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1. Introduction

Let X = (S1, JZ, Px, Xt, Ot) be a Hunt process having a locally compast
space E with a countable base as state space. We refer the reader to the ex-
pository paper ([4] or [1], pp. 133-134), for all concepts and notations which
are not explicitly mentioned in the present paper.
A stopping time T for the process X is called accessible if for each initial

measure u on E there is a nondecreasing sequence {Tn} of stopping times
such that Pu almost surely, Tn -- T and Tn < T for all n on {T > 0}. Meyer
[7] has proved the remarkable result that a stopping time T is accessible if
and only if the path t -÷ Xt(w) is continuous at T(w) almost surely on {T <oo}.
We will say that a stopping time T is thin if Px(T > 0) = 1 for all x in E.
As usual, an analytic subset A of E is thin if Px(TA > 0) = 1 for all x in E,
where TA = inf It > 0: Xt e A} is the hitting time of A. These definitions
are consistent since clearly A is thin if and only if TA is thin. Finally a stopping
time T is called a terminal time if for each t

(1.1) T = t + T ° ot, almost surely on {T > t}.
If A is an analytic subset of E, then TA is a terminal time and the phrase "almost
surely" may even be dropped from statement (1.1).

Let us now assume that X satisfies Hunt's hypothesis (F). (See [5], [6], or
[1], pp. 133-134.) It then follows from proposition 18.5 of [5] that TA is an
accessible terminal time whenever A is a thin analytic subset of E. Moreover,
it is clear that TA = 00 on (TA > P} if A C E. The main result of this paper
is the following converse of the above statement.
THEOREM 1. Assume X satisfies hypothests (F). If T is a thin accessible

terminal time uith the property that Pz[¢ < T < -m] = 0 for all x, then there
exists a thin Borel set B C E such that T = TB almost surely.
The proof of theorem 1 is given in section 2; then in section 3 we give some

applications of theorem 1 to the structure of natural additive functionals.
Consider the following process: the state space E = L U L1 U L2 is the fol-

lowing subset of the Euclidean plane, L = {(x, y): x < 0, y = 0} is the nonpos-
itive x-axis, L1 is the segment joining the points (0, 1) and (1, 0), whereas L2 is
the segment joining (0, -1) and (1, 0). The process consists of translation to
the right at unit speed until (0, 0) is reached. The point (0, 0) is a holding point
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with parameter 1 from which the process jumps to (0, 1) or (0, -1) with prob-
ability 2, respectively. The process then moves with unit speed along the
appropriate segment Li or L2 until it reaches (1, 0) where it remains forever.
Define T by T(w) = X if the trajectory t -- Xt(w) reaches (1, 0) via the lower
segment L2 or if Xo(co) = (1, 0); whereas, if the trajectory arrives at (1, 0) via
the upper segment Li, let T(w) be the time at which the process reaches (1, 0).
It is immediate that T is a thin accessible terminal time, and it is equally clear
that if the initial measure 1A attaches positive mass to L, then there is no thin
set B such that T = TB almost surely Pu, even if we allow the set B to depend
on ,u. This example is, of course, artificial, but it does show that theorem 1 is
not valid for Hunt processes in general. One can construct examples which are
less artificial.

2. Proof of theorem 1

In the rest of this paper we will assume that X satisfies Hunt's hypothesis (F).
We will break up the proof of theorem 1 into several lemmas. In this section
(for typographical convenience) we will write U and PB, rather than U1 and
PB1, for the potential kernel and hitting distributions obtained by taking the
auxiliary parameter X to be 1; that is, for any bounded Borel measurable f,

(2.1) J U(x, y)f(y) dy = Ef f0 e-tf(X,) dt,
PBf(x) = EZ{e- Bf(XTB)}-

Here, as in Hunt, t(dy) = dy denotes the basic measure on E. We will also
need the fact that if T satisfies the hypotheses of theorem 1 and R is any stopping
time, then R + T o OR = T almost surely on {R < T}. This follows easily from
the strong Markov property for multiplicative functionals [6].
From now on T will always satisfy the hypotheses of theorem 1. Let +(x) -

EZ(e-T). Since T is a thin terminal time it is easy to see that 4 is 1-excessive
and that 0 is strictly less than 1. According to theorem 18.7 of [5], we may
write 0 = U,u + J, where ;t is a measure on E and 4' is a 1-excessive function
with the property that PF# = 4' whenever F is the complement of a compact
subset of E.
The following notation will be used in the remainder of this section. Let

K. = {f) 1 - 1/n}. Each K. is a finely closed Borel set, and the Kn are
decreasing with empty intersection. Let T. = TKR be the hitting time of Kn.
LEMMA 1. For each n, PKn,4 = 4), and almost surely Tn T T urith T. < T on

{T < X}.
PROOF. Fix an x and let {Rn} be an increasing sequence of stopping times

such that Px(Rn-- T, R. < T for all n) = 1. Such a sequence exists, since T is a
thin accessible time. Now
(2.2) Ez{e-R-4(XR )} = EZ{xp (-Rn- T o ORn} = E T{eT}.
But Rn T T, and hence lim,, q5(XR.), which exists on {T < -o} since 4 is 1-exces-
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sive, must equal one on {T < }, all of these statements holding Pz almost
surely.

Recalling the definition of K,, it is clear that T. < T almost surely Pz.
Moreover, on {Tn = T < oo} = {T, = T < P}, one has for each m > n that
10(XT) = O(XT.) > 1 - (1/m), and this contradicts the fact that 4 is strictly less
than one. Consequently, T. < T almost surely Px on {T <00}. In particular
this yields
(2.3) PK,*Xk(x) = EZ{exp (- T. - T a 6T.)} = Ex(e-T) =(X)-

Finally, the relationship

(2.4) Ez{e-(T-T-); Tn < co} = Ex{4(XT,); Tn < oo} 2 (1-) Px(T <0)

implies that T. T T almost surely Px. Since x is arbitrary, this completes the
proof of lemma 1.

Define Ln= {x: x is left regular for K.} and let B be the intersec-
tion of the L.. Each L. is a countable intersection of open sets because L. =
{x: Lz(e-!') = 1}, and excessive functions are lower semicontinuous. It will
turn out that B is the set we are looking for; that is, T = TB almost surely.
LEMMA 2. The measure ,u is carried by B.
PROOF. Since PK.U < U for any 1-excessive function u and PKn4b = +, it

follows that PK,UIu = Uju and PK4,A = 4'. The equality Uu = PKRUM = UPKi
and the uniqueness theorem for potentials of measures imply that P= PK)R.
Therefore ,t is carried by K. U L. for each n. But the intersection of the Kn is
empty, and hence lemma 2 is established.

According to theorem 18.8 of [5], if {Gn} is an increasing sequence of open
subsets of E whose union is E, then letting Fn denote the complement of Gn we
have PF. U,A -- 0 as n -- 00. It is not difficult to conclude from this that U12 is
a potential of class (D) (see [4] or [6] for the definition), and consequently,
according to Meyer's result [6], there exists a unique natural additive func-
tional A of X such that U,u(x) = EZ fo e7t dA (t) for all x.
LEMMA 3. Let R = inf {t: A(t) > O}; then R = T almost surely.
PROOF. We have

(2.5) UAU(X) = PK.UA (X) = EZ |(T) e-t dA(t),

and hence A (T.) = 0 almost surely. However, Tn T T, and this implies that
T < R almost surely. We turn now to the opposite inequality.
As a first step, we will show that 4,(XTr) -*(XT) almost surely on {T < 00}.

By assumption, T = oo almost surely on {<< T}, hence it suffices to prove
the convergence on {T < t}. Let {D.} be an increasing sequence of compact
subsets of E whose union is E. If Sn is the hitting time of the complement
of Dn, then Sn T Aas n -*00. For a fixed k define Q,, = min (T., Sk) and Q =

min (T, Sk). Clearly Qn T Q, and it suffices to show that 1P(XQn) _-+ 4(XQ) on
{Q < m}. If x is fixed, {e-Q-4,(XQ.), PZ} is a bounded nonnegative supermartil-
gale, therefore H = limn e-Q"-4(XQj) exists almost surely PZ.
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Recall the basic fact that Ps, = . But Q. < Sk, and consequently

(2.6) #6 2 PQ.6 2 PSs'& A,
with a similar relationship for PQ4&. Hence, ^ PQ=PQ = PQp for all n, and this
yields
(2.7) Ex(H) = lim Ex[e-Q4,6(XQ.)] = Ex[e-Q,(XQ)].

n

On the other hand, Q 2 Qn; hence, if A is in fQ",, then for all n > m

(2.8) Ex{e-Q-#(XQ.); A} 2 Ex{e-Q4b(XQ); A},
and letting n oo

(2.9) EZ{H; A} 2 Ez {e-Q4t'(XQ); A}.
Using the characterization of I:Q given in [2], it is immediate that (2.9) holds

for all A in 5Q, and H and e-QOI(XQ) being 5Q measurable, it follows that H >
e-Q4,6(XQ) almost surely Px. In view of (2.7) and the definition of H, this implies
that !'(XQJ) -,P(XQ) almost surely on {Q < o}. Thus we have shown that
4,6(XT,) --* 4(XT) almost surely on {T < o}.

Let A be in ST., and let n > m; then we have
(2.10) Ex{e-T.,O(XT.); A} = Ez{e T-U.(XT,); A} + Ex{e-T4,p(XT.); A},

with a similar expression in which T replaces Tn. Since #,(XT.) -* O(XT) and
O(XT.) -* 1 almost surely on {T < o}, by letting n -+ oo and then by sub-
tracting the corresponding expression involving T, one obtains
(2.11) EZ{e-T[-4(XT)]; A} = EZ{e-TA (T); A}.
It now follows that this must hold for all A in ST, and consequently,
(2.12) A(T) = 1 - O(XT) > 0

almost surely on {T < oo }. But this implies that R < T almost surely, and so
lemma 3 is established.
LEMMA 4. The inequality T > TB holds almost surely.
PROOF. By construction, UAu(x) = EZ fo e-' dA (t), and hence a result of

Meyer [6] (see also [1]) implies that

(2.13) f U(x, y)f(y),u(dy) = EZ f- e-tf(Xt) dA,

for all bounded Borel measurable f. Taking f to be the characteristic function
of E\B and using lemmas 2 and 3, one finds

(2.14) 0 = Ex |[T, ) etf(Xt) dA(t) 2 EZ{e-Tf(XT)A(T)}.
But A(T) > 0 on {T < oo}, according to (2.12), and so XT is in B almost surely
on {T < P} = {T < o}. Since T is thin we may conclude TB < T almost
surely, thus completing the proof of lemma 4.

Let B. = {4 < 1 - 1/n}. Each B,, is a finely open Borel set, and the Bn
increase to E as n -. oo. Of course, Bn = E\K. for each n.



ACCESSIBLE TERMINAL TIMES 5

LEMMA 5. Let v be a positive measure on E such that g = Uv is bounded, then
PT9 2 PBS.

PROOF. Recalling the definition of Ln and B, one has Px[PL, < TK.] = 0 for
all x and TL. < TB. Consequently,

(2.15) PK.PBW. = UPKUPB,rV 2 UPBPBMV} = PBPB.9.
Let Rn,m = Tn + TB. OT., then

(2.16) PK.PBVf(X) = Ex{exp (-Rn ,m)g[X(Rn,m)]}.
We now claim that for m, fixed Rn,m coincides with T + TB. ° OT for sufficiently
large n almost surely on {T < oo}. To prove this we note that since Bm is finely
open, we have

(2.17) PZ[Tn + TBO° OT. < T + TBO OT; T < oo]
< PZ[Xt E Bm for some t e [T., T); T < 0].

However T. -- T and O(Xt) -+ 1 as t T T on {T < oo}, and hence this last
expression approaches zero as n -÷ oo. Therefore, Rn,m = T + TBg OT for suf-
ficiently large n almost surely on {T < m}. It now follows from (2.16) that
PK,PBg9 - PTPB.g as n -X00 for each fixed m, and hence PTPB..9 2 PBPB.9-
But PB,g increases to g as m -*00, and this establishes lemma 5.
We may now easily complete the proof of theorem 1. We have just shown that

Ez{e-Tg(XT)} dominates Ez{e-TBg(XT,)} whenever g is a bounded potential Uv.
But the function identically equal to one on E is the limit of an increasing se-
quence of such potentials, hence Ez(e-T) 2 Ex(e-TB). Combining this with
lemma 4 completes the proof of theorem 1.
REMARK 1. Naturally the set B is finely closed since it is thin. In addition,

the particular set B constructed above is cofinely closed in as much as each L.
is cofinely closed, that is, closed in the fine topology for the dual process X

3. Natural additive functionals

In this section U and PB will have their usual meanings; that is, they are
the potential kernel and the hitting distributions for X = 0. Let A = A (t) be a
natural additive functional of X, and for simplicity, we assume that A has a
finite potential, that is, u(x) = EZ{A(OO)} < oo. (The following results are
valid with the obvious modifications if one only assumes that A has a finite
X-potential for some strictly positive X.)

In [6], Meyer has shown that A can be decomposed into the sum of a con-
tinuous additive functional, C, and a purely discontinuous natural additive
functional, D, in the following manner. For a given n let T(n () = T(w) be the
smallest value of t such that lu[Xt(w)] - u[Xt-(w)] > 1/n and the path X(-, w)
is continuous at t. Here u(X,-) denotes lim8 t t u(X,) and not u(lim. t t X.). It is
known that T satisfies the hypotheses of theorem 1 for each n (see [6] or [3]).
Let Gn(w) be the magnitude of the jump at T, that is
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(3.1) G.(w) = u[X(T(w) -, w)] - u[X(T(.), c)] 2 0.

It is clear that G. = 0 on {T = oo} and G. > 1/n on {T < oo}.
We now define the successive jumping times Tk() = Tk by To = 0 and Tk+1 =

Tk + T 0OTk for k > 0. Next define the additive functional Dn(t) by

(3.2) Dn(t, lw) = E G.(OTkco),
the sum being taken over those k for which Tk(w) < t. It is easy to see that Dn
is a natural additive functional for each n, and Meyer has shown that limn Dn(t)
exists uniformly on [0, m0) almost surely and defines a natural additive func-
tional D(t). Finally the difference u(x) - EZ{D(oo)} is the potential of a con-
tinuous additive functional C(t), and consequently A(t) = C(t) + D(t). This
decomposition is valid for general Hunt processes and so does not depend on
hypothesis (F).
From now on we assume that (F) holds; then for each n there exists by

theorem 1 a thin set Bn such that T(n) = TB., almost surely. Let Bd be the union
of the B., so that Bd is semipolar, and let B, = E\Bd. Moreover, the Tin) are
decreasing, and therefore we may assume the B. are increasing.
THEOREM 2. Let Id and I. be the indicator functions of Bd and B. respectively;

then

(3.3) D(t) = fo Id(Xu) dA(u) and C(t) = fo Ic(Xu) dA(u),
where, as usual, the equality of additive functionals means equivalence.

PROOF. If R is an accessible terminal time, a standard argument, like the
one used in the proof of lemma 3, shows that

(3.4) u(XR-) - u(XR) = A(R) - A(R-)
almost surely on {R < oo }. Therefore, it follows that T(n) is the first t such that
A(t) - A(t-) > 1/n and that Gn is the jump in A at that point. If T(n) is
finite, X(T(n)) is in B. almost surely since Bn is thin. Consequently, we may
write

(3.5) Dn(t) = f|O IB.(Xu) dA(u),

and letting n - oo we obtain the assertion about D(t). The one about C(t) is
then obvious since I. + Id = 1.
REMARK. If the only semipolar sets are polar, then it is an immediate conse-

quence of theorem 2 that the only natural additive functionals (with finite
potential) are continuous. One can find simple examples to show that this is
not the case if we assume only Hunt's hypothesis (A).
We will close this section with one more comment on the structure of D(t).

Fix n and consider the approximating functional D.(t) and also the natural
additive functional J.(t) defined to be the largest k such that Tk() < t. Clearly

(3.6) EZ f e-' dJ.(t) < nEx f7 e-t dD.(t),
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because the jumps of D. all exceed 1/n. It follows from theorem 18.7 of [5] that

(3.7) UA (x) = EZ 10f e-t dA(t) = U'A(x),
where ,u is an appropriate measure, and that UYl = U,., UK = Ut,, where ;un
is the restriction of ,u to Bn in view of (3.5). Now

(3.8) f U'(x, y)f(y)vn(dy) = EZ fg e-tf(Xt) dJn(t),
with a similar statement for /pn and D., whenever f is bounded and measurable.
Thus if for some f> 0 the left side of (3.8) vanishes, then using the relation-
ship between Jn and Dn, one sees that f U'(x, y)f(y);un(dy) also vanishes.
But this, together with the uniqueness of potentials, implies that n is absolutely
continuous with respect to v,.

Letting d/Ln = gn dvn, we have

(3.9) Dn(t) = o g9n(X.) dJ.(u).
In particular, Gn = gn[X(T(n))] almost surely, and gn may be assumed to vanish
off Bn. Moreover, if m > n, we may write

(3.10) Jn(t) = fo rB.(Xu) dJm(t),

because A (t) jumps by more than 1/n at time TkX) if and only if X(Tk()) is in Bn.
Hence vn is the restriction of vm to the set Bn. Thus we may assume that gn and
gm agree on Bn; that is, we may define a nonnegative Borel measurable func-
tion g on E vanishing off Bd such that gn is the restriction of g to Bn for each n.
Now we may write the approximating functionals D. as

(3.11) Dn(t) = E g[X(T"(n)]
k

where the sum is over those k satisfying Tk() < t. Thus the purely discontinuous
additive functional D is completely determined by the function g and the in-
creasing sequence of thin sets {Bn}. Finally if one defines A1 = B1, An+1 =
B+,- U 1 Ai and the times RP) to be the successive hitting times of An,
that is, RV?' = 0 and

(3.12) Rk1+ = RQk' + TA. 0 for k > 0,
then one has the following representation of D:

(3.13) D(t) = g[X(R
n k

where again the inner summation is over those k satisfying Rk') <t.
One can show by simple examples that the jump Gn will not always be ex-

pressible as a function of the position X(T(n)) alone, if one merely assumes
Hunt's hypothesis (A). In particular, the representations (3.11) and (3.13) are
not valid for arbitrary Hunt processes.
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