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1. Introduction

This introduction sets out some general available procedures to get large
sample efficient estimates of a location parameter when the governing distri-
bution f is well specified. The next section reviews some attempts to relax the f
specification. The third section discusses how one chooses from a given reper-
toire of competing estimators. It is there advocated that their respective esti-
mated standard errors be used to govern the choice and two methods are
presented for estimating standard errors nonparametrically for this purpose.
Some Monte Carlo comparisons are presented in Section 4 using sample sizes
of 30, 60, and 120 together with a short tail and long tail f. The possibility of
using sample determined weightings of selected estimators is also briefly
explored.

Our discussion of efficiency robustness is set in the context of estimating a
location parameter 8, say the center of a symmetric distribution on the real line.
We use 0 to generically denote a translation invariant estimator of . If f is the
density function of the distribution and is sufficiently well specified, then there are
various general methods available to obtain large sample efficient estimators.
Some of these are:

(A) the maximum likelihood estimator, that is, the value of  which maximizes
L) = Y f(X; — 0) where X,. X,, -+, Xy are a sample of size N from f. For
example, if f is Laplace then § is the sample median ; if f is normal then § is the
sample mean; if f is logistic then the MLE is not easily obtained.

(B) the Pitman estimator, namely, 8 = [0L(6)d0/[L(6)d6, where L(0) is the
sample likelihood as above. For example, if f is normal then 0 is the sample
mean; if f is uniform on an interval of fixed length then 8 is the midrange.

(C) the midpoint of a symmetric confidence interval for § based on the
locally most powerful rank test for the specified translation family f. The con-
fidence probability is a fixed o, and the LMPRT depends on f through J(u) =
F'(F~ 1 (w)/f(F~'(u)) for 0 < u < 1. For example, if f is Laplace then Qis the
average of a symmetric pair of the ordered X values; if f is logistic then 0 is the
average of a symmetric pair of the ordered Walsh averages. Walsh averages are
averages of pairs of X values. With a — O this is the method of Hodges and
Lehmann [5].

(D) a specified weighted average of the ordered X values, namely, § =
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V¥ w(i/N + 1)X;, where w(u) is proportional to J'(u) j'é J(v) dv and J(u) is as
given in (') above (see [3]). For example. if f is Laplace then w(u) is zero except
at « = § and 0 is therefore the sample median: if f is logistic then w(u) =
6u(l — u).

Generally speaking, these four estimation methods require different regu-
larity conditions on f to safeguard their large sample efficiency. However. the
conditions overlap considerably and will not be a concern here. In small samples,
they can be regarded as competitors when they do not coincide.

Now consider this embarrassing situation. I have advised a client to use a
particular § based on his specification of the shape of the density function f from
which his sample was to be drawn. This § was justified by showing it was derived
by one of the four methods above. He draws his sample and dutifully computes
0 and an estimate of its standard error s(0). Not completely trusting my advice,
he also computes his pet estimate & and notes that its estimated standard error
5(@) is much smaller than s(f). He then sues me for malpractice.

The apparent poor showing of my recommended asymptotically efficient 0
could be ascribed to several sources of which three are: (i) the sampling vari-
ability in s(0) and s(0) could make the event s(8') > s(f) not particularly sur-
prising even when the actual standard error of 0 is the smaller: (ii) for the sample
size at hand. say N = 100, the asymptotically efficient 0 is indeed inferior to §'
for the given f family: (iii) the f family was inappropriately specified and 0 is not
even an asymptotically efficient estimator. It is to the third of these that our
attention will now be turned.

2. Relaxed model specifications as an approach to robustness

For some time now, and especially in recent years. there has been a search
for estimating procedures which retain high efficiency simultaneously for widely
differing specifications f. Commonly used estimators like the mean or the median
certainly would not qualify. the former having low efficiency for long tail f and
the latter for short tail f, generally speaking. Instead. a variety of uncommon
procedures have been advocated, some of which are reviewed below, not neces-
sarily in historical order.

The approaches taken by Gastwirth [3] and Hogg [6] can be illustrated with
the following example. Suppose f is allowed to be either a normal or a Laplace
density. Using approach (D), say. we can find the functions J; and J,, respec-
tively, which yield efficient estimators for each of the two families. Gastwirth’s
idea is to look for something intermediate between J; and J; which will have
high relative efficiency regardless of whether f is normal or Laplace (or some
convex combination of the two). This idea can be extended to three or more f
families. to include Cauchy and logistic f. say. If this is done. then Gastwirth
suggests that 0 be a weighted average of the 333rd. 50th and 662rd percentiles
of the sample. using weights 0.3. 0.4, 0.3, respectively. The relative efficiency of
this § never falls below 80 per cent for any f belonging to one of the four men-
tioned families.
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Hogg, on the other hand, feels that with samples of moderate size it should
be possible to distinguish whether f is normal or Laplace from the sample itself.
He suggests using the fourth sample moment to discriminate between the two
families. Then, use either the J; or J, based estimator, whichever is indicated by
the fourth moment. This approach, which can also be extended to three or more
f families, yields estimators which have full asymptotic efficiency for any f be-
longing to one of the admitted families.

Full efficiency within the context of a few well-specified f families can also be
achieved, in a straightforward manner, by a somewhat extended use of the maxi-
mum likelihood method. Once again if f is either normal or Laplace. then the
estimator

mean, if (}|X; — median|)® > 7;—n(Z|X, — mean|?).
M 0= { -

median, otherwise.

is the MLE for 8 when both families are entertained together and the scale para-
meter is unknown. But note. should the real f fall outside this pair of families,
neither formula (1) nor Hogg’s method will necessarily indicate whether the
mean or median has higher relative efficiency.

A quite different approach is taken by Huber [7]. There it is assumed that a
tightly specified f governs the bulk of the sample data. while a loosly specified
f' governs the remainder. This is Tukey’s contamination model, in particular
when f is taken to be normal and f’ has longer tails than f. The robustness of any
estimator 0 was gauged by Huber to be its maximum asymptotic variance as
the contaminating f’ ranged over the class & of its admitted possibilities.

For f normal (scale unknown) and f’ any symmetric density centered at . the
most robust # is found by minimizing Y'Y p(X; — 0) where p(f) = max (3¢,
At — 3t?) and 4 is related to the contamination proportion &. Huber has shown
that taking A = 2.0 will do quite well for any ¢ less than 20 per cent. Tukey, some
time ago [11], suggested using either trimmed or Winsorized means, both of
which are close to Huber’s estimator. The trimmed mean ignores a specified
number of extreme observations in computing a sample average, whereas the
Winsorized mean pulls in the extreme observations in a specified way.

In 1955, Stein [10] suggested that large sample uniformly efficient estimating
procedures could be concocted without specifying very much at all about f.
Hajek [4] and van Eeden [12] carried through on this suggestion. Specifically,
one can estimate the whole J function of (C) so that f(l) [j(u) — J()])*du - 0
in probability, with only mild restrictions on f. This enables one to act as though
J were known and thereby, using (C) or (D), say, to construct a uniformly fully
efficient estimator 8. It is not hard to believe that the J function will not be well
estimated generally unless the sample size is huge. In the meantime. such esti-
mators remain to be tried on samples of moderate size, and the more modest
objectives of the preceding paragraphs still command attention.
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3. Comparison of procedures as an approach to robustness

It is possible to make a good case against the use of a particular procedure 0.
Specifically. if a competing procedure & is much better for some f and never
much worse for any f. then there is little point in using 6. For example. Hodges
and Lehmann [5] showed that the median of the Walsh averages (H-L estimator)
can be infinitely more efficient than the sample mean, if f has infinite variance.
On the other hand, the sample mean is never more than 125/108 times as efficient
as the H-L estimator for any continuous symmetric f. This pretty much rules out
the sample mean. Indeed, there exist estimators which are never less efficient than
X in large samples, for example, use procedure (C) with the normal scores test.

In a similar vein, Bickel [1] compared the Hodges-Lehmann estimator with
both trimmed means and Winsorized means. He found that the H-L estimator
retains its relative robustness against these two challengers as well.

It would seem from the preceding considerations that one might confidently
use the H-L estimator in preference to the competitors entertained in Bickel's
paper. Two concerns remain. First, we may regret somewhat the efficiency lost
by not using the simple mean, say, in those few situations when it is actually
somewhat better than H-L. Second, the H-L estimator could itself have near
zero efficiency relative to a third estimator, even when it is distinctly better than
the mean.

The proposal of this paper is that the sample itself should be used to distinguish
which one of several competing estimators is most efficient, for the unknown f
from which the sample was drawn. To be able to use the sample in this way
requires that the competing 6 estimators be such that their standard errors can
also be estimated without making use of the unknown shape f. In spirit, the
proposal is unlike those of the previous section where the object was to pin down
f. Rather, it addresses itself to the malpractice suit of Section 1 by standing
opposed to arguments which fix upon a procedure based exclusively on a priori
considerations. However. such considerations could be profitably used to set
up the collection of competing estimators; for example, the collection should
contain only estimators whose efficiency relative to one another ranges widely
from very small to very large numbers as f ranges over a set of reasonable
possibilities.

Specifically, let 8, 8,, 05 be three sequences of competing estimators defined
for every sample size N. The dependence on N is suppressed in the notation.
For example, these might be the H-L estimator, the median, and the midrange,
respectively, or they might be three trimmed means with different trimming pro-
portions. Let §;, S,.5; be sequences of nonparametric estimators of the standard
errors of 0. 0,. B (more will be said about the S in a moment). Then the recom-
mended estimator of the location parameter 8 is

(2) 6 =310
1
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where

(3)

I _ 1 if min (Sl? Sz, S3) - Si’
"7 )0 otherwise.

That is, 0 is equivalent to one of ,, 0,. 0, depending on which of the three has
the smallest estimated standard error.

Now. for convenience, assume that the 8, were chosen so that ﬁ(@i - 0)
has a limiting normal distribution with zero mean, fori =1, 2, 3. If O'iz (f) de-
notes the variance of each of the three limiting distributions, then the large
sample efficiency of §; relative to 0, is 67 (f)/a} (f) = e ;(f), say. Hence, if ¢; ;(f)
is greater than one for some f. then 0, is relatively more efficient than 6; for that
ffamily. It is now further assumed that the standard error estimates were chosen
so that NS? consistently estimates o7 (f). for each i and any f belonging to a
large class & : it is in this sense that we referred to the S as nonparametric. For
example, if §, is the sample mean, then NS? is the sample variance and has this
property for any f having a finite variance. Some general methods for obtaining
nonparametric S will be given shortly.

Let O(f) denote the most efficient of the three competiors for a given f. That
is.ife; ,(f) > Llande, 5(f) > 1,thend(f) = 8, for that f. With the assumptions
of the preceding paragraph. it follows that \/N(@ — 6) has the same limiting
distribution as \/I\-'(é(f — 0). for every f e #. This makes the proposed esti-
mator @ of (2) as efficient in large samples as §(f). So 0 is never less efficient than
any of the initial competitors 91, 92, 93, (be they H-L, van Eeden, or whatever),
and it is always more efficient than some two of them. Showld e; ,(f) = 1 and
e, 3(f) > 1, then 6 will bounce between 8, and f,. but this is of no concern
since both are equally good and better than 6.

We have thus established a desirable large sample property for §, namely, we
do as well as if we had known which of@l, 92, 93 was best to begin with. However,
its desirability hinges on how large we can make % and how well it does in samples
of moderate size. For if & is too restricted then our 8 will show little advantage
over the estimators of Gastwirth and Hogg. On the other hand. even when & is
quite large. if enormous sample sizes are needed, then we may as well try van
Eeden’s uniformly efficient estimator. Recall that 8 of (2) is zot uniformly fully
efficient in & : it is merely as efficient in & as the best of a preselected small col-
lection of trial estimators, and in small samples it is necessarily less efficient than
the best of the trial estimators.

As we remarked earlier, the choice of initial trial competitors §; will be neces-
sarily influenced by the ability to get nonparametric estimates of their standard
errors. Here are two general procedures:

(E) Suppose a trial estimator 0, is constructed by the method (C). that is, by
taking the midpoint of a level « nonparametric confidence interval for §. Under
quite general conditions on f, \/N(é,- — 0) will have an asymptotic normal distri-
bution with asymptotic variance consistently estimated by a constant times the
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squared length of the confidence interval. This constant depends on the chosen
aand N. but not on f(see Sen [9]). For example, when 0, is based on the Wilcoxon
test, then the length of the confidence interval has the required consistency pro-
perty for any f such that [f? is finite.

(F) Assume the sample can be divided into K blocks of equal size n = N/K.
In each of these blocks compute your favorite ; estimates based on samples
of size n: denote these by #*, &k = 1,2.- -+ Kandi = 1.2, 3 say. Then take the
overall §; to be the average of the block estimates. that is, §, = Z¥ 0¥/K. Its stand-
ard error is estimated nonparametrically by taking the sample variance of the
0%, that is S2 = =% (0¥ — 0,)2/K(K — 1). Such 8, are consistent in the required
sense provided only that the individual 6% has finite variance and that K — oo
with N. Estimators based on dividing up the data have been proposed by Box [2].

The second of the above two general procedures should be preferred for its
simplicity. There will be some loss in efficiency due to the partitioning of the data,
but this is usually slight. If both » and K are allowed to grow with N. and if
ﬁ(éﬁ‘ — 0) are themselves asymptotically normal. then there is no efficiency
loss in large samples by dividing up the data. This second procedure also re-
sembles the jack-knife method of estimation which might well be used in its place
because it. too. produces an estimate of the standard error. See Miller [8] and
the references therein contained for some caveats on the use of the jack-knife.

4. Some small sample Monte Carlo calculations

Let the total sample size N be divisible by six for purposes of the succeeding
illustration. Divide the data into K = N/6 equal groups (at random). In each
group k£ we compute the three midranges, namely,

0 = 4[X3) + X1
(4) 05 = 3[X) + X1
0§=%[X(1) +X(6)]‘ k= 1.2."'.K.

The three competing trial estimators f,, 0,. 05 are the respective averages of
these midranges. as outlined in (F). The nonparametric estimates of their res-
pective standard errors §; are also as given in (F) and are proportional to
@ —0)%i=123.

Samples of size N = 30, 60, and 120 were drawn from a short tail distribution
(uniform), a normal distribution and a long tail distribution (contaminated
normal). The contaminated normal was a 90 per cent to 10 per cent mixture of a
standard normal and three times a standard normal, respectively. Each sample
was replicated 800 times. Table I shows the resulting Monte Carlo estimates of
the variances of 0, 8, and 93 for each of the three sample sizes and each of three
parent distribution models. The table entries have been scaled for ease of present-
ation, so horizontal comparisons should not be made. The standard errors of
the table entries themselves run about 5 per cent.
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TABLE 1

ScALED VARIANCES OF VARIOUS ESTIMATORS
These variances were each computed from 800 independent
Monte Carlo replications of each sample.

C'ontaminated
Uniform Normal Normal

0, 1.61  (7%) 1.16  (35%) 1.39  (45%)

0, 1.05 (18%) 115 (34%) 155  (41%)

N=30 |0, | 054 (753%) 146 (31%) 448 (14%)
0 0.74 1.27 1.52
o 1.47 2.56 278

0, 1.62  (1%) 1LIL (34%) 1.36  (48%)

0, 1.09  (6%) 1.15  (39%) 1.55  (46%)

N=60 |0, 0.58 (93%) 152 (27% 434 (8%)
6 0.68 1.23 1.45
o 0.82 1.28 1.69

0, 1.56  (0%) 1.23  (33%) 152 (51%)

0, 1.07  (1%) 114 (44%) 155 (48%)

N =120 |0, 0.58  (99%) 146 (23%) 420 (1%)
0 0.58 1.22 1.54
0 0.72 1.11 1.47

The results are as expected. For example, 0, is strongly favored by the short
tail distribution and strongly disfavored by the long tail distribution. The sug-
gested procedure (2) was also applied to these three competing estimators using
the S; as computed from (F) for each sample. The variance of the resulting esti-
mator  is shown in the table. It is necessarily larger than the variance of the best
of8,,0,,0,. but for the sample sizes used here it performs nearly as well for each
of the three f families. The percentage figures in parentheses indicate the relative
frequencies with which each of the three competitors were used when they were
thrown into procedure (2).

5. Miscellanea

In using the recommended estimator 0 of (2), several reasonable questions
arise. What if this estimator, itself, was used as one of its component competitors?
To use it in this way one would need a nonparametric estimator of its standard
error, say S. But whatever value we give to S should not be less than min
(S1.8,,83), because 0 is either equal to the best of the three competitors or
something worse. It follows that the inclusion of 0, itself, does not affect the
procedure (2).

The general problem of getting an estimate S of the standard error of # is
not taken up here in detail. In a sample of moderate size, S = min (S,. S,, S;)
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will be slightly, but optimistically, biased. Corrections could be obtained by
using the approximate joint normality of the competing ;; this is likely to lead
to complicated calculations involving the covariances, which must then also be
estimated nonparametrically.

If data groupings as in (F') are used, then we can indeed estimate nonpara-
metrically the covariance between 0; and 9,- by using the sample covariance,

K

(5) Si,j = kzl (0;‘ - 0;’)(9jf - gj)/K(K - 1)

Having the ; ; in hand might also suggest that we can improve on the recom-
mendation of (2) by using an “‘almost optimally weighted” linear combination
of the initial competitors 6, 0,, 05, rather than using weights which are always
zero or one as in (2). Specifically, take

(6) 0 =Y w0, Y ow; =1,

where the weights 4, possibly negative, are estimates of the optimal weights w;
we would use if we know the covariances precisely. The w; satisfy the following
linear equations (using 7' initial competitors)

T-1 R L R R L
(7) Z COV (HT - 61" 61* - BJ)wJ = COV (01‘ - gi, OT),
=1
i=12-.T—-1 wy=1-Y] 7w
These equations are symmetric in wy, w,, - * *, wr. Changing the w to i, they can

be solved by using the covariances estimated from the sample. Provided the 6,
are linearly independent, the resulting ¢; will consistently estimate the w;, and
therefore ﬁ (0" — 6) will have the same asymptotic normal distribution as if
we had known the w;. In general, the asymptotic variance of ﬁ (0" — 0) will be
strictly less than that for any initial competitor regardless of the density f govern-
ing the data, unless the optimal weights really are zero-one.

However, one might expect the small sample behavior of &; to be erratic
causing 8" to be actually inferior even to the d of (2) which necessarily uses zero-
one weights. This phenomenon is clearly demonstrated by the Monte Carlo
results of Table I, particularly for N = 30 where only five data groups were
available to estimate the three variances and three covariances. In the case of
uniform f, where 0-0-1 weighting is actually optimal,  continues to best §* even
in moderately large samples. For the normal and contaminated normal f, 8" is
about as good as O when N = 60 and is possibly somewhat superior when
N = 120. A few unreported Monte Carlo calculations at N = 240 continue to
show that 0 is slightly but noticeably better than 0.

Herman Rubin suggested in a private communication that it would be reason-
able to let the number of trial competitors used with procedure (2) depend on the
sample size N. For purposes of illustration we have worked here with three
competitors, but Rubin’s suggestion appears quite reasonable. It is in the spirit
of van Eeden’s proposal [12] and merits further study.
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In conclusion it should be recalled that this discussion of efficiency robustness
was carried through in the context of a specific one sample problem of estimating
the center of a symmetric distribution. Our main interest has been to characterize
various approaches to the robustness question rather than to provide specific
suggestions to specific problems. The two sample shift problem, for example,
could have been treated in an almost identical manner where the parameter 0 is
the amount of the shift.

R O R

Immediately prior to the presentation of this paper in July, 1970, the author
became aware of a highly relevant unpublished thesis by L. Jaeckel dated
December 1969. Statistics Department, Berkeley. It contains essentially among
other things, the proposal made in our formula (2). To this extent, and to the
extent of any other overlap with this paper, priority belongs to Dr. Jaeckel.
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