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1. Introduction

A general concept of capacity (extracted by Bourbaki from Choquet’s theory
[8]) which we shall call general real capacity, is a real function (finite or not)
C(e) of a set e in a Hausdorff space, satisfying the following conditions:

(i) e(e) is increasing; (ii) for any increasing sequence e,, sup €(e,) = €(Ue,);
(iii) for any decreasing sequence of compact sets e,, inf €(e.) = €(Ne.).

Taking the value of @ in a complete lattice [9] (with a greatest and a smallest
element), these conditions may be considered as defining a ‘“‘general capacity”
and we shall meet interesting examples where it is a function of a variable in a
suitable lattice of functions.

There has been no general study of the limit of a capacity for a decreasing
sequence of noncompact sets. We shall develop and complete a lecture in the
seminar on potential theory (November 1964) and a note [5] by giving some
examples from balayage theory (and first from the most classical capacity) where
the previous limit is made precise. Among these capacities, one will be a function,
in the family (ordered by < everywhere) of the superharmonic functions. The
famous capacitability theorem for the real capacities holds also for this capacity.
We shall even consider directed decreasing, and also increasing, sets of sets, and
similar set functions which are not capacities but are given by balayage theory,
in an axiomatic frame of potential theory, as well as in the classical case. (General
research of Doob is in course and has given or inspired the extensions to directed
sets, as it will be mentioned in the text.) After the lecture I developed here, 1
became aware of connected axiomatic discussions by Fuglede (see C. R. Acad.
Sci. Paris, October 1965.) For this rescarch and these results, the fine closed sets
(that is, closed according to the fine topology) play an essential role and the
basie tool is a theorem by Choquet on thinness (lemma 1).

Finally, an application will be made to get a proof of a theorem by Getoor (on
a smallest fine closed support of a measure) that was first obtained by probability
theory, then proved and generalized by Choquet [11] in an axiomatic way.
Another application will generalize some results by using, as Doob proposed,
the fine upper semicontinuous functions.

We shall work in pure potential theory without giving any probabilistic inter-
pretation and we shall be able to shorten the redaction by referring to a recent
paper [4] containing connccted or similar coneepts, tools or proofs
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2. On capacity in classical potential theory

We recall some classical concepts in a Green space @, for instance, a bounded
domain of B*(n > 2) (see [6]).

The fine topology on £ is the coarsest one for which the superharmonic func-
tions (locally or in Q) are continuous; the complementary sets of the “fine”
neighborhoods of x, are the sets which are thin at x, (not containing o). If o € e,
e is thin if e\ {xy} is thin and {z¢} not polar. The base ®. of a set e is the set of
the points where e is not thin. It is a (/; set. If & means the fine closure of e,
é = ®,J (set of the fine isolated but polar points of ¢). The second set is polar.
Nole that “e = &” is equivalent to ¢ D &, and that G; = g, = ®.. If ¢ = &,,
e is said to be a base.

TFor any real function ¢ > 0 on Q, (R)q or R, (called reduced function of ¢
for e) means the lower envelope (infimum) of all hyperharmonic (that is, super-
harmonic or 4 ) nonnegative functions in Q, majorizing ¢ on e. For any real
function ¢, ¥ means the lim inf at every point, that i, sup,s, (infyc. ¥(y)),
(w neighborhood of ), (regularized function of ¢).

(If ¢ is the infimum of a family {»;} of hyperharmonic functions > 0, ¥(z)
is the limit of [ ¢ dp%, (1p% harmonic measure for a domain w 3 r) when w de-
creases in a sequence of intersection {x}.)

The function RS, is equal to K5 q.e. (quasi everywhere, that is, except on a polar
sct) and is the smallest hyperharmonie >0 function which majorizes ¢ q.e. on e.

For a superharmonic V > 0, R is called the balayaged function of V relative
to e; it is <V everywhere, and equal to V q.e. on e. If ¢ is compact, R} (called
capacitary potential) is the Greenian potential of a measure >0, whose total
amount is the (outer Greenian) capacity of e, that may be suitably extended to any
e, as a general real capacity.

Note that R, is a countably subadditive function of e. It is invariant by chang-
ing e in &, ®, or by a polar set; and therefore, the same holds for the Greenian
capacity.

LemMA 1 (Choquet [10]).  The set C®, of poinls of Q where e s thin may be
embedded in an open set w such that e N w has a Greenian capacity arbitrarily small.

It is equivalent to the same property of C®. M é.

It is obvious that the decreasing property (iii) of the capacity does not hold
for noncompact sets. I'or example, in B*, (n > 3), let us consider the set e, =
{z, p/(1 + (1/n)) < || < p}. The Newtonian capacity is the same as the capac-
ity of the ball of radius p, but the intersection of these sets e, is empty. However,
the limit property may be true for sets which arc not as restrictive as compact
sets.

THEOREM 1. If e, is a decreasing sequence of fine closed sets on a compact
K C 9, the Greenian (outer) capacity C(e,) tends to C((Ne,); therefore, for any de-
creasing a,, C K

(2.1) Cla.) = e(Na.) = C(NBa,)-
Let us introduce an open =et w,, containing Ca@,, and such that €(wa M €,) <
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¢/2". A point & of e,\w, is never in w,; the set ¢, is not thin at @ (if not, x would be
in w,). Therefore z € ®,, C e.; then z € e,\w,. We conclude that e,\w, is closed.

The sets e} = er\wy, ey = e\ (w1 U wy), - - - , en = e, \(w U we + v+ U w,) are
compact and deercasing, and €(ey) — €(Mey). However,

(22) e((’n) S e(";) + (¢ <O (wp m (’p))
1
< ele) + e
Hence, €(Nen) < €(New) < lim €en) < €(Nen) 4+ e We conclude that ¢(e,) —
e(Ney).

1. Similar result with other capacities. (a) If ¢ 1s finite continuous >0, K5, is «
general capacity, as a function taking its value in the set of the hyperharmonie
nonnegative functions, which is a complete lattice for the natural order.

It is obvious that (1) and (ii) are satisfied. If e, is compact and decreasing, we

may see that @ which is the ¢nfimum in the lattice of the R, is equal to RD™.

In fact, RY = inf,ox R, (K compact, » open) (the proof is easy and is
nearly the same as in [2], p. 122). (If a hyperharmonic v > 0is >¢p on X, v >
M0 < A < 1) on a neighborhood o of K. Then v > MRS, v > Ninf,ox RY, (w
open), RE > inf,~x R2.) Therefore, R — RO, R — RO q.e.; thus

(2.3) [ inf R do2s = f RO do,

and hence the desired result.

(b) If m is a measure >0, which does not charge the polar sets, | R dm equal
to [ RS dm is a general real-capacity.

It is easy to check (i), (ii), and (iii). A particular case is the case of the measure
dp% we just met.

(¢) Let us recall that, if e C K (fixed compact set), [ Rf dp% (fixed wo and xy)
and the outer Greenian capacity of e are simultancously zero, or the ratio re-
mains between two fixed positive numbers.

Therefore lemma 1 holds for the new capacity [ R:, dp% (consider first the sub-
sets of a K) and also the proof of theorem 1. We are led to the following theorem.

TueoreM 1. If e, is a decreasing sequence of fine closed sets on a compact set K
and ¢ any fized finile continuous nonnegative function, then

N . n
2.4) inf Ry = R,
where the first member is the infimum of the capacities R of e, in the lattice of the

nonnegative hyperharmonic functions (with the natural order).
From inf [ R dp% = [ RO dp=, we deduce [ inf R dp% = — [RE™dp% and

SN .
inf R = RO

COROLLARY. The general equation (2.4) implies the limit property (2.1) for the
general capacity [ R:, dm of (b) when m does not charge polar sets and contains also
theorem 1,
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(If u, decreasing is a potential, harmonic outside a compact set K, the corre-

sponding measure of u, converges vaguely to the measure associated with inf u,;
or see further theorem 2.)

IMPORTANT REMARK. For the capacity R:., the general capacitability theorem
holds.

It holds for tke real capacity [RS, dp%, that is, if eisa K-analytic set contained
in a K, set, supgc, | RX dp% = [ R, dp%; but the first member is equal to

. TN
fsupKCe RY dp%, for all 2o, wy and that implies supgce RS = R¢, (compact set K).

2. FExtension to directed sets (essentially due to Doob). Without using general
unpublished arguments of Doob (and also of the author) that would imply the
passage from sequences to directed sets, we shall treat our particular problem
by using, according to an idea of Doob, a topological lemma of Choquet (see
(2], p. 3 or [6], p. 6).

LeMMmA 2. There exists a finile continuous potential Vo > 0 such that, for any e,
the base @, is the set {x; Ry, (z) = Vo(x)). Then the condition Ry, > RS, implies
(Bel D (BEZ' R ”

In fact, if x € ®.,, B%,(x) = Vi(z) < R%,(2); therefore there is equality.

LeMMA 3. Given a decreasing directed set {e;} of fine closed sets e; C K, there
exists an extracted sequence e, such that ® ne, = B C (Me:. Any other sequence
e;, such that e;, C e, has the same property.

POV N R .
We may choose e, such that inf B3, = inf; B%,; then R{* (first member) is
_<_IAB‘§}‘,, for all 7. Therefore, B ne, C B, C €i;, Be, C Nes, and B e, = Be; CMes.
TaEOREM 2. For any decreasing directed set {e;} of fine closed sets e; in a com-
pact K and for a fized finite continuous ¢ > 0,

(2.5) inf Re = RO,

More extensive, the capacity ©(e), equal to RS, (in the above lattice), or to [ RS, dm
(m > 0 not charging the polar sets) or to the Greenian capacity, satisfies the property
inf C(e;) = €(Ney).

For any set e; C K, this result holds by changing on the right, Me; to Né; or to &,,.

We may extract e, such that Bn., C Me; and inf R = inf R. The first con-
dition gives R0* < R{%; therefore R = R[“. The second one, thanks to the-

T s N6
orem 1/, gives inf 5 = R = RD*,

In order to complete the proof, let us choose e, such that & n., = Bne; (Which
implies R0 = RD%) and inf [ RS dm = inf [ R% dm. Hence inf [ RS dm =
[ RO dm = [ RD* dm.

As for the Greenian capacity, consider »; and v corresponding to the potentials
R, RD%. If « is the measure associated with R4(w open set D K),
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Il = [ Bedve = [ Rida,

(2.6) )
inf [|v]| = [le- do = [R‘f dv = ||,

Finally note that for any sets e;, Né&; = N®e., up to a polar set.

3. Another extension.

THEOREM 3. We cancel the condition e; C K ‘but impose ¢ < V, a potential.
Then with the other hypothesis of theorem 2, we get the same equalzty

O
2.7) inf B = RO«
and the same limit property of the capacity [ RS, dm (where m > 0, does not charge

the polar sets and satisfies [ ¢ dm < «).
Observe that, for any compact set K,

R;.'OK < prﬁ < Re‘;nK + R(("K,
(2.8) RQe;ﬂK < Rpes < R;‘]esnK + R?,K
Therefore, both inf RS and RD% are between the extreme members of the last
inequality. Their integrals with respect to dp2 differ by [ R$* dp% which may be
arbitrarily small. Therefore, these integrals are equal and so are the functions.
The same previous inequalities show that

2.9) linf [ R dm — [ R0 dm)

is arbitrarily small and therefore equal to 0.
CoROLLARY. Lemma 3 extends without the restriction e; C K.

3. More general set functions of the classical balayage theory

1. The case of increasing sets. 1f we consider R:, for any function ¢ > 0 on ,
it is not always a capacity (as we shall see later), but the properties (i) and (ii)
still hold. Let us examine property (ii) for an increasing directed set of sets.

Instead of the fine closed sets e characterized by ¢ D ®. (and that we may call
superbasic), we shall now use the sets characterized by e C ®. and called sub-
basic sets (examples are the fine open sets).

LemMA 4. For any increasing directed set of sets e, there exists an extracted
increasing sequence e, such that ® ., O ®., for every i. Therefore, if the e; are sub-
basic, Bue, O e, Bue, = ®Bue..

Let us choose a countable base of relatively compact domains w; and a count-
able dense set {xx}. By means of the diagonal process, we may find an increasing
sequence e, such that

@.1) sup [ Rv,dpsi = sup [ Ridett  (for all wj, 7 € w))

where ¥, is the special potential of lemma 2.
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Hence [ RY" dps > [ RY, dp% for every 4, first forx € w;and in the sequence
a2k, then for any « € w,. We conclude that RU‘" Ry BUen O G,y for every 7.
1f the e; are subbasic, (J)uf” D e;, Bue, O Uey, and ®BUen D BUe,.

ToEOREM 4.  Let {¢;} be an increasing directed set of subbasic sets and ¢ any
Junction >0 on Q. Then

(3.2) sup R% = RY*.

We may extract an inereasing sequence ¢, such that Gue, = Gue, and that for
a countable system (wj, 1) as above,

(3.3) sup f RS dpsi = sup / Ry dpi.
Then
(3.4) f 1?8"" dp¥i = f sup ]?Z;; dpli, (v € wj, VJ, V1)

because of (i) and of the lower semicontinuity of R%. The same holds by changing
7, to any x € w;. Hence, RY™ = sup, R%. Since Ue, and Ue, have same base, the
first member is RY*.

2. General balayaged potential and decreasing sets.

LemMA 5. If e, is fine closed, decreasing and y ¢ Me,,

(3.5) inf Ry, = R

If ¢ 15 an open ncighborhood of y, e, 2 y, 7 > n, then
. ) . .
R < Rs, < R + R,
2, \ > DNen orn
I{&(Dcn) v <& R(Q,(" S Ré,'?“) o + 1{(;:(“"1.

(3.6)
By changing ¢, to a finite continuous function cqual to G, outside ¢ (in order to

’ /\«' PNen 13 D Nea\o > Nen\o
usc theorem 17), we =ce that inf R, and RE*™ lie between RG™Y and Rey'mY +
RN, Henee

(3.7) / mf Rg, dpz — /R(r,}"‘ dp% < /It“" 07 dpy;

the second member is arbitrarily small for a suitable ¢ because ¢, is thin at y.
The first member is therefore null for any (ws, xy). That is equivalent to the
desired lemuma.

THEOREM 5. (fiven a decreasing sequence of sels e, and a polential 17 of u meas-
ure u > 0, let us introduce the potentials V1,1V, of the restrictions pi, ps of p on MG,
and C(N®e,). Then

(3.8) inf Ry = V', + RS,

(In this equality N®., may be replaced by Mé, which differs fronn it by a polar
set.)
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We may supposc e, is a base (the inequality (3.8) remains unchanged if e, is
replaced by its base). Since V() = [ G, (z) du(y), one has

(3.9)  Rv@ = [ Ba@ duy) = [ Ra(@ dm@y) + [ R @) dmly).

Now R, = G, when iy € Ne, (e, is not thin at y), and the first term on the right
ix V(a). Further,

[ Rip(z) dp()

Vian) + [ (1 R () dps(@))dualy),

lim / Ry do = Vilao) + [ (] RE*(@) dpa(@)) dua(y)
(3.10)

[ lim Ry dp = Vi(ao) + f (f RO () dus(y)) dp
= Viw) + [ RO dpss.

Hence the theorem, by using a decreasing wy O .

Another form of theorem 5. Let us introduce the restriction u; of p to the base
of N@®., and the corresponding potential V', then the positive measures p' =
w — ps, w” = ue + wp and the corresponding potentials ¥/, V*. Then,

IS
(3.11) inf Ry = V' + RP®,

In fact, V1 =V’ + Vb, V" = V2 + Vb, RQ('B”' = RD:B,,. + RQ,,(B"‘, and I’rb = RD,,CB"‘.
The second member of (3.11) is V/ 4 RA®» 4+ RN%» cqual to the second member
of (3.8).

CorRoLLARY. For a fized potential V, Ry and [ Ry dm (m > 0, 20 and not
charging polar sets), are capacities tf and only if the measure associated to V does
not charge polar sets.

In this case, (3.11) proves the capacity property because V' = 0. Conversely,
if u(e) # 0 for a compact polar set e, let us form e,, compact nonpolar, decreasing

with Ne, = e. According to (3.8), inf B¢ = V; > 0, but R{*" = 0. Therefore
Ry and [ RS dm are not capacities.

3. Extension to directed decreasing sets.

LemMa 6. If {u;} is a family of nonnegative superharmonic functions which

forms with the specific order a decreasing directed set, then i/nf\m (inf in the natural
order) is the infimum (greatest lower bound) of {u:}, according to the specific order
(as well as to the natural order) in the complete lattice of the nonnegative superhar-
monic functions.

Tet us recall that in the specific order » > w means that v = w 4+ a nonnega-
tive superharmonic function (see [2]).

Tet us consider first a sequence u, (decreasing for the specific order) and let
?, = U, — inf, u, be 4 where the difference is undetermined. We shall prove
that », is nearly hyperharmonie, that is v,(x0) > [ v, dp% for every regular do-
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main w,, and every o € w.. We start from wu,(z) — up(@) > [ (un — up) dp?",
n < p for points z where u, is finite, as an easy consequence of u, > u, (spe-
cifically).

Hence u.(x) — inf, u,(x) > [ (u, — inf u,) dp? and the desired property fol-
lows.

By considering [ v, dp¥* for decreasing &, (N& = {x}), we get for the limit, a

superharmonic function, equal to u, — inf, u, (for the points where u, is finite).

./\ X
Hence u. > inf u, and the desired result follows.
For any directed set {u.}, we extract a decreasing sequence u;, such that

inf; u; = Inf, u;,. Since we may choose u;, containing any fixed u;, we see that

PN

u; > inf; u,.
ReMARK. Tor potentials w,, specifically ordered, the associated measures p;
(in the ordered space of the Radon measures) have the same order as the poten-

tials. Therefore, in the lemma, i@ is the potential of the inf of the set of the
corresponding measures u;.

THEOREM 6. Given a decreasing directed set of sets {e;} and a potential V of a
measure p > 0, let us introduce the resiricled measures p;, v; on ®,, and C®,,, their

N
potentials V;, W, and the potentials Vi = inf V,; and V, = sup W, which are the
potentials of the measures w1, o defined as inf and sup of the ordered sets {u;} and
(oY m
vif. Then

PN .
(3.12) inf Rf = V, + R{®

(where the set M ®e, of this equality may be replaced by Mé&; which differs by a polar
set).
Using once more the idea of Doob, we may extract a decreasing sequence e;,

such that base of N@®.,, = base of N®., and inf, V;, = inf; V;. This implies
sup W;, = sup W,. The restrictions of 4 on N®,,, and C(N®,,,) are the inf and
sup of the sets of measures {u,}, {v.}, and the corresponding potentials arc

PN .
inf V;, (lemma 6) and sup W;,. According to theorem 5,

A N
(3.13) f R§» = inf V;, + ROTw.,.
Hence theorem 6 is proved.

Another form. As above, we introduce the restriction p, of u to the base of
M ®e;, and the potentials V', V"' of u; — s, g2 + ps. Then

N .
(3.12%) inf Rf = V' 4+ RPP~.
REMarx. If p does not charge polar sets V' = 0, V"' = V, because g, is the
restriction of u to M ®e.,,, and therefore to its base also, and thus u; is exactly u,.
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4. On the set function [ RS dm (positive measure m). Theorem 5 implies with
the same notations that

(3.14) lim f By dm = [ Vidm + / B08 dm,

but we cannot do the same with directed sets. However, the proof of theorem 6
gives

(3.15) inf [ Ripdm = [ Vidm + [ RO dm.
It was possible to choose e¢;, such that it also satisfies

(3.16) inf f B4 dm = inf f Ry dm.
Hence, »

(3.17) inf Bg dm = f Vidm + f RO dim.

5. General balayaged superharmonic function. Let us study now R% for any
superharmonic function V > 0. As V = potential V, + nonnegative harmonic
function h, By = R, + Rj, the limits or infima corresponding to a directed de-
creasing set of sets {e;} satisfy

(3.18) inf Ry = inf RY, + inf RS,
and we have only to study R§ (h harmonic > 0).

We shall use the compact Martin space {2, the compact Martin boundary A,
and the part A; (a G; set) of the “minimal” points X, corresponding to the mini-
mal harmonic functions equal to 1 at a fixed point yo and denoted by Kx(y) (see
[1] and chiefly L. Naim [16]). We know that a set e C Q is said to be thin at
X € A if the function Rk, is different from Kx (and thus a potential). The set
on A, where e is not thin is a G; set; any harmonic function £ > 0 has a unique
Martin representation

(3.19) W) = [ Kx(y) du(X)

where u is a measure >0 on A, charging only A, (associated measure).

THEOREM 7. Given a decreasing sequence of sets e, C @ and a harmonic function
h > 0 (associated measure u), let us introduce the set A, C A, where e, 1s not thin,
the restrictions w1, e of u to NA, and to Co M A, and the corresponding harmonic
functions hy, hy (according to the representation formula (3.19)). Then

SN L
(3.20) inf By = by + R

(where Né, may be replaced by N®e,).
We know that, from (3.19), R (y) = [ B2:(y) du(X), the partial integral for
du, is equal to k. By taking a dp’% mean, we get

(3.21) [ Bew) de = h(eo) + [ ([ Rita(y) dp2y)) dua(X).
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For a fixed X € C(N4,), e, is thin at X for n > ny large enough, and Rgf is a
locally bounded potential in @ (whose corresponding measure does not charge
polar sets). Moreover, the balayaged functions relative to e,, €., or Né,, (n = nx)
are the same respectively for Kx and R%%.

Henee, aceording to theorem 5 and formula (3.11),

(3.22) lim / Rz dp [ RR™ dp, (X e CN4,).
Thus

(.23) T [ By otz = atw) + [ RREG) dua(X)) o,

(3.24) f lim Ry (y) dp2 = hu(xo) + f RO™ dpe.

The desired formula (3.20) follows immediately.

The difficult point is the limit property (3.22) that we may prove by using
only theorem 1’ as follows.

. Let us introduce an increasing sequence of compact sets K, such that K, C
K, = interior of K,,;, UK, = @ and denote e? = e, (N K,, and then & C
N Ky i

Now, using the abbreviation [e] for [ Rk, dp%, we have [e.] < [e] 4+ [e.\K,]
and [Né, N Kpi] < [NE.]. The functlon R’"\"' is majorized for n > nx by
Ro\% where V = R (potential). Its dp mean is majorized by [ R¥> dp%,
which is less than e, for p greater than a suitable p,.

Hence inf [e,] < [Ma82] + e < [Nén N Kyl + & < [NE] 4 &, But
infle,] = inf [&,] > [Mé.]. Hence inf [e,] = [Mé&,] which is (3.22).

THEOREM 8. Given a decreasing directed set of sels {e;} and a harmonic function
h > 0 with associated measure p > 0, consider the restricted measures u;, v; of u
on A; (set of Ay where e; is not thin) and CaA,, whose corresponding harmonic func-
tions are denoted hi, h$ and the harmonic envelopes hy = inf hi, ho = sup h3. Then

TN P
(3.25) inf R% = hy + RE®

(where the set Né; may be replaced by N®e,).

As above (theorem 6) we extract ¢;, decreasing such that (i) base N®.,, = basc
N®e,, (ii) inf h = inf k{, which implies sup k% = sup h3; (iii) the corresponding
cqualities for the associated measures.

Then theorem 7 leads to the desired result (3.25).

CoroLLARY. For any measure m > 0 which does not charge the polar sets and
for the previous e;, h, hy, hs,

(3.26) inf/ R dm = /hl dm + / RD% dm.

The proof is the same ax in subsection 4.
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4. Extensions to the axiomatic theory of harmonic functions

We shall adapt the theory of Brelot [2] continued by Mrs. Hervé [14] and
Gowrisankaran [13]. (For previous works of Tautz, Doob, and for further im-
provements or extensions of Bauer, Boboc-Constantinescu-Cornea, Mokobod-
ki, Loeb, see a course on the general subject given in Montreal by Brelot [7].)
With the essential reference to [2], we suppose on the fundamental space with a
countable base, a sheaf of harmonic functions satisfying axioms 1, 2, 3, and D and
the existence of a potential > 0.

These conditions imply axiom 3’, the main convergence theorem on superhar-
monic funetions and (even without D) a Riesz-Martin integral representation.
The definitions of R, and R, remain the same.

The fine topology on @ is the coarsest topology finer than the given one on Q,
which makes continuous the local superharmonic functions. A set e is thin at x
if Ce\ {xo} is a fine neighborhood of z, and if, moreover, {xo} is not polar when
xy € e. There exists a finite continuous potential Vy such that for any e C Q, the
base ®,, of points at which the set is not thin, is defined by R%, = V..

The properties of R% for increasing e may be developed exactly as in section 3.
The study of decreasing sets needs some explanations and after the first prop-
erties some new hypothesis.

As previously, RS (e, finite continuous >0) is a general capacity (with values
in the naturally ordered complete lattice of the nonnegative hyperharmonie func-
tions) and [ RS dm is a general real capacity, for any measure m > 0 which does
not charge the polar sets (for instance, the harmonic measure dp%). It does not
seem very useful to generalize the ordinary Greenian capacity. (This could be de-
fined if Vyis a superharmonie finite continuous (>0) function and e C e C Q, as the
total amount of the measure corresponding to R, in a Riesz representation.)

Iowever, we need a suitable extension of Choquet’s lemma. By adapting the
original proof, I already established (see [3], [4]) that the set C®, of the points
where ¢ is thin may be embedded in an open set w such that | R0 dpw (V, finite
conlinuous potential, z,, wo fixed) is arbitrarily small. This is equivalent to the

T~
condition: inf, R¢™ = 0 (for all neighborhoods w of C®, or of C&, N &).

TuEOREM 9. All properties of Re, [ RS dm given in theorems 1', 2, and 3, extend
without any modification.

Without further hypothesis, we may extend theorems 7 and 8. Let us introduce
the cone of the positive harmonic functions and the base 8 of this cone formed
by the funections equal to 1 at y, € Q. The extreme elements of 8 (the generalized
Martin’s minimal functions equal to 1 at yo) form a Gyset A, Any harmonic
function h > 0 is represented by

(4.1) wy) = [ u@) dutw), pep

where g is a unique measure on 8, charging only A;. According to Mrs. Iervé
([14], theorem 28, 2),
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(42) i) = [ Rily) du(w).

THEOREM 10. Change Kx to an element minimal at w € A,. Then theorems 7
and 8 and their corollary extend exactly.

For (3.22) use the second proof and note that the set 4; of the points where e;
is not thin (on 4,) is the intersection with A; of a K, set of 8 (Gowrisankaran
REIR

1. Further extensions with additional hypotheses. We shall complete the hy-
pothesis by «, 83, v:

(a) the potentials with the same point-support are proportional;

(8) there exists a base of completely determinating domains.

Recall that a domain w C & C Q is completely determinating if, for any super-
harmonic function v > 0 in @ (or equivalently any potential), R$* = v. We shall
determine the potential p, of support {y} by the condition [ p,(z) dpl.(z) = 1,
where § is a fixed completely determinating domain. This determines also the
adjoint harmonic and superharmonic functions, according to the theory of Mrs.
Hervé [14]). We recall that x — p,(z) is continuous, and even finite continuous
at y when {y} is not polar (Rl is <V, and equal to Vo at y (not polar), and there-
fore continuous; p, is proportional); y — p,(x) is an adjoint potential denoted
p:(y). We shall use the fundamental Riesz representation of any potential v:
v(z) = [ p,(x) du(y), u being a unique measure >0 on Q.

(v) At every point thinness and adjoint thinness are identical.

THEOREM 11. The statements of theorems 5 and 6 are still valid in the present
case.

The developments of the subsections 2, 3, and 4 of section 3 still hold by chang-
ing G, to p,. The only point which needs explanations is in the proof of lemma 5,
where we have to see that

(4.3) [ B (@) do@)

is arbitrarily small for a suitable open neighborhood o(y & e, and e, is fine
closed). 3
Let us study inf, B4 for a thinset eaty & e. If {y} is nonpolar and p, is locally

. /\
bounded, the strong thinness [7] implies that inf, B (y) = 0, then inf, R0 =0
(this is also a consequence of theorems 1’-9). If {y} is polar, RS (x) = R0 ()
(Mrs. Hervé), e which is adjoint-thin, is also strongly adjoint-thin and

. —TS
inf, R;\0°(y) = O for  # y; then inf, RiN?(z) = 0, and finally inf B}'" = 0, as
previously. Hence we have the desired property.
ReMARK. All the previous hypotheses are satisfied in the case of the solutions
of linear homogeneous elliptic partial differential equations of second order, at
least with suitably smooth coefficients [14].
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6. Application to a theorem of Getoor

Getoor [12] in probability theory gave results which imply, for instance in E",
that there exists for any measure u (for example >0) which does not charge
polar sets, a smallest fine closed support. (Getoor introduced a restriction, on
the Borel structure of the supports. This is immaterial. P. A. Meyer [15] de-
veloped further the probabilistic theory of Getoor and found again some results
of the present paper.) Proofs are easy in pure potential theory as consequences
of the previous study.

(a) In the classical case, consider the Greenian potential V of u > 0 not charg-
ing polar sets and the fine closed supports e; of 4 which form a directed decreasing
set. We shall prove that Ne; is the smallest fine closed support and is a base.

TS ane -
Theorem 6 (remark) gives inf % = R{* We may use the characteristic prop-
erty of the balayage that, for a potential, W, Ry = W if and only if ®, is a
support of the measure associated with W. As u(Ce;) = 0, ¢,\®; polar, then

u(C®) =0, R¥ = V, and inf RY = V. Now RP = V implies that Gn,, is a
support, and that Ne; also; Ne; is the smallest fine closed support and is its own
base.

(b) Instead of some extension of this proof to a general axiomatic case, it is
better to give another and simpler one, in Doob’s frame of arguments.

THEOREM 12. We suppose that axioms 1, 2, 3, and D, hold and that there is a
countable base and a potential >0. We consider on Q@ any Radon measure p (not
charging polar sets) and the fine closed supports e;. Then Ne; is the smallest fine
closed support, and it is a base.

It is sufficient to use the axiomatic form of lemma 3 (extension in corollary
of theorem 3). There exists a decreasing sequence e; such that Bn, = Bne.
Now N, is a fine closed support; its base is also a fine closed support, and thus
so is Ne;.

6. Some extensions of the theory

A new idea of Doob, which is in process of development, is the systematic use
of functions instead of sets and of fine upper semicontinuous functions (a par-
ticular case of which is the indicator of a fine closed set). This led me to some
results such as the following which illustrate this kind of generalization.

For ¢ > 0in the fundamental space (in classical or axiomatic potential theory),
let R, = R2. We recall that R, = inf », for all nonnegative hyperharmonic func-
tions v > ¢ quasi everywhere on  (even in axiomatic theory but with axioms
1, 2, 3, and D, countable base).

TureoreM 13. In classical theory and Greenian space , let {¢.} be a decreasing
directed set of fine upper semicontinuous functions, satisfying0 < ¢; < V (for all7),
V' > 0 potential of a measure which does not charge the set {x, V(x) = +=}. Then
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PN .
(6.1) inf Ry, = Rinf o
If ¢ < V is supcerharmonie, >0 and inf; ¢, for ¢ > 0 let
(6.2) o= {x;0, 29 + V)

then ¢; < v+ eV + RY, q.e. (because on e;, Ry = V q.e.). Therefore, R, <
¥ + €V 4 R¥, but e, is fine closed and Me; is a subset of {x, V(z) = +=}.

-

PN
Thanks to theorem 6 (formula (3.12) and the remark), inf 2% = 0. Hence

PN
(6.3) inf Ry, < ¢ + €V
<y
S Rinf @i

Py

S Rinf eir
The inverse inequality is obvious.

1. Faxtension tn axiomatic theory.

TueoreM 14. (a) With the axioms 1, 2, 3, and D, a countable base and a finite
conlinuous potential V., the decreasing directed set of fine upper semicontinuous ¢;

such that 0 < ¢, < T, satisfies

SO .
(6.4) inf R,, = Rinf o

(b) With the supplementary hypothesis o, 8, v of subsection 1 of section 4, the-
orem 13 still holds.

The proof is the same. Part (a) needs only the axiomatic extension of theorem
3. It is obvious that, if 8; is the indicator of a fine closed set e;

(6.5) RS = R, RO = Riu po.

If o is finite continuous and <V, a potential, then ¢ < R,, which is a finite
conlinuous potential, and the axiomatic extension of theorem 3 is contained in
theorem 14, (a) (therefore equivalent to it).

Without giving here further developments, let us only observe that we cannot
say that this theorem 14 (a) contains the extension of Choquet’s lemma; in other
words, that the property

— T L~
(6.6) inf, R5Q© = RN
" S~
implies inf, R57“ = 0 (w open set DC®.) because we do not know if Ne Ne is
polar. However, this ix an easy consequence of the property that for a fine closed
set « and x € a, there exists a compact set K C « such that @« — K ix thin at z;
but the only proof I sce for that uses Choquet’s lemma.
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