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1. Introduction

This paper presents a model, variations of which have been considered by
Anscombe [1] and Colton [4] and others, which is relevant to the problem of
sequential testing in clinical trials. This model is the same as one discussed by
Chernoff and Ray [3] and by Wurtele [7] in a sampling inspection problem and
is naturally related to a one armed bandit problem. The object of this paper is
to demonstrate that techniques exist for dealing with some of the technical prob-
lems raised by these and similar models. A few of the insights derived from the
results on the one armed bandit problem will be described in terms of nominal
significance levels corresponding to the rejection of a new drug.

The model is oversimplified for many practical applications. Alternative mod-
els, including a two armed bandit problem are described. An important element
in most of these models is the horizon consisting of the total number of anticipated
patients to be treated.

2. The model

Suppose that a new drug is produced to treat an illness for which the treatment
in the past has been a standard drug with known properties. We shall assume
here that the result of the use of the drug can be classified simply as a success
or failure in the treatment, and once one drug is applied, treatment cannot
shift to the other. Then the known drug is characterized by a known probability
po of success while the new drug has unknown probability p of success. If it is
anticipated that a horizon of N patients will have to be treated by one drug or
another, the expected number of successes given that the new drug is used n
times, is np + (N — n)po = Npo + n(p — po).

Clearly, the expected number of successes attains a maximum of Np,if p < po
(with » = 0) and Np if p > p, (with n = N). In view of the ignorance of p, it
is desired to select a sequential procedure to maximize the expected number of
successes which is equal to

2.1) Npo + Eln(p — po)],

where n is possibly a random quantity determined by the procedure. Since po
is known, it is apparent that a reasonable procedure ought to consist of sampling
805
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the new drug until the data indicates it to be inferior, at which time one reverts
to the old drug. If the data indicates the new drug to be superior one never
reverts to the old one. The reader should bear in mind that the word reasonable
is applied in the context of the model which incidentally neglects the cost of
administering the new drug and the possible need for control groups. The prob-
lem that remains is to describe what constitutes sufficient indication to stop
using the new drug. In this situation a variety of factors suggests that it is
appropriate to study the problem from a Bayesian point of view especially when
N is large. Then the problem of finding a sequential procedure to maximize

(2:2) E{n(p — po)}, n=N,

where p has a given prior distribution, is a well determined optimization problem.

Exactly this problem arises also in the following rectifying sampling inspection
problem. A lot of N items has been produced by a process such that distinet
items are independently defective with unknown probability p. The cost of
inspecting an item is ¢. If a defective item is found, it is replaced from a pile
of good items. The cost of sending a customer a defective item is k times more
than the cost of replacing it. If p < c¢/k, it would be preferable to send out the
lot without inspection, while if p > ¢/k, 100 per cent inspection is desirable. In
fact a sampling plan where n items are inspected leads to an expected cost of

2.3) ne + (N — n)pk = & [Np +n (% — p)].

It is desired to maximize E{n(p — po)} where p, = ¢/k. It is in this context
that the problem was first discussed by Wurtele [7], and subsequently by
Chernoff and Ray [3].

A related problem is the following. Let X1, X, - - -, X, be independent iden-
tically distributed random variables with unknown mean u (and otherwise known
distribution). Given a prior distribution for u select n < N sequentially, so as
to maximize

(24) EXi+ Xo+ -+ + X,) = E{nu}.

Viewing X;, X, - - - as the winnings from a ‘“one armed bandit” by a player
who can stay at most long enough to play N games, we may call this problem
a one armed bandit problem. The two previous problems correspond to the
special case where X; = 1 — p, or —p, with probabilities p and 1 — p, respec-
tively.

The normal continuous time version of this problem is particularly interesting,.
Let X (¢), representing the gambler’s gain at time ¢, be a Wiener process with
unknown drift 4 and known variance ¢? per unit time. That is to say, for {; < f,,
X (&) — X(t,) is normally distributed with mean u(f, — #;) and variance ¢2(f; — t)
and is independent of the path X(¢) for 0 < ¢ < ¢;,. Then the continuous time
one armed bandit problem consists of finding a sequential procedure for select-
ing a stopping time T < N, so as to maximize E{X(T)} = E{Tu} where the
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unknown drift is assumed to have a normal prior distribution of mean wy and
variance o3.

To relate the continuous one armed bandit problem with the discrete one,
observe that for integer values of ¢; and ¢, X (f;) — X (1) corresponds to the sum
of the observations from ¢ 4 1 to t.. In our model for clinical trials, p — po
corresponds to u while o2 could be thought of being approximately po(1 — po).
One anticipates that the solution for the continuous time one armed bandit prob-
lem would serve as a reasonable approximation to the discrete versions, especially
if N is large.

Chernoff and Ray [3] characterized certain asymptotic properties of the solu-
tion of the continuous problem and indicated a rough approximation to the
optimal procedure. More refined approximations can be carried out by the use
of a numerical computation involving backward induction.

3. The solution

To describe the solution of the continuous time version of the one armed
bandit problem, consider first the limiting case where the normal prior distribu-
tion has variance of = « corresponding to what has been termed vague prior
knowledge. The asymptotic results of [3] combined with some freehand inter-
polation and a backward induction suggest the approximation of the solution
presented in table I. Here Z(t) represents the boundary of the optimal stopping

TABLE I

APPROXIMATION SOLUTION OF THE
ContiNvous TiME ONE ARMED BaNDIT PROBLEM

B = nominal significance level = j’_: @2#x)~V2 exp (—u?/2) du.

t/N & = &/ot\? B
1.00 —0.0 0.50
0.90 -0.20 0.42
0.75 —0.36 0.36
0.50 -0.56 0.29
0.25 —0.78 0.22
0.10 —1.08 0.14
0.01 —-2.05 0.02
10— —3.55 2.10
10-¢ —4.61 2.10¢

region. That is, the optimal procedure calls for stopping if X(¢) =< &(). The
quantities @ and B8 correspond to a nominal significance level as follows. Suppose
that at time ¢ the player stopped and decided to test (one tail) the hypothesis
¢ = 0. The observation X (¢) would correspond to « = X (t)/0t'/? standard devia-
tions from the mean 0. Thus, & is the number of standard deviations required
for the game to be stopped at time ¢ and B is the corresponding nominal signif-
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icance level. From a classical point of view one can regard the player as contin-
uously testing the hypothesis 4 = 0. As time ¢ varies from 0 to N, the nominal
significance level becomes less stringent increasing from 0 to 1/2. If and when
he rejects p = 0 (in favor of p < 0), he stops playing. Although this nominal
significance level serves as a convenient description of the procedure, its use
should not be confused with that of the standard significance level which is not
applicable here.

Given X () = x, the posterior distribution of x is normal with mean z/t and
variance = ¢2/t. This fact permits us to reduce the solution of the problem,
where the gambler with horizon N, has the normal prior distribution 9(uo, ¢3),
to the previous problem by simply initiating the Wiener process from the point

3.1) (20, to) = (poo?/a3, a*/ab)
and letting
(32) N=No+to=N0+0'2/0%.
The asymptotic results of [3] indicate that as /N — 0
(3.3) B~ 2t/N
and
(34) & = -~ —{2log (I/N) — log [—~167 log (t/N)]} "
Ast/N — 1,
/2
(3.5) &~ —0.639 (1 - %)1 :

When the horizon Nj is large, the case /N — 0 is especially important. Here
it has been shown that the expected gain is approximated by

68 Nenfolew) + ad(e0)] — g [log (1 4+ 2 " (e

where ag = po/0o, While o(u) = (27)~12%*/2 and ®(a) = /_aw o(u) du. The first

and larger term corresponds to the expected gain if u were selected from the
normal distribution with mean po and variance ¢8 and immediately told to the
player who would proceed to play the entire allotted time Ny if x> 0 and
refuse to play otherwise. Thus, the second term represents the expected loss due
to ignorance of x and is of the order of magnitude of (log No)2, which increases
slowly as Ny becomes large.

Now let us relate the clinical trials problem posed in section 2 to the contin-
uous time one armed bandit problem by assuming that the horizon N, is large.
Assuming vague information about p, let

(3.7) t = n/No
and
3.8) (P = o)

7 T = po)I7%



SEQUENTIAL MODELS FOR CLINICAL TRIALS 809

where 9 is the usual estimate of p based on the first n trials. Then one may
substitute directly in table I to determine the stopping time. When # is small
compared to Ny, one has the asymptotic relation

39 =gt {210 () — 10g [ 16r 10g ()]}

at the boundary.

Consider the following problem. If each trial of the new drug leads to failure
how many successive failures would be required before one should stop the use
of the new drug? Clearly, the answer to this question should depend on No.
Substituting in the above formula, we obtain

(3.10) nor 2 —2 (log Ny).

This result should not be taken too seriously since it is implicitly based on the
normal approximation to the distribution of $ which is not especially good for
approximating the probability of n successive failures (1 — po)». There is reason
to expect that the correct answer to the question posed would be between the
answer suggested above and

(3.11) ng = (log No)/[—log (1 — po)].
In any case the order of magnitude log N, is important as we shall see in our
subsequent discussion.

If the investigator has some strong feelings about the unknown p which can
be represented by a prior Beta distribution B(a, b), for which the mean is
a/(a + b) and variance ab(a + b + 1)/(a + b), then the above results are ap-
plicable after replacing Noby N = No + (a 4+ b), and assuming that n = a 4+ b
fictitious trials resulting in @ successes had taken place.

It is of some interest to tabulate the estimate p of p for which the clinical
investigator should stop the new drug. We have

(3.12) p=p+a [7“(1—_”"—)]”2,

n
and table II gives some insight when we consider that 2[po(1 — po)]'/? is close
to 1 for a broad range of p,. The large entries corresponding to small n should
TABLE II
(o — §)/2 [po 1 — po)]¥* = —a&/n'?

n\N 102 104 108

1 2.05 3.55 4.61

5 0.60 1.36 1.91
10 0.34 0.91 1.30
25 0.16 0.52 0.78
100 0 0.21 0.36

1000 — 0.03 0.09
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not be taken too seriously since, the normal approximation to the binomial
distribution, on which they are based, is not very good.

4. Alternative models

4.1. We shall discuss a variety of situations where the model presented in
section 2 for clinical trials requires some modification. First let us consider the
case where the two competing treatments being compared for a horizon of N
patients are both of unknown efficacy. This corresponds to the two armed
bandit problem where the player attempts to maximize

4.1) EXi+ Xo+ - + Xu},

where X, represents the value of the outcome of the nth trial whose treatment
is determined by past history. The continuous time normal version of this prob-
lem consists of maximizing

(4.2) E{X:y(T) + XoT2)} = E{T1p1 + Tous}, T+ T. =N,

where X; and X, are Wiener processes with unknown drifts g; and p. per unit
time and known variance o? per unit time. Both y; and u. are assumed to have
normal independent prior distributions. At any given moment one is entitled
to observe either X; or X, depending on past history, T'; is the total time spent
observing X;, and T' + T, = N.

While a special version of the two armed bandit problem was solved by
Feldman [5], little is known about the solution of this one. It is intuitively clear
that the solution will call for using the arm (Wiener process) which has the
higher estimated mean until a balance is struck between the difference in the
estimated means and the amount of information accumulated on each arm and
the remainder of the horizon. Thus, for a large horizon, the optimal procedure
may call for the arm with the lower estimated mean drift if that estimate is
based on a relatively small sample time.

4.2. Suppose two unknown treatments are being compared in a variety of
locations, at each one of which the number of patients available is rather small.
In that case control considerations suggest the model proposed by Anscombe
[1] and Colton [4]. Here, patients are paired and one of each pair is randomly
selected for one treatment while the other is given the second treatment. The
number of pairs to be treated n is determined sequentially after which the
remainder of the horizon N — 2n are given the treatment estimated to be
superior.

If u is the mean of the difference X in the treatment effects, one seeks to
maximize

(4.3) E{Xl + X4 -+ Xn — (N - 2")”5(1»‘)},

where ¢(u) is the probability of selecting the wrong treatment, given u. Colton
presents a detailed series of analyses of procedures which have certain optimality
properties. One shortcoming is the restriction of his sequential procedures to
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those of the Wald type which may lead to rather poor results when the horizon
is very large. In particular if one treatment is substantially inferior to the other
and N is very large, the Colton procedures call for sample sizes of order N/
instead of the more reasonable log N.

Anscombe derives an “outer’” bound on the optimal Bayes procedure. This
bound corresponds to the use of a nominal significance level of n/N. This model
is subject to the same technical approach as the one armed bandit problem and
for n/N small, the nominal significance level should be approximately 2n/N. In
the sense that the difference in the o corresponding to these significance levels
is small, the Anscombe result furnishes a good approximation to the optimal
procedure.

4.3. If the experimental situation calls for controls but one treatment is well
known, our problem may be regarded as maximizing

(4'4) E{X1+X2++Xn}=E{n#}’ néN/2t

where 7 is the number of pairs treated before returning to the known treatment.
Here u is the mean of X, the difference in the effect between the new and old
treatments. This problem is also a one armed bandit problem with the horizon
N replaced by N/2, the available number of pairs.

5. Discussions and more models

The models discussed so far are oversimplified to say the least. In practical
problems where specific shortcomings of the models are important, the models
can be modified so as to be more meaningful and still capable of analysis.

One serious difficulty is the specification of the horizon N. Even if one can
regard such a conception as meaningful because of anticipated changes in technol-
ogy it is difficult to make the choice of a number to represent N. The fact that
many of the important decisions and losses involve N only through log N can
serve to give the experimenter the assurance that an incorrect specification of N
will hardly affect the procedures. It is remarkable how little effect is due to
changing N from 10 to 10%°.

Should one wish to conceive of N as infinite, it is possible to consider a model
where the effects of future treatments are discounted. Thus, one may seek to
maximize

(5.1) E{Xi+ pXo+ 02X+ - + o' X, + -},

where X; is the outcome of the ith treatment which can be one of the two
alternatives and p is the discount factor between 0 and 1.

The problem of medical ethics seems to be unavoidable in experiments involv-
ing clinical treatments. It is difficult to imagine a reasonable experiment where
one can be assured that subjects will never be given treatments estimated to be
inferior. One should be prepared to try a new treatment again even if it fails
on its first trial and the skimpy evidence is unfavorable to it. One approach to
quantifying the cost of treating a patient with a drug currently estimated to be
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inferior is to add a charge, real or imaginary, proportional to py — p when a
patient is given the treatment with estimated probability of success p if § < p,.

I am not well enough acquainted with the field to present a reasonable discus-
sion of the ethical problem and shall not attempt to do so.

The Anscombe and Colton model represents a simplification of one presented
previously by Maurice [6]. This more complicated model also had a cost for
experimentation on the first n pairs of patients. The Anscombe and Colton
model neglects the cost of experimentation. The opposite extreme version of the
Maurice model would be to summarize the effect of giving the entire horizon
the wrong treatment by a multiple of the mean difference. This extreme leads
simply to the more standard problem of sequentially testing whether the un-
known mean is positive or negative.

A variety of procedures and models are presented by Armitage [2]. While the
procedures are not optimal Bayes procedures, the general impression one receives
is that they are rather efficient for situations where sample sizes are expected
to be moderate, but that there is substantial loss when very large samples are
anticipated. Considerable work remains to be done in analyzing various models
and comparing optimal with standard procedures.

As a final remark, I would like to add that one sometimes encounters a naive
conception that situations where control is desired require pairing of treatments.
In many instances control may be achieved when two treatments are given in
ratios of 1 to 2, or 1 to 3, and so forth. Not only can such ratios give more
efficient results but it is quite likely that cthical requirements would also point
in this direction.
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