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1. Introduction

In this paper we obtain local limit theorems, local limit theorems for large
deviations, and ratio limit theorems for multi-dimensional probability measures
which may be lattice, nonlattice, or a combination of the two.

2. Statements of results

Let Rd denote the set of d-tuples of real numbers x = (xI, * , xd). Let IA
denote a probability measure on the Borel subsets of Rd with characteristic
function f defined by

(2.1) f(O) = fRd eizxOp(dx), 0 = (01, O,d) E Rd,
where x a = x'01 + - + XdOd.
We assume that p is nondegenerate in that it is not supported by any (d - 1)-

dimensional affine subspace of Rd. Then by making a suitable linear trans-
formation on Rd, we can assume that IA is normalized in the following sense
(see Spitzer [10], pp. 64-75): there is an integer di, 0 < di < d, and there are
real numbers a', * , adA such that
(2.2) f(27rn,i , 2irnd,, 0, * - *, 0) = exp (27ri(nial + * + ndlCd,))
for integral ni , nd,, and If(0) < 1 for all other values of 0. If di = d, then
,u is lattice and if di = 0, then ,u is nonlattice.

Let ,u(n) denote the n-fold convolution of ,u with itself. It is clear that Il(n) is
supported by
(2.3) Dn = {x E RdIxk - nak is an integer for 1 < k < di}.
Note that Dn is independent of n if and only if we can take a' = * = adi = 0,
and in particular, that Dn = Rd if di = 0. The statements below can be simpli-
fied somewhat in these cases.

For the 0 < h < oo set
(2.4) Ih = {x eRd I IXk .< h/2 for l< k < d},
and
(2.5) 7h = {x E RdlXk= O for 1 < k < di and lXkl < h/2 for di < k < d}.
Also set x + Ih = {Y|Y- xE Ih} and x + 7h = {YIY - X l7h}.

217



218 FIFTH BERKELEY SYMPOSIUM: STONE

THEOREM 1. Let v be a stable probability measure in Rd having a density p.
Let , be normalized and suppose that for some constants B. and A.
(2.6) lim pu(n)(B.x + A. + IB.h) = v(x + Ih), XE Rd and 0 < h <oo.

Then

(2.7) Au()(x + Ih) =
h-d p (X BA) + o(B; d), x E D,,

where Bno(Bn-d) -O 0 as n -- X0 uniformly for x E Rd and h in bounded sets.
COROLLARY 1. Let ,u be normalized and have mean m and covariance 2. Then

(2.8) n()(x + Ih) = (2ern)pd 1(:(1/2 exp (- 2n )

+ o(n-d/2), x S D,
where nd/2o(n-d/2) -O 0 as n -0oo uniformly for x E Rd and h in bounded sets.
Theorem 1 was obtained in the lattice case di = d by Rvaceva [9] and in

the nonlattice case di = 0 by Stone [12]. It shows that in the present context
local limit theorems hold no less generally than integral limit theorems. In fact,
the integral form of the central limit theorem in the finite covariance case could
be proven in general by first proving corollary 1 and then using Riemann
approximating sums. After [12] appeared the author was informed that closely
related results were announced by Bretagnolle and Dacunha-Castelle [1] (see
also Stone [11]).
Next we consider probability measures ,u which satisfy Cramer's condition:

for some constant c > 0

(2.9) fd eclzxlI(dx) <00.

Let g denote the moment generating function of ,u, defined for all s E Rd by

(2.10) g(s) = fRd ex sA(dx), x e Rd.

Under Cram6r's condition, g is continuously differentiable any number of times
for sIs < c, and in particular

(2.11) g'(0) = JRd XA(dx) = m.

Let ,A, Isl < c, denote the probability measure on the Borel subsets of Rd defined
by dp./dp = (g(s))-lex8, or equivalently for all Borel sets A,

(2.12) A.(A) = JA (g(S)>lez 8p(dX)
If IA is normalized, then so is each /2,. Let A4n) denote the n-fold convolution of Jp,
with itself. Then for all Borel sets A,

(2.13) pf)(A) = A (g(s))nex.ap(n)(dx)
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and

(2.14) /(8)(A) = f (g(s))ne-z.,8p,n)(dx).
Let mi8, 2,, and f, denote the mean, covariance, and characteristic functions
of pA.
Using Fourier analysis we will prove the following theorem.
THEOREM 2. Suppose ,u is normalized and satisfies Cramer's condition. Then

hd-dl - nm 2n( n.(2.15) j."n (X + 7h) =(2 rn)dI2l2,I1I2 exp n 2 )

+ o(n-d12) x E Dn,
where ndf2o(n-d/2) O-0 as n -* oo uniformly for x G Rd, h in bounded sets, and
s in compact subsets of {s Isl < c}.

Before stating theorem 3, we need to comment further on the functions ma
and Z., jsj < c. These functions are continuously differentiable any number of
times. Also if ,uhas mean 0, then as s -O 0, n, = 2s + 0(1812) and 2, = 2 + O(lsl)-
If IA is normalized and in particular nondegenerate, then 2 is nonsingular and
me has a continuous inverse 8m for s sufficiently small. The function 8m is con-
tinuously differentiable any number of times for m sufficiently small.

Recalling the relationship between IA"(n and ,u(n), we obtain immediately from
theorem 2 the following theorem.
THEOREM 3. Suppose ,u is normalized, has mean 0, and satisfies Cram&r's condi-

tion. Then for some constant c2 > 0, and for x E Dn,
(2.16)

g(n)(X + lh) = (g(81n))ne-8X 8 (21rn)d/2l ,1/2 (jII< e dyd n)

where On(1) 0 as n -X co uriformly for Ixi < c2n and h in bounded sets (the
integral is set equal to 1 if di = d).
Theorem 3, a local limit theorem for large deviations, is closely related to

work of Cram6r [3], Petrov [7], Richter [8], and others. The author was moti-
vated to prove theorem 3 by the realization that it led to an easy proof of
theorem 4.
THEOREM 4. Suppose , is normalized., Then for every integer no, h > 0, and

e> 0, there is a a > 0 such that if n > 5-1, x e Dn, y c Dn+,,4, Ix - yl < e-l
and , (n) (x + lh) > e-8n, then

A
(n+no)(y + ih)

(2.17) 1|A (X + 7h) - 1 |<

Let us say that p is not one-sided if ,i{xlx- 0 > 0} > 0 for all non-zero 6 E Rd.
It is exactly in this case that there is an (necessarily unique) so e Rd such that
inf.CRd g(s) = g(so). Sufficient conditions to guarantee that so = 0 are that
, has mean 0 or, more trivially, that g(s) = Xo for s # 0.
THEOREM 5. Suppose IA is normalized and not one-sided, and let so be defined
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as above. Then for every integer no, h > 0, and e > 0, there is a a > 0 such that if
n >.-1, x E Dn, y e Dn+o Ix - yl < e- and Ixi < an, then

(2.18) | A(')(X + h) (g(0o))n(e-yv)-.f < E.

Note that (2.18) reduces to (2.17) if and only if so = 0.
If we suppose further that Dn = D is independent of n (see discussion of this

above) and ignore the uniformity in x, then the statement of theorem 5 simpli-
fies as follows.
COROLLARY 2. Suppose A is normalized, D. = D is independent of n, and ,u is

not one-sided. Let 8o be as defined above. Then for every integer no, x e D, y e D,
and h > 0,

(2.19) lim gn+no)(y+ lh) - (g(so))n,oe(x-l)y80.
n-+ 1A-( + 7h)

Again note that so = 0 is necessary and sufficient for (2.19) to reduce to

(2.20) lim =+)( + )- 1.
n-+. A(n)(X + lh)

Corollary 2 includes theorems of Chung and Erdos [2] and Kemeny [4] in
the lattice case and an unpublished theorem of Ornstein [6] in the nonlattice
case. Ornstein obtained the result that (in our notation) if d = 1, d1 = 0, and
either ,u has mean 0, or the positive and negative tails of u have infinite means
(both conditions guarantee that 8o = 0), then (2.20) holds. Ornstein's method
differs considerably from the one used here. It seems also to be capable of yield-
ing corollary 2 and possibly much more

3. Proofs

The proof of theorem 1 and its corollary are omitted since the necessary
modifications of the proofs in [12] are presented in the proof of theorem 2.
To begin the proof of theorem 2 write x = (x, x), where x = (x1, * * *, xdl) E Rdi

and x = (Xd +l, . *. , xd) E Rd-di. If d1 = 0 or d1 = d, then x or x is undefined.
Similarly, write 0 = (j, U), where 6 e Rdl and j e Rd-d.

Define K(x), x E Rd-di, and k(6), 9 E Rd-d, by

(3.1) K(x) = (27)d-d(J sII n xi/2)

and
d

(3.2) k(O) = dk. iI01f < 1,
FUH > I

For the a > 0 set

(3.3) Ka(x) = a (d d)K(a71Y), X e Rdd.,
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and
(3.4) ka(i) = k(af), c Rd-di.
Then Ka is a probability density on Rd-dl with characteristic function (Fourier
transform) ka. The essential point here is that ka has compact support.
For Isl < cl, x G D., h > 0, and a > 0 set,

(3.5) Vn(s, x, h, a) = fRd-dl )((X, X - ) + 7h)Ka(y) dy.

A form of the Fourier inversion theorem yields that
(3.6) V.(s, x, h, a)

hd -df d sin 01= h2.)d X de di e-ix Oka(A)fn(0) II in h0/2(27r) ll <1r l <a-' i=dl+l h0j12
Choose c, such that 0 < cl < c. From the relation f8(0) = f(0 - is), it follows
that
(3.7) e-ims*Of8(0) = e-0e2z0/2 + o(1012),
where 101-20(1012) -- 0 as 0 -* 0 uniformly for Isi < cl. Also for any N > 0 there
is an E > 0 such that If8(0)l< 1-E for N-1 < 6 < 7r, N-1 < j < N, and
Isl < cl. It now follows by a standard computation such as in the proof of
lemma 1 of [12] that for any N > 0 and for all x E D,,
(3.8)

hd-di
V,(s, x, h, a) = (2 )dI211/2 exp (-(x - nm8) .2:'(x - nm,)/2n) + o(n-dl2),

where nd/2o(n-d/2) - 0 as n - oo uniformly for Isl < cl, x E Rfd, 0 < h < N,
and N-1 < a < N.
Theorem 2 now follows by a proof similar to that of lemma 2 of [2]. This

proof is unnecessarily complicated, however, by the fact that in [12] 0 was
chosen to be a corner instead of the center of the cube Ih. A simpler proof can
be based on the fact that if Isi < c, x E Rd, h > 0 and 0 < 6 < 1, then
(3.9) (x, x -y) + 7h() C X + h C (X, - ) + 7h(1+) IlIYI < 6/2,
and hence

(3.10) 8s - y) + Ih(1-)) S,u(x + lh) < ,s ((XX -Y) + 7h(1+3))y
IIII < 6/2.

As discussed in section 2, theorem 3 follows immediately from theorem 2.
Theorem 4 is clearly equivalent to lemma 4.
LEMMA 1. Suppose ,u is normalized. Then for every integer no, h > 0, and

e > 0, there is a 6 > Osuch that if n > 6-1, xE Dn,yE Dn+n,, and Ix - yl . e-
then
(3.11) M(n+no)(y + 7h) < e-an + (1 + e)A(n)(X + 7h).
Lemma 1 will be proven first under the additional assumption that Cramer's

condition is satisfied.
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LEMMA 2. If Iu has mean m and satisfies Cramer's condition, then for every
r > O there is a a > 0 such that (I){x Ix - nmi Tn} < e-n n > 6-1.

It suffices to prove this known lemma for d = 1 and m = 0. In this case we can
find positive numbers s and a such that Isl < c and g(Is)e-8 < e-26. Then
for n > 5-1

(3.12) /.A(In)([Tn, )) < (g(s))ne-n<< e28n < e6n/2,
and similarly /A(n)((-0, -Tn]) < e-5n/2. Thus ,A(n){x l ix! > -n} < e-8n as
desired.

Let IA be normalized and satisfy Cram6r's condition. In proving lemma 1
we can, without further loss of generality, assume that ,u has mean 0. It follows
easily from theorem 3 and lemma 2 that for every integer no, h > 0, and e > 0
we can find a > 0 and r >O such that if n > '-1, x e Dn, y e Dn+no, and
lx - y <.-1, then

(3.13) I.s(n+no)(y + 7h) < (1 + E),u(n)(X + Ih), lxi < Tn,

and

(3.14) AI(n+no)(y + Ih) < e5n, lxi > Tn .

This yields lemma 1 (hence also theorem 4 under the additional assumption
that ,u satisfies Cram6r's condition).
We can reduce the general case to this special case by means of lemma 3.
LEMMA 3. There are two probability measures g,i and ,u2 such that I,i satisfies

Cramer's condition, ,u is absolutely continuous with respect to pI, and 2u = Mi + M2-
To effect the desired decomposition we can, for example, choose xo e Rd such

that ,u{xo} = 0, define IA, by

(3.15) 1(A) = 2 fA e-1z1-oly(dx), all Borel sets A,

7 denoting a positive number such that Il(Rd) = 1, and set M2 = 2A -1.
We proceed to a proof of lemma 1. Let It, be normalized and decomposed

according to lemma 3. Then 41 is normalized and satisfies Cram6r's condition
and, therefore, lemma 1 holds with IA replaced by uLi. Also

(3.16) A = E (:j) 2

where * denotes convolution.
Choose integer no, h > 0, and e > 0. By applying lemma 1 to MIA and lemma 2

to the binomial distribution, we can find 8> 0 and 0 <i < I such that if
n > 8-i, li - (n/2)1 < in, x c Dn,j, y E Dn+no-jl and lx - yl < e-, then

(3.17) (n+no) 2-(n+n )Mn+° i)(y+ 7h)

<2 (n n )+ 2(n+no)e n + (1 + E) (n) 2-n(-J(x + l)
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and if n > &-1, then

(3.18) n> no(
<

) 2

Lemma 1, and hence also theorem 4, now follow immediately.
LEMMA 4. Suppose 1 is normalized and that Tii-m0n,0 (I(,n) (Ih.)) I/In = 1 for some

finite ho. Then for every integer no, h > 0, and e > 0, there is a a > 0 such that if
n > 5-1, x E Dn, y s D + lx - yl < e-1, and lxl < An, then (2.17) holds.

In proving this lemma, we can assume that ho > 1. It follows from theorem 4
and the present hypotheses that for any a > 0 there is a positive integer n such
that /L(n)(-X + Ih0) > e-8n for x E Iho. Since for k > 1

(3.19) ,(kn)(IhA ) > | ,(kn-n) (dx)(A(.x + Ii),

we see that / (kn)(Ih0) > e-6knlk > 1. Theorem 4 now implies a series of conse-
quences. First, limno, (A(n)(Ih'))1In = 1. Thus there exists Xn E Dn with lxnl < 1
and limn-- (,A(n) (xn + Ih,))lln = 1. Therefore, for any h > 0 and 5 > 0 there
exist T> 0 and no such that
(3.20) A(n)(X + 7h) > e-68 for n > no, x E Dn, and lx| < Tn.
This result, together with a final application of theorem 4, yields lemma 4.
The next result was suggested by theorem 5 of Kesten [5].
LEMMA 5. If ,u is nondegenerate and infend g(s) = g(0) = 1, then

(3.21 ) lim (,"() (Ih.) ) 1 /n =
n--

for some ho.
Under the hypothesis of lemma 5 A is not one-sided and liml8j, g(s) = 0o.

We assume, without loss of generality, that ,u is normalized. For e > 0 set

(3.22) ge(s) = IRd ex.se-'1xI2(dx).
Let Se be the unique minimizing point of g9(*). Then as e -O0, sfstays bounded
and Fatou's lemma implies g,(sf) -9 g(0) = 1. Let ve be the probability measure
defined on all Borel sets A C Rd by

(3.23) ve(A) = f -) e-X6 2 (dx).

Then v, is normalized and has mean 0 and exponentially decreasing tails. Thus
lim< (v(2)(Ih))"l/nfor h > 1. Since

(3.24) /,Ln (Ih) 2 (gf(sf))if e-x8,g,fv)(dx),

it follows that, for h > 1, lim infn > (/A(n)(Ih))/n > g9(sf), and hence that
limnl, (A(n) (Ih))l/n = 1, as desired.

Finally, to prove theorem 5, let IA be normalized and not one-sided, and let
so be as defined just above the statement of theorem 5. Then lemma 5, and
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hence lemma 4, apply to the probability measure yt80. Using the relation between
(77) and so we get theorem 5.
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