
amino acid sequence in protein. This is a new concept in evolutionary thought.
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Let us go on a step further. It is possible that second theorem selection can dis-
tinguish between different DNA sequences which code for slightly different arnino
acid sequences which are selectively neutral in the Darwinian sense.
We now believe that selectively neutral mutations are fixed by random drift

(Kimura [7]). However, there are certain discrepancies between this random
model and the experimental data (Jukes [5]). If we impose the concept of second
theorem selection as a constraint upon this random model, perhaps this will
improve the agreement. This possibility is totally unexplored.

In conclusion, we see that D2 is not just another evolutionary index which can
distinguish between vertebrates and lower organisms. It is an entropy function. It
extends the entropy concept and endows it with structure. It defines a fundamen-
tal mechanism for increasing the fidelity of a message which we observed in the
genetic language and in human language. We are led into the consideration of a
new evolutionary principle which is the confluence of Darwin's principle of nat-
ural selection and Shannon's second theorem. This is an organizing principle in
contrast to the disorganizing principle of thermodynamics. And finally, we are
left with the rather satisfying explanation that it is the second theorem of infor-
mation theory rather than the second law of thermodynamics which has given
the evolution of life its unique direction.
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