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1. Introduction

A general concept of capacity (extracted by Bourbaki from Choquet's theory
[8]) which we shall call general real capacity, is a real function (finite or not)
C(e) of a set e in a Hausdorff space, satisfying the following conditions:

(i) e(e) is increasing; (ii) for any increasing sequence en, sup C(e.) = e(Uen);
(iii) for any decreasing sequence of compact sets en, inf e(en) = C(ne").
Taking the value of e in a complete lattice [9] (with a greatest and a smallest

element), these conditions may be considered as defining a "genelal capacity"
and we shall meet interesting examples where it is a function of a variable in a
suitable lattice of functions.

There has been no general study of the limit of a capacity for a decreasing
sequence of noncompact sets. We shall develop and complete a lecture in the
seminar on potential theory (November 1964) and a note [5] by giving some
examples from balayage theory (and first from the most classical capacity) where
the previous limit is made precise. Among these capacities, one will be a function,
in the family (ordered by < everywhere) of the superharmonic functions. The
famous capacitability theorem for the real capacities holds also for this capacity.
We shall even consider directed decreasinig, anid also increasing, sets of sets, and
similar set functions which are not capacities but are given by balayage theory,
in an axiomatic frame of potential theory, as well as in the classical case. (General
research of Doob is in course and has given or inspired the extensions to directed
sets, as it will be mentioned in the text.) After the lecture I developed here, I
became aware of connected axiomatic discussions by Fuglede (see C. R. Acad.
Sci. Paris, October 1965.) For this research and these results, the fine closed sets
(that is, closed according to the fiine topology) play an essential role and the
basic tool is a theorem by Cho(qtiet oii thinness (lemmlia l).

Fiinally, an applicationi will be maide to get a proof of a theoremii by Getoor (on
a smallest fine closed support of a measure) that was first obtained by probability
theory, then proved and generalized by Choquet [11] in an axiomatic way.
Another application will generalize some results by using, as Doob proposed,
the fine upper semicontinuous functions.
We shall work in pure potential theory without giving any probabilistic inter-

pretation and we shall be able to shorten the redaction by referring to a recent
paper [4] conitaining conniected or simiilar coneepts, tools or proofs
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2. On capacity in classical potential theory

We recall soiiie classical concepts in a Green space 52, for instanice, a bounded
doiiain of RTh(n > 2) (see [6]).
The fine topology on Q is the coarsest onie for which the stuperharmiionic fulle-

tioniS (locally or in Q2) are continuous; the coiimplemiienitary sets of the "fili''
neigllborhoods of x0 are the sets which are thiin at x() (nlot conitailing xo). If x0 E c,
e is thliln if e\ {xo} is thin and {xo0 not polar. 'T'lhe hase (Me of a set c is the set of
the poinits where e is not thin. It is a Gb set. If e means the finie closure of c,
= 6.U (set of the fine isolated but polar points of e). The second set is polar.

Note that "c = e" is equivalenit to e D 6f. aiid that (0.== , = 6(, If e = 6.1,,
e is said to be a base.

For anly real funictioni p > 0 oi S2, (RI?)1 or- R'{ (called rieduced functioni of so
for e) means the lower envelope (infimum) of all hyperhairmlonic (that is, super-
lharmiionic or +x) nonnegative functions in S2, majorizing sp oII e. For any real
function , , means the lim iiif at every poinit, that is, supw,D (imnfe,, +'(y)),
(w nteighborhood of x), (regularized functioni of i).

(If p is the infimnum of a faiiily 'vi' of hyperliarmionic functionis > 0, {(x)
is the limit of f (Idp"I, (dpZ harmlioniic meautire for a domain w 3 x) whenl w de-
creases in a sequence of ititersection -8x'.)
The functioni k is equal to R' q.e. (quasi everywhere, that is, except on a polar

set) and is the smallest hyperharmonic >0 funcetioin which majorizes <P q.e. on e.
For a superharmonic V > 0, Rv is called the balayaged function of V relative

to e; it is < V everywhere, and equal to V q.e. oni e. If e is compact, R (called
capacitary potential) is the Greeniani poteiitial of a measure >0, whose total
amiiount is the (outer Greenian) capacity of e, tlhat, may be suitably extended to anly
c, as a genieral real capacity.
Note that & is a counitably subadditive futnction of e. It is ilnvarianit by chailg-

iing e in e, (B, or by a polar set; an-d therefore, the samne holds for the Greenian
capacity.
LEMMA 1 (Choquet [10]). 7'he set C(B, of points of 52 where e is thin may be

embedded in an open set w such that e n w has a Greeniant capacity arbitrarily smlall.
It is equivalent to the same property of Cue n e.
It is obvious that the decieasiing property (iii) of the capacity does not hold

for noincompact sets. For examiiple, in RI', (n > 3), let us consider the set en =
{x, pl(l + (1/n)) < lxl < p} . The Newtoniani capacity is the same as the capac-
ity of the ball of radius p, btut the iiltersectioni of these sets e,, is empty. However,
the limiiit property imiay be true for sets which arc niot as restrictive as compact
sets.
THEOREM 1. If e,, is a decreasing sequence of fine closed sets on a compact

K C Q, the Greenian (outer) capacity e(e7,) tends to e(ne,); therefore, for any de-
creasing a,l C K

(2.1) e(a,,) e(na&n) = e(ni(ia,).
Let tsismitro(duce ail opeii set w,,, cointaimiing C(we aiid such that C(Un n e,n) <
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e/'2'. A point X. of en\W,n is iicvcr in w,; the set C, is not tliii at .r (if Hot, x wouild be
in w,). Therefore x Gen, C en; then x E en\w,. We conclude that en\w)n is closed.
The sets el = e,\w1, e2 = e2\(VC0 U C2), * * * e'n = e,,\(Wl U Ci2 U o,,) are

compact and decreasing, and e(en,) -, e(ne'). However,

(2.2) e(e,,) < e(e') + e (U (cop n

<C (e') + e.

HeICe, C(fe') < e(ne,,) < rni e(en) < e(oee') + E. We conicl(le tllat C(e,)
e(nle,).

1. Similar result with other capacities. (a) If so is finite conltiiluous >20, Rf is a
general capacity, as a function taking its -alue in the set of the hyperharmonie
nonnegative functions, which is a complete lattice for the natural order.

It is obvious that (i) and (ii) are satisfied. If e, is compact and decreasing, wve

may see that inif RI? wlhich is the infimuni in the lattice of the R", is equal to 7'.
In fact, R?'' = infD,,,K 1?, (K compact, co open) (the proof is easy and is

nearly the samne as in [2], p. 122). (If a hyperharmoniic v > 0 is >.f on K, v >
Xs(() < X < 1) oni a neighborhood a of K. Then v > XR', v > X ilfr,,K R', (w
open), Rft > inf,,DA-f' .) Thei-efore, R2 Rn?', I?,-< Rk ne- (I.e.; thus

(2.3) f inf I? (lp6 = f f?n (1p.,

and hence the desired result.
(b) If m is a measure > 0, which does not charge the polar sets, JF I?, (li/ eul.

to f f dm is a general real-capacity.
It is easy to check (i), (ii), and (iii). A particular case is the case of the nmasure

dp6° we just met.
(c) Let us recall that, if e C K (fixed compact set), f Rfl dp" (fixed co0 and xo)

and the outer Greeniiani capacity of e are simultanieously zero, oir the ratio re-
mains between tNvo fixed positive numbers.

Therefore lemma 1 holds for the new capacity f Jf dp" (coiisider first the sub-
sets of a K) and also the proof of theorem 1. XVe are led to the followinig theoremll.
THEOREM 1'. If e,, is a decreasing sequence of Jine closed sets oti a comrpact set K

andl so any fixed finite continuous nonnegative function, then

(2.4) inlf RK = Rfe.

whVere the fi,st mnemnber is the infimitium, of the capacities f?" of e,, in th1e l(1tice of the
nonnegative hyperharnionic funitctions (with the natulral or(ler).

1Fro)m inf refk p&o = f ln dp we deduce f iuif f( (IP = - ff?2c(dpo anid

iuf = ftflen
COROLLARY. T'he genteral e(lquation (2.4) imitplies the Iimiiit property (2.1) for the

general capacity r ?f&(din of (b) when, in d(oes not charge polar- sets anl conitainis also
theorem,l ].
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(If un decreasing is a potential, harmonic outside a compact set K, the corre-

sponding measure of u,, converges vaguely to the measure associated with inf uX;
or see further theorem 2.)
IMPORTANT REMARK. For the capacity fi', the general capacitability theorem

holds.
It holds for tlk.e real capacity fk.' dp-, that is, if e is a K-analytic set conltailned

in a K, set, SUPKCe f Jf' dp4' = f Ref dpr; but the first member is equal to

fsupKce Rf' dp", for all xo, wo and that implies SUpKce &= (compact set K).
2. Extension to directed sets (essentially due to Doob). Without usiing general

unpublished arguments of Doob (and also of the author) that would imply the
passage from sequences to directed sets, we shall treat our particular problem
by using, according to an idea of Doob, a topological lemma of Choquet (see
[2], p. 3 or [6], p. 6).
LEMMA 2. There exists a finite continuous potential l'o > 0 such that, for any e,

the base 63e is the set {x; R,-o(x) = Vo(x)}. T7hen the condition I?'j, > k, ioplies
63ei D 6e,.

In fact, if X E (Be,, fev(X) = Vo(x) < RkV`o(x); therefore there is equality.
LEMMA 3. Given a decreasing directed set {ej} of fine closed sets ei C K, there

exists an extracted sequence en such that flne, = (fnei C nei. Any other sequence
ein such that ei, C en has the same property.

We may choose en such that inf R'v, = inf, R'vo; then R,niCl (first member) is
.R' , for all i. Therefore, (B ne, C (e,i C e1, (sBne, C nei, and 63fne. = 63ne. cnei.
THEOREM 2. For any decreasing directed set {ej} of fine closed sets ei in a comI-

pact K and for a fixed finite continuous <, > 0,

(2.5) inf Rei = R,l i

More extensive, the capacity C(e), equal to k, (in the above lattice), or to f Re dm
(m > 0 not charging the polar sets) or to the Greenian capacity, satisfies the property
inf e(ei) = e(nei).

For any set ei C K, this result holds by changing on the right, nei to nfi or to (Be,.

We may extract en such that Bne. C nei and inf Re = inf Rj-. The first con-
dition gives Rflen < Rfnei; therefore Rf" = Rfnei. The second one, thanks to the-

orem 1', gives inf Ro - -nen= Rfne;
In order to complete the proof, let us choose en such that 63nle. = 63nei (which

implies ~R1n = Rfei) and inf f Rfi dm = inf k d?n. Hence inf f k,i dm =
r fn n dm = R i dm.
As for the Greenian capacity, consider vi and v corresponding to the potentials
1 1pe. If a is the measure associated with Mi(w open set D K),
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(2.6) bd=~IviI fRVdv1j =- fffi'dia,
(2.6) inf l = f hnei do== f R v v

Finally note that for any sets es, nei = n63le up to a polar set.
3. Another extension.
THEOREM 3. We cancel the condition es C K but impose so < V, a potential.

Then with the other hypothesis of theorem 2, we get the same equality

(2.7) i = n

and the same limit property of the capacity f &, dm (where m > 0, does not charge
the polar sets and satisfies f *p dm < oo).

Observe that, for any compact set K,
-e nK < jei < heinK + fK

(2.8) RlneinK < fnei < hneinK + f$K*
Therefore, both inf Ri and Rep i are between the extreme members of the last
inequality. Their integrals with respect to dpzo differ by f fhVK dpeo which may be
arbitrarily small. Therefore, these integrals are equal and so are the functions.
The same previous inequalities show that

(2.9) linf f k dm-|f P dm

is arbitrarily small and therefore equal to 0.
COROLLARY. Lemma 3 extends without the restriction ei C K.

3. More general set functions of the classical balayage theory
1. The case of increasing sets. If we consider Rh for any function so > 0 on Q,

it is not always a capacity (as we shall see later), but the properties (i) and (ii)
still hold. Let us examine property (ii) for an increasing directed set of sets.

Instead of the fine closed sets e characterized by e D (B3e (and that we may call
superbasic), we shall now use the sets characterized by e C 63e and called sub-
basic sets (examples are the fine open sets).
LEMMA 4. For any increasing directed set of sets ei, there exists an extracted

increasing sequence en such that Wu,e D 63ej for every i. 7'herefore, if the ei are sub-
basic, 63u,. D Uej, (BUen = 63Uei

Let us choose a countable base of relatively compact domains wj and a couInt-
able dense set {Xk}. By means of the diagonal process, we may find an increasing
sequence en such that

(3.1) sup f R'. dpzk = sup f iW, dpk (for all cod, xk E Wj)

where Vo is the special potential of lemma 2.
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Henice J uW,," dppi > Jf fl', dp.i for every i, first forix e j aiid iii tle sequence
Xk, then for any x E w,. We colnclude that RJ?'" > Rk,, wiue, D 63,;, for every i.
lf the ei are subbasic, o'!u,, D ei, (01ue, D Uej, anid dueu, D iue,j.
THEORENm 4. Let {e'- be an inicreasinig (lirectedl set of suibbasic sets ald P (my

funiction >0 ont Q. T'hen
(:E) sulp kff= ie

W1re miiay extr'act an inicreasing se(luncie e, such that au,. = 0))u, and that foi-
a countable system (Wj, Xk) as above,

(:1.3$) sup f f?p dpX = sull) f f?- (lp-{

TI cii~~ ~ ~ ~~~ k'
(:1.4)~~ ~ ~ f,Uf (/P,i: = f slp iRf (/PIA (.ml wE yj,Vixv)

because of (ii) aind of the lower secicontiniuity of Ref. Tlhe same lholds by clhaiigilln
Xk to aniy x c wj. Heiice, Rfu" = supi R<f. Since Ue, anid Uej have same base, thie
first nmem1iber is RPu1

2. General balayage(d potential and( decreasing sets.
LEMMA 5. If e,, is Jine close(, (lecreasintg an(l y ¢ ne,,,

(3.5) imif R,, ?G,-

If o- is ain open neighborhood of y, en, $ y, n > nol, tleii

n
R- < I? < fe + R# n¢(3.') )jR (le..\fG < Rf IeP < R ", " +

f

67

Bly clhaniginig G,/ to a finite continuous funietioni e(lual to G11 outside a- (in oider to

ulse tlheoremii 1'), we see that iiif Rf?', anid RG` lie betweenl R$e,\ and finfn\ +
leCnJ^ h-ence

(3.7) f iif RcG7, dp.- j R[)n" dp. j I dp@;
the second imiemlber is arbitrarily small for a suitable a- b)ecause e,,, is thlinl at y.
The first nmeniber is therefore null for aiiy (w(, x0,). That is equivalent to tlhe
desired leiiimiia.
THEOIREm 3. Given a (lecreasinyg se(quenice of sets e,, and a potential V' of a mweas-

ure,u > 0, let its introduce the potentials VI, 1V2 of the restrictions ILI, I'2 of y ott nWYi
an(l c(noie,). 7Thent

(:1.8) inif R'V = I i,+ R,n

(In this eq(uality fl3e,, mlay be replaced by fe,, whliicl differs fromii it l)y a POla1
set.)
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We iiay stuppose e,, is a basc (tlie inie(ltiality (3.8) reiimains unchanged if en is
replaced by its base). Since V(x) = f G,(x) dy(y), one has

(3.9) fRev(x) = f kd x) dA(y) = f Rsy(x) dAIS(y) + f ky/,x) d12(y).
N\Tow Rny1 = G, when y e nea (en is not thin at y), and the first, term on the right,
is l',(x). Further,

f 1?i,(x) dpG"(x) = V1(xo) + f (f (/X) dp' (X))1 2(y1),

(3J.10)) Ijinl f fi?e *1p° = V,(xo) + f (f pnye(x) dPI(x)) d/12(y)
f liim 1?" (lp = Vl(xn) + f (f RnVe)(x 1,))*

= Vi(x() + f fle,n,dp. .

Ilence the theorem, by using a decreasing wo 3 xo.
Another formn of theorem1 5. Let us introduce the restriction /.b of . to the base

of q&3en and the corresponding potential Vb, then the positive measures ' =
-1Ab, /A1 = A2 + ,Ab and the corresponding potentials T1', T1". Then,

(:L Ii) inf 1 , = V1 + RV"t
Ini fact, V1 = V1 + Vb, Tr" = V2 + Vb, f?'" - fvnG +V2 &b and lb = R
The second member of (3.11) is V' + f?R,nb + f?n23n eqiial to the second member
of (3.8).

COROLLARY. For a fixed potential V, MV and f Rv din (in > 0, #O and not
charging polar sets), are capacities if and only if the measure associated to V does
not charge polar sets.

In this case, (3.11) proxes the capacity property because V' = 0. Conversely,
if Au(e) # 0 for a compact polar set e, let tus form en, compact nonpolar, decreasinig

with nes = e. According to (3.8), inf R?7' = V17 > 0, but Np"' = 0. Therefore
Rev and f kil dm are not capacities.

3. Extension to directed decreasing sets.
LEMMA 6. If {ui} is a family of nonnegative sutperharmonic ftnctions which

forms with the specific order a decreasing directed set, then inf ui (inf in the natural
orfder) is the infimum (greatest lower bound) of -{uiu-, according to the specific order
(as well as to the natural order) in the complete lattice of the nonnegative superhar-
monic functions.

Let us recall that in the specific order v > w means that v = w + a noninega-
tive superharmonic function (see [2]).

Let us consider first a sequence ur. (decreasing for the specific order) and let
1X, = u. - inf uan be +-- where the difference is undetermined. We shall prove
thlat v,, is nearly hyperhainoniic, that is vn(xo) > f v,, dp&., for every reguilar do-
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main up, anid every x0 Xco. We start from un(x) - u,(x) > f (un- u,) dpx",
n < p for points x where un is finite, as an easy consequence of u" > u, (spe-
cifically).
Hence u,,(x) - infp up(x) > f (u,, - inf up) dp," and the desired property fol-

lows.
lBy considering f vn dpx for decreasing 3k, (nak = fx}), we get for the Iimit, a

superharmonic funietioni, equal to u,, - inf,, un (for the points wlhere u,, is finite).

Hence un > inf un, and the desired result follows.
For any directed set {ui}, we extract a decreasing sequence iii. such that

infi ui = infn ui,. Since we may choose ui, containing any fixed uj, we see that

itj > illf uUi.
R1EMARK. For poteiitials ui, specifically ordered, the associated measures .ti

(in the ordered space of the lRadon measures) have the same order as the poten-

tials. Therefore, in the lemma, inf ui is the potential of the inf of the set of the
corresponding measures Ai.
THEOREM 6. Given a decreasing directed set of sets {ei} and a potential V of a

measure ,u > 0, let us introduce the restricted measures j.i, vi on 61ei and C(3e,, their

potentials Vi, W1j, and the potentials V1 = inf V, and V2 = sup TVi which are the
potentials of the measures 41, j.s2 defined as inf and sup of the ordered sets {fii and
{v'}.Then

(3.12) inf = V1+' V,

(where the set nole, of this equality may be replaced by nfi which (liffers by a polar
set).

Using once more the idea of Doob, we may extract a decreasing sequence ei,

such that base of n(Bei, =base of nfl, and infnVi, = infi Vi. This implies
sup Wi,, = sup Wi. The restrictions of js on nq,, and C(ne,j) are the inf and
sup of the sets of measures {i,}, {vJi.}, and the corresponding potentials are

infVi (lemma 6) and sup 11i,,. According to theorem 5,

(3.13) inf Rev = inf Vi,, + R(.i
Hence theorem 6 is proved.

Another formi. As above, we introduce the restriction lib of ji to the base of
nl(Be, and the potentials V', V" of 1 - Ab, A2 + Alb. Theii

(3.12') inf =VR+RVI'
REMARK. If ,A does iiot charge polar sets V' = 0, V" = V, because lul is the

restriction of u to nBe,i,,, anid therefore to its base also, and thus j1i is exactly jAb.



CAPACITY AND BALAYAGE 287

4. On the set function f Rev dm (positive measure m). Theorem 5 implies with
the same notations that

(3.14) lim f Rev dm = f V1 dm + f V.din,
but we cannot do the same with directed sets. However, the proof of theorem 6
gives

(3.15) inf ATR,, dm =f V, dm +fRnPcB-i dm.

It was possible to choose ei. such that it also satisfies

(3.16) inf f f6, dm = inf f Rev dm.

Henice,

(3.17) inf Rev dm = f V1 dn + f R di.

5. General balayaged superharmonic function. Let us study now Rv for any
superharmonic function V > 0. As V = potential Vo + nonnegative harmonic
function h, Rev = R1vW + Rh', the limits or infima corresponding to a directed de-
creasing set of sets {ei} satisfy

(3.18) inf R" = inf R" + inf Rei

and we have only to study &R (h harmonic > 0).
We shall use the compact Martin space f, the compact Martin boundary A,

and the part A1 (a Ga set) of the "minimal" points X, corresponding to the mini-
mal harmonic functions equal to 1 at a fixed point yo and denoted by Kx(y) (see
[1] and chiefly L. Naim [16]). We know that a set e C Q is said to be thin at
X e A, if the function P'K. is different from Kx (and thus a potential). The set
on Al where e is not thin is a Gs set; any harmonic function h > 0 has a unique
Martin representation

(3.19) h(y) = f Kx(y) do(X)
where ,A is a measure >0 on A, charging only Al (associated measure).
THEOREM 7. Given a decreasing sequence of sets en C Q and a harmonic function

h > 0 (associated measure ,u), let us introduce the set An C A1 where en is not thin,
the restrictions /"', js2 of MU to nAn and to CA n An and the corresponding harmonic
functions h1, h2 (according to the representation formula (3.19)). Then

(3.20) inf Rh = hi + Rh,n
(where nqn may be replaced by na,e.).
We know that, from (3.19), Kh(Y) = f RK,(y) d,u(X), the partial integral for

dA, is equal to hi. By taking a dp-x mean, we get

(3.21) |f fie(y) dpex. = h1(xo) + f (f RKxe(y) dpe'(y))d,2(X).
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For a fixed x e C(nA,,), e. is thinl at X for n > nx large enough, anid i4K'xx is a
locally bounded poteintial in Q (whose corresponding measure does not charge
polar sets). MIoreover, the lbalayaged funietionis relative to e,,, in, or ne., (n >. 'ix)
are the samoe respectively for Kx anid RfK,.

H-lence, according to theorem 5 and formuitila (3.11),

(3.22) limI f|I(- dp-o = f ?nk-x dp", (X c cn tA,).
Thus

(3.23) hll f (,lJy) (lp60 = hi(xo) + f (f RKx(y) (112(X)) d1p'r°

(3.24) f lim1,e1?'h(Y) dpb3 = h,(X(,) + f RQ'h dlp.,

The desir-ed formuitila (:3.20) follows immediately.
The difficult poinit is the limit property (3.22) that we mnay prove by usinig

onily theorem-l 1' as follows.
Let us introduce an iniereasinig sequenice of compact sets Kp such that Kp C

K,+, = initerior of K,,,, UK, = Q anid denote e'n = en n Kp, and theil e.n C
jqnKpF1.
Now, using the abbreviation [e] for f k dpo, we have [en] < [e'p] + [e,,\Kp]

anid [qe-,¢ n Kp+1] <. [fl]. The functioni Ri`\EP is majorized for n > nx by
RVX\P where V KT (potential). Its dp'z°° mean is majorized by f RfP dp IO,
wvhich is less than Ep, for p greater thani a suitable po.

Henice inif [en] < [ne?P] + epo < [Qen nl K,+±] + Epo < [fin] + epQ. But
imnf[en] = inlf [jn] > [nen]. Hence inif [e,,] = [enn] which is (3.22).
THEOREM 8. Given a (lecreasing directe(d set of sets {ei) and a harnionic futnction

h > 0 with associated ineasure u > 0, consider the restricted mleasures Iig, vi of 4

onl Ai (set of Al where ei is not thin) antd CjAi, whose corresponcding harnmonic funlc-
tions are denote(d ht, h2 and the harmonic envelopes h1 = inf hi, h2 = sup h2. Ihlen

(3.25) inf R2 = hi + R,7i
(wvhere the set ni m(lay be replace(i by n6iei).
As above (theorem 6) we extract ei, decreasinig such that (i) base n3e^i, = base

A(Qe;, (ii) inf h1w = inf hi, which inmplies sup h'" = sup h'; (iii) the corresponiding-
eqlualities for the associated nmeasures.

Tlheni theoreimi 7 leads to the desired result (3.25).
C"OR1OLLARtY. For1 any mneasure mn > 0 which does not charge the polar sets anwd

for the previous ei, h, h1, h2,

(3.26) imif f fIh dmii = f h, d1m + f ddin.
'T'le pr-oof is thme same as in sul)section 4.
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4. Extensions to the axiomatic theory of harmonic functions

We shall adapt the theoly of Brelot [2] continlued by Mrs. Herve [14] and
Gowvrisaiikaran F13]. (For previous works of Tautz, Doob, and for further im-
provemenets or extensions of Bauer, Boboc-Constantinescu-Cornea, Mokobod-
ski, ILoeb, see a course on the general suibject given in Montreal by Brelot [7].)
With the essential referenice to [2], we satppose on the fundamental space with a
coitnttable base, a sheaf of harmonlic functionis satisfying axiom.s 1, 2, 3, and D and
the existence of a potenttial >0.
These coniditions imply axiom 3', the main convergence theorem on superhar-

muonic functions and (even vwithout D) a Riesz-Martin integral representation.
The definitionis of R' and Rf remiain the same.
The fine topology on 52 is the coarsest topology finier thani the given one on 52,

wNhich makes conitiniuous the local superharmionic functions. A set e is thin at x0
if Ce\ 'xo, is a finie neighborhood of x0 and if, moreover, {xo} is not polar when
x, e e. There exists a finite continuous potential V0 such that for any e C Q, the
base ol,, of points at which the set is not thin, is defined by RVD = VO.
The properties of R for increasing e may be developed exactly as in section 3.

The study of decreasinig sets needs some explanations and after the first prop-
erties some new hypothesis.
As previously, f?% (p, finite coiitinuous >0) is a general capacity (with values

ini the naturally ordered complete lattice of the nonnegative hyperharmonic func-
tiolns) anid f R dm is a general real capacity, for any measure m > 0 which does
niot charge the polar sets (for instance, the harmonic measure dpIo). It does not
seemi ery useful to generalize the ordinary Greenian capacity. (This could be de-
finied if V0 is a superharmionic finite continuous (> 0) function and e C eC Q, as the
total amounit of the measure correspondinig to &, in a IRiesz represenitation.)

Ilowever, we need a suitable extensioni of Choquet's lemmlla. By adaptinig the
original proof, I already established (see [3], [4]) that the set C63e of the points
where e is thin may be embedded in an open set X such that I R ' dp# (V0 finite
cointinuous potential, xo, Wc fixed) is arbitrarily small. This is equivalent to the

conidition: inf, ftc' = 0 (for all neighborhoods w of C%B. or of C3e
'T'hIEOREM 9. All properties of J?&, f R dm given in theoremis 1', 2, and 3, extend

w'ithoutt anty, modification.
Witlionit fturther hypothesis, we may extend theoremls 7 atn( 8. Let us introduce

the coiae of the positive harmlionic functionis and the base ,B of this cone formed
l)y the funietionis equal to 1 at yo EE S2. The extreme elemenits of ,B (the genieralized
Mlartini's miaiimal funietions equal to I at yo) form a Ga-set Al. Any harmonic
funlctioIl h > 0 is represciited by

(4.1) h(y) = f u(y) dM(u), A e /3

where 4 is a unique measure on /, charginig oiily A1. According to MIrs. IIerv6
([14], tlieorein'28, 2),
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(4.2) hhewy = f Rue(y) d,u(u).

THEOREM 10. Change Kx to an element minimal at u E A,. Then theoremns 7
and 8 and their corollary extend exactly.

For (3.22) use the second proof and note that the set Ai of the points where ei
is not thin (on Al) is the intersection with A1 of a Ke set of ,B (Gowrisankaran
[13]).

1. Further extensions with additional hypotheses. We shall complete the hy-
pothesis by a, /3, 'y:

(a) the potentials with the same point-support are proportional;
(3) there exists a base of completely determinating domains.
Recall that a domain w C X- C Q is completely determinating if, for any super-

harmonic function v > 0 in Q (or equivalently any potential), Rc = v. We shall
determine the potential py of support {y} by the condition f p,(x) dp',(x) = 1,
where a is a fixed completely determinating domain. This determines also the
adjoint harmonic and superharmonic functions, according to the theory of Mrs.
Herv6 [14]. We recall that x -- p,(x) is continuous, and even finite continuous
at y when {y} is not polar (hjY'. is < Vo and equal to Vo at y (not polar), and there-
fore continuous; py is proportional); y -* py(x) is an adjoint potential denoted
p*(y). We shall use the fundamental Riesz representation of any potential v:
v(x) = f py(x) d,u(y), ,u being a unique measure >0 on U.

(y) At every point thinness and adjoint thinness are identical.
THEOREM 11. The statements of theorems 5 and 6 are still valid in the present

case.
The developments of the subsections 2, 3, and 4 of section 3 still hold by chang-

ing Gy to py. The only point which needs explanations is in the proof of lemma 5,
where we have to see that

(4~~~ ~ ~~~~3)| e-n-e(x) dp-(x)

is arbitrarily small for a suitable open neighborhood o-(y ¢ e,1 and en0 is fine
closed).

Let us study infe 1fepn for a thin set e at y f e. If {y} is nonpolar and pv is locally

bounded, the strong thinness [7] implies that info ftpQG(y) = 0, then inf Rkena, = 0
(this is also a consequence of theorems 1'-9). If {y} is polar, Rh (x) = Rp*(y)
(Mrs. Herve), e which is adjoint-thin, is also strongly adjoint-thin and

inf R*' '(y) = 0 for x $d y; then infe k?o(x) = 0, and finally inf RkQU = 0, as
previously. Hence we have the desired property.
REMARK. All the previous hypotheses are satisfied in the case of the solutions

of linear homogeneous elliptic partial differential equations of second order, at
least with suitably smooth coefficients [14].
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5. Application to a theorem of Getoor

Getoor [12] in probability theory gave results which imply, for instance in R,
that there exists for any measure ji (for example >0) which does not charge
polar sets, a smallest fine closed support. (Getoor introduced a restriction, on
the Borel structure of the supports. This is immaterial. P. A. Meyer [15] de-
veloped further the probabilistic theory of Getoor and found again some results
of the present paper.) l'roofs are easy in pure potential theory as consequences
of the previous study.

(a) In the classical case, consider the Greenian potential V of A > 0 not charg-
ing polar sets and the fine closed supports ei of A which form a directed decreasing
set. We shall prove that nei is the smallest fine closed support and is a base.

Theorem 6 (remark) gives inf Rv = Rpei. We may use the characteristic prop-
erty of the balayage that, for a potential, W, Rw = W if and only if 67e is a
support of the measure associated with W. As A(Cei) = 0, ei\7e, polar, then

A(UC33e) = 0, RV = V, and inf Rv = V. Now Rnei = V implies that 6fnei is a
support, and that nei also; nei is the smallest fine closed support and is its own
base.

(b) Instead of some extension of this proof to a general axiomatic case, it is
better to give another and simpler one, in Doob's frame of arguments.
THEOREM 12. We suppose that axioms 1, 2, 3, and D, hold and that there is a

countable base and a potential >0. We consider on Q any Radon measutre ,I (not
charging polar sets) and the fine closed supports ei. Then nei is the smitallest fine
closed support, and it is a base.

It is sufficient to use the axiomatic form of lemma 3 (extension inl corollary
of theorem 3). There exists a decreasing sequence es such that 6.ei = (3e,i.
Now n is a fine closed support; its base is also a fine closed support, and thus
so is nei.

6. Some extensions of the theory

A new idea of Doob, which is in process of development, is the systematic use
of functions instead of sets and of fine upper semicontinuous functions (a par-
ticular case of which is the indicator of a fine closed set). This led me to some
results such as the following which illustrate this kind of generalization.

For so > 0 in the fundamental space (in classical or axiomatic potenltial theory),
let R, = R'. We recall that RP, = inf v, for all nonnegative hyperharmonic func-
tions v > so quasi everywhere on £ (even in axiomatic theory but with axioms
1, 2, 3, and D, countable base).
THEOREM 13. In classical theory and Greenian space Q, let {<rp} be a decreasing

directed set offine upper semicontinuous functions, satisfying 0 < (0i < V (for all i),
V > 0 potential of a measure which does not charge the set {x, V(x) = +X}. Then
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(6.1) infR*, Rinf= i

If 4' < V is superharmonic, >0 and infi pi, for e > 0 let
(0.2) ei = {x; 'pi > ' + ET);
then(pi <. + eV +± ', q.e. (becautse on ei, R'= 1 q.e.). Therefore, I1,, <
4 + El" + MI", but e; is fine closed and nei is a subset of {x, V(x) = +±x

Thank,; to theorem 6 (formula (3.12') and the remark), iif MP = 0. Hence

(6.<) iifR, < ±+ EV
< .4
< Rinfp,i
-< f?inf o,i-

'T'lhe inverse inequality is obvious.
1. Extension in axiomtiatic theory.
THEOREM 14. (a) Wl'ith the axionms 1, 2, 3, and D, a coutntable base and a finite

continuouts potential V(, the decreasing directedI set of fine upper semicontinuous O

such that 0 < (pi < 1t, satisfies

(6.4) inif R, =Rinf= i

(b) lW"ith the suipplemientary hypothesis a, f, y of subsection I of section 4, the-
o,-emii 1:3 still holdls.
The proof is the samne. Part (a) needs only the axiomatic extension of theorem

3. It is obvious that, if 6i is the indicator of a fine closed set ei
((;.5;) Rei = fR, finci = Rfnf $,,.
If p is finite continuous and <V, a potential, then p < Rf, which is a finite
COnltinlllOus potential, and the axiomatic extension of theorem 3 is contained in
thleori-em 14, (a) (therefore equivalent to it).

WlVithout giving here further developments, let us only observe that we cainnot
say tlhat this t;heorem 14 (a) contains the extension of Choquet's lemma; in other
woords, that the property

(6.6) inif R,,-W = ftn,en

implies inf,, kin' = 0 (w open set DC(e) because we do niot kinow if ne nco is
polar. However, this is an easy consequence of the property that for a fine closed
set a and x C a, there exists a compact set K C a such that a - K is thin at x;
but the onily proof I see for that uses Choquet's lemma.
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