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1. Introduction

For different applications it is necessary to consider random elements which
take values in linear spaces which are not Banach spaces. On the other hand,
because from a physical point of view these elements are observed with the
help of some "instruments," two spaces have to be considered; the space E in
which the random element takes its values, and the space F in which the instru-
ments are defined. The case of linear instruments is particularly important. A
mathematical theory of such a situation was proposed by Gelfand, 1to, Minlos,
and others. During the past few years this theory was generalized by S. Ahmad
[1] and A. Badrikian [2].

All the spaces considered in this paper are real linear spaces and all the
topologies are separated, locally convex topologies. By measure, we shall always
mean probability measure (that is, positive measure with total mass equal
to one).

2. Paired linear spaces and cylinder sets

DEFINITION. Let E and F be two real linear spaces and let (x, y) -+ B(x, y)
be a bilinear form on E X F; we shall say that E and F are paired spaces, by the
pairing functional B, if the two following conditions are fulfilled:

(1) for every x - 0 in E, there exists y e F such that B(x, y) FD 0;
(2) for every y F$ 0 in F, there exists x E E such that B(x, y) # 0.
For any y e F, let B.* be the linear form x -* B(x, y) on E, it is clear that

y -V B.y is a linear mapping of F in the algebraic dual space E* of E. The condi-
tion (1) above means that this mapping is injective, and thus it is possible to
identify F with its image in E*, and in the same way E with its image in F*.
When doing so, we write (x, y) instead of B(x, y).

DEFINITION. Let E and F be two linear spaces paired by a bilinear form
(x, y) - (x, y). WVe call weak topology on E, defined by the duality between E and F,
and denote o(E, F), the weakest locally convex topology on E, such that every linear
form on E: x -- (x, y), y e F, is continuous.
The topological dual of E with the topology a(E, F) is F. The weak topology

a(F, E) on F is defined in the same way.
43
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The topology a(E, F) is separated; it is definied by the family of seminorms:
x- j(x, y), y e F.

Let G be a finite dimensional linear subspace of F, and let G' be the subspace
of E orthogonal to G, that is;

(2.1) G' = {x: x e E such that (x, y) = OV Y e G},
= n {xtx: x e E such that (x, y) = 0'}.

yEG

The space G' is o-(E, F) closed.
The natural homomorphism IIG of E onlto EIG1 is the map which associates

to x e E its restriction on G. Moreover, if G C H are two finite dimensional
subspaces of F, we have the coherency relation HIG = IIGI II where HGII is
the canonical linear mapping of E/H' onto E/G'. Order the set S by the in-
clusion relation G C H for which it becomes a directed set. The family of spaces
EG = E/G' so indexed is a projective system of linear spaces for the applications
UIGI, G C H. The projectiv e limit set of the sets (EG)GC. is the algebraic dual
space of F.
The usual mappinig of F in lim EG is that mappinig which associates to an

element of E the linear form that it defines in F. Then limn EG is the completion

of Efor the oa(E, F) topology, lim EG = E,. Instead of considering the family of

finite dimensional subspaces of F, it is possible to consider the family S of
circled, convex subsets of F which are bounded with respect to the finest locally
convex topology, Zi. Every set in e is contained in a finite dimensional sub-
space and bounded in it. A. Badrikian [2] calls "champ d'instruments" every
element of S. These "champs d'instruments" wvill be provided with the topology
induced by the Xi-topology.

It is well known that the dual space F', of F with respect to Z, is the algebraic
dual space of F. It is also the set of linear forms on F whose restrictions to any
"champ d'instruments" are continuous. Thus it is the set of linear forms for
which small changes of an instrument in a "champ d'instruments" cause small
changes. It is possible to generalize the above definition in the following way.
Let (F, Z) be a separated, locally convex space, and let S be a family of X-
bounded, circled, convex subsets of F; then these sets are called "champs d'in-
struments." There exists one and only one separated, locally convex topology,
ZEe, which is the finest topology inducing on every "champ d'instruments" the
same topology as that induced by the 1-topology. The dual space F' of F
with respect to Ts is the set of linear fornms on F whose restrictions to every
A E S are continuous with respect to the topology induced by the Z-topology.

DEFINITION. A cylinder set in E is any subset of E of the form flJG (BG)
where BG is a Borel set in EG. This BG is called the basis of the cylinder set 1J1G 1 (BG),
and G' is its generating subspace.
Due to the coherency relation, the set of all cylinder sets constitutes a Boolean

algebra (a of subsets of E. Let £ be the a-algebra generated by a; £ is the smallest
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a-algebra such that all linear forms on E, which are members of F, are meas-
urable.

Let us now coinsider the case where E is a separated, locally convex linear
space (E, £), and F is its (topological) dual space F = (E, Z)' = Et C E*.
The spaces E and F are paired by the canonical bilinear form (x, x'). Then it is
convenient to consider in E not only the S a-algebra but also the following:

(1) the Baire a-algebra cBz; that is, the smallest a-algebra with respect to
which all bounded, continuous real functions over E are measurable;

(2) the Borel u-algebra BXz; that is, the smallest u-algebra generated by the
opeii sets.

It is obvious that a C 2 C (Bz C (Ax.
The two main problems that arise are finding conditions such that
(1) 2 = M2: or 2 = MS,
(2) a given subspace E1 of E is S-measurable.
It is well known [6] that in any separable Banach space 2 = 3. However,

other important results are known, especially the following.
LEMMA (Prohorov [8]). Let (E, £) be a real separated, locally convex linear

space. Let K. be an increasing sequence of compact sets in E, and let C = Un= 1 K_.
T'hen @£n C = £ n C.

If E is the dual of a Fr6chet space F (complete, metrizable, locally convex
linear space), and if we consider on E the a(E, F) topology ., then £ =
If, in addition, F is separable, then
(2.2) O = = 63,.
Problem (2) was investigated by A. Badrikian [2].
LEMMA. Let (F, 2) be a separable, locally convex space anl let E be its dual

space. Let E1 be a subset of E, which is a union of an increasing sequence of weakly
closed, equicontinuous, circled convex subsets V, of E; then E1 E C.

PROOF. Since Vn is equicontinuous, circled, weakly closed, and convex, it is
identical to its bipolar set V,,0 = (Vn)0 = Vn. But, as V,, is equicontinuous, V'
is a neighborhood of zero. Being convex it is identical to the Z-closure of its
interior Un. There exists a sequence of points ak dense in U., and

(2.3) Vn = (Vn)° = UJn = {x: x e El(x, x')I < lVX' E Un}
= fx: x EIxI(x ak)l < lVk e N}

THEOREM. Let (F, X) be a separable, locally convex space and E its dual space.
Let E1 be a subspace of E. If there exists on F a metrizable topology Z, weaker
than X, compatible with the structure of linear space, antd such that E1 is the dual
space of F with respect to Z,, then E1 is £-measurable.
PROOF. The space E1 is the dual Ezr, of E; Z, being metrizable, there exists

a fundamental sequence {U.} of £1-neighborhoods of zero (Z-open) such that
nuq = {O}. But U, = V. is an equicontinuous, a(E, F)-closed, convex circled
subset of E, and E1 = U U'. Thus the assumptions of the above lemma are
fulfilled.
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Application 1 (Vakhania [13]). Let E = RN be the linear space of all de-
numerable sequences, x = {Xk}, of real numbers, and let F = RN be the linear
space of such sequences where only a finite number of terms are different from
zero. Let E be the usual inductive limit topology on RN; : is separable and the
dual space of (RN, T-) is RN

Let P, (1 < p < +X) be the usual Banach space of sequences x RfN
such that

(2.4) ||x||p. = ( EXkJP)P < +-.
k=1

If q > 1, then P is the dual space of fP, with (l/p) + (l/q) = 1. If q = 1,
then P' is the dual space of C., the linear space of sequences x E RN converging
to zero, with |xi| = supk ixkl.
The set RN is dense everywhere in eP and in C.. Let Xi be the (metrizable)

topology induced in RN by tP (resp. CO); the dual space of (RN, 1) is PY (resp. l).
Then <,(1 . q < +X) is S-measurable in RN.

Application 2. The space of Schwartz distributions. Let D be the space of all
infinitely differentiable functions having compact supports in Rn and let T be
its usual inductive limit topology; (a, T) is separable and its dual space '' is
the space of Schwartz distributions.

Let 8 be the space of all infinitely differentiable functions in R", its dual
space 8' is the space of Schwartz distributions having compact supports. The
space 5D is a subspace of 8, and D is dense everywhere in 8. Let T, be the topology
induced on D by 8. Note that S is the topology of the uniform convergence of
functions and of their derivatives. The space (a, ZI) is metrizable and its dual
space is 8'. Then 8' is a member of the 2o-algebra of ': S(O'). On the other
hand, aD is everywhere dense in the Lebesgue space LP(dx). Since the topology
induced by LP on O is metrizable and weaker than T, it follows that Lq Gc(D')
if q > 1.

3. Cylinder set measures and measures

With the above notations let E and F be two paired linear spaces. Let G be
a finite dimensional subspace of F and let EG = E/G'.

Gelfand and Minlos call cylinder set measure a projective system of prob-
abilities on the EG's, G e 9. It is not a measure on £.
DEFINITION. A projective system of probabilities (Borelian on EG) is a system

(PG)GE9 such that if G C H (H' C GI), we have P;G HICH = PHu * =
UGH (PH)-
A projective system of probabilities defines an additive (but in general nllon--

additive) set function on the algebra (t of the 9-cylinder sets of E. The first
fundamental problem is to know when it defines a probability on d, that is
when there exists a unique extension on S.. However, for many applications
this is not enough. The second problem is the following. If (E, S) is a topological
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linear space and F its dual space, when does the projective system of probabil-
ities define a Baire or a Borel probability; that is, when does it define a probabil-
ity on (B!z or on (A?

3.1. First problem: solution according to Rochner and Kolmogorov.
THEO1REM. Let E and F be two paired spaces and let Be = Jimn EG/. T'hen a

projective system of probabilities (PG)GC. oan the EG's (defines a mtieasutre on7 the
a--algebra, £ (Pa), generated by the cylinder sets of a_
PROOF. By Bochner's results ([3], p. 120) it is sufficient to prove that the

stochastic family (EG, M~G, PG) where (G iS the Borelian a-algebra of EG, is
sequentially maximal; that is, for any increasing sequence Gn}, finite or not,
of finite dimensional subspaces of F, the natural mapping lim EG = E lim EG.
is surjective. < n

But lim EG. is the algebraic dual space of U Gn; the natural mapping of
+-n

lim EG -* lim G. is the mapping which to every linear form on F associates its
+_ <-n

restriction on U G.; it is surjective if and only if a linear form on U Gn may be
extended in a linear form on F. Here this is the case.

For the second problem we will use the following condition referred to as the
C-condition. Let (E, ;) be a separated, locally convex space and F its dual space.
Then a cylinder set measure, that is a projective system of probabilities (PG)GES,
satisfies the C-condition if for every e > 0 there exists a compact set K, in E
such that

(3.1) IPG(HJIG (K,)) > 1 - f VG G S
THEOREM. If (E, Z) is a separated, locally convex space and F its dual space,

and if a projective system of probabilities (PG)GE9 satisfies the C-condition, then
it defines a unique Borelian probability P on (E, Z) such that

(3.2) PG = rI.G *P = P * HIG', VG e 9.

Furthermore, for each f > 0 there exists a compact K, such that P(K,) > 1 -.
Indeed, it is known that P is a probability measure on £(A); let K(1/n) be

compact sets in (E, Z), C = Un K(l/n) is a compact set of Ec and C C E.
Due to the C-condition, P is "pseudo-portee" by C, then from I'rohorov results
[8] it may be extended to a unique tight Baire measure and to a unique tight
Borel measure.
REMARK. The C-condition may be written in the followinig way. For every

E > 0, there exists a compact set K, such that for a cylinder set A, A D K,
implies P(A) > 1 - e. Such a set function is called tight measure (Le Cam [5])
or cylindrically concentrated (Schwartz [1 ])C
THEOREM. If (E, Z) is a Frechet space, every Borel tight measure for the T topol-

ogy is a Borel tight measure for the weak topology and conversely.
Later on, it will be seen that it is not easy to express the C-condition in terms

of characteristic functionals. Therefore, it is useful to define a weaker condition:
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the C.-condition. If (E, Z) is a separated, locally conivex space, and F its dual
space, we say that a cylinder set measure satisfies the CO-condition if for every
e> 0 there exists a compact K. such that

(3.2) PV,(y(K,)) > 1 -e, VY .

Schwartz [11] calls a set function which satisfies hlie C(-coidition "scalarly
conceiitrated."
REMARK 1. Later on we shall need conditionis siinilai to the C.-conditioll

resp. C-condition but slightly stronger. Instead of permittinig K, to be any
compact set, we shall impose that K, belongs to a given family (. Then sucI
conditions will be labeled C.-condition resp. C-condition with respect to S.
REMARK 2. The C.-condition was introduced in a particular case by Minlos.

Let (E, Z) be a separated, locally convex space, and let F be its dual space
provided with the o-(E, F) topology. The Mlinlos continuity condition is equiv-
alent to the CO-condition with respect to the family of subsets of E which are
convex, equicontinuous, circled, and weakly closed. Note that these sets are
weakly compact.

3.2. Cylinder set measures and random functions.
THEOREM (Schwartz [11]). There is a bijective correspondence between cylindcer

set measures on a separated, locally convex space (E, Z) and real linear randlo
ftnctions on its dual space F.

If the CO-condition is fulfilled, then the associated random ffunction y .*(y),
(y e F, f(y): ran(lom variable) is continuous in probability when F is provilded
with the topology Z of uniform convergence on the conmpact sets of L.

If the C-condition is fulfilled, then the associated randoml functiont is almiiost-
surely continuous on (F, Z).

lFor the statement of Minlos' theoremi and related results we shall nee the
following definition.

Let E1 and E2 be two separated, locally convex spaces and let u be a coii-
tinuous linear mapping from El to E2. Let A be a cylinder set in E2 (that is,
A = HGI 1 (HG (A)), with IIG (A) a Borelian set). Then

(3.3) u-1(A) = u-'[1 G (IIG (A))]
is a cylinder set in El. Let P be a cylinder set measure in El. We definc the
cylinder set measure U(P) induced by P in E2 by

(3.4) u(P)(A) = P[u-1(A)].
Let E, and E2 be two Hilbert spaces. A linear mappinig u fromiEl to ]£2 is a

nuclear linear mapping if

(3.5) u(x) = Ei Xi(x, xj)yi, Vx e El

where xi e E1, Ilxifl < 1, and yi E E2, IlyilI < 1, and Xi are scalars Xi > 0 such
that _i i < +-. Such mappings are the S-operators of Sazonov [10]. Tlhe
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Hilbert-Schmidt mappings are defined in the same way. The only difference is that
the condition Li Xi < +xc should be replaced by the condition F_ Xl < +x.
Let E be a separated, locally convex space and u an open, circled convex

neighborhood of zero; for every x e E let

(3.6) Ilxl,, = inf {X: X e R+; x e Xu} .

Then IlI,, is a seminiorm in I; let E. be the associated normed space (quotienit
ofE by the subspace such that {xlWu = 0). Its completion is the Banach space E.

If u C v, flx1j,, > llxll,, let II, be the canonical mapping from E,, to A,
extended by continuity from A to Xv.

If A,, is a Hilbert space, u is called a prehilbertian neighborhood (Schwartz).
A nuclear space is a separated, locally convex space such that there exists a

fundamental system 3 of neighborhoods of zero which are prehilbertian neigh-
borhoods such that for every u e 3 there exists v G 3, v C u, such that the
mapping [I,, from X, to P. is a nuclear linear mapping.
EXAMPLES. The space 0, D' (Schwartz distributions space), R' and M?',

defined above, are nuclear spaces.
iNIINLOS' FUNDAMENTAL LEMMA. If E1 and E2 are two Hilbert spaces, and if i

is a nuclear linear mapping from E1 to E2, and if P is a cylinder set measure in E1
satisfying the C.-condition with respect to the family e of the closed balls, which
are weakly compact in E1, then u(P) satisfies the C-condition and defines a Borel
tight measure in E2 (cf. Gelfand [4], p. 429 or Schwartz [11]).
REMARK. In this lemma the condition "u is a nuclear mapping" may be

replaced by the condition "u is a Hilbert-Schmidt mapping."
The following theorem was proved by Minlos. If E is the strong dual space

of a denumerably normed nuclear space, then every cylinder set measure in E
which satisfies the Minlos continuity condition (that is, the C.-condition with
respect to the equicontinuous, convex, circled, weakly closed subsets of E)
satisfies the C-condition with respect to the same family of sets, and thus defines
a Borel tight measure.
The following extension is given by Schwartz [11].
THEOREM. Let (E, £) be a separated, locally convex space. Assume that its

dual space E,, is nuclear when provided with the topology of uniform convergence
on the compact convex sets of E. Then every cylinder set measure in E satisfying
the C.-condition with respect to the compact convex sets of E, satisfies the C-condition
with respect to the same family of sets.

Minlos' theorem is a particular case of Schwartz's theorem. Indeed, if E is
the dual space of a denumerably normed nuclear space, or more generally of a
Fr6chet nuclear space (F, £), then E is a nuclear space when it is provided
with the strong topology (uniform convergence on bounided sets of F). There-
fore the topology £ is the strong topology on F considered as the dual space
of E. But E being a Montel space (since it is nuclear and complete), the strong
topology on F is the ECc topology.
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4. Characteristic functional

Let (E, £) be a separated, locally convex space and let F = E' be its dual
space. Let P be a cylinder set measure on E. By analogy with the usual defi-
nition, it would be natural to call characteristic functional of 1', the function
of y e F formally defined by

(4.1) (Y) = J ei(X,Y) ((lx).
But since, in general, P) does not define a measure concentrated on E, this
formula needs some explanation. Any given y c F defines a continuous linear
mapping x -* (x, y) from E to R. The image y(I') of P is a mcasure P, on R?
such that the usual characteristic functional is

(4.2) JR eiat'Py(dt) = 5(P)(a).

DEFINITION. The characteristicfutnctional-or Fo ,'ier tr(ansfolrmll-of a cylindler-
set mileasure 1' on (E, X) is the.function defined on F by

(4.3) (P(y) = JR eitlPu(dt) = R(I (1)
The function ,(y) has the following properties (P'rohorov [8]):
(1) it is positive-definite, that is, for any n, any y,, * y,, e F, and aiy

complex numbers cl, ***, c,,,
n

(4.4) E sc(yi = yjj)CiFj > 0;
ij=1

(2) for every fixed y e F the functionl (ty) of a real arguimeiit t is coJlitillols;
(3) n(O) = 1.
Conversely, every functionial sp on F satisfying conditions (1), (2), and (3) is

the characteristic functional of a cylinder set measure on E, uniquely defined
by sc.
A family {IPa} of cylinder set measures is said to satisfy the uniform CO-

condition [resp. the uniform C-condition] wit.h respect to a given family (2i if for
every E > 0 there exists K, e ( such that for all y e F and all a's, one has

(4.5) P.a, (y(K,)) > 1- E, [resp. VG E C, Va, P.,G(1G (K,)) > 1 - e].
THEOIREM. In order tilat the P's satisfy tile uniformi C.0-condition with respect

to S, it is necessary and sufficient that their Fourier transform2s be uniformly
equicontinuous on F provided with the topology Z of uniform convergenice on thle
sets of (a.
COROLLARY. The cylinder set measure 1' satisfies the CO-condition with respect

to e if and only if its Fourier transform is X-continutous.
This result and the Schwartz theorem allow us to obtain a theorem similar

to the classical Bochner theorem for random variables.
THEOREM. Let (E, Z) be a separated, locally convex space such that F = h c

be nuclear. Then every continuous, positive-definite functional Sc on F, such tha(t
so(O) = 1, is the Fourier transform of a Borel tight mleasure.
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1REMARK. We get a similar proposition by replacing "continuous fuiictionlal"
with "equicontinuous set of functionials" {s}, and "tight measure" by "tight
set {'P,}"; that is, the Pa satisfying the uniformll C-conditioil.
THEOREM (Schwartz). Let P, be a cylinder set measure in (E, X). In order

that P satisfies the CO-condition with respect to CE, it is necessary and sufficient
that the mapping y -* P, from F, with the topology of uniform convergence onl the
sets of (E, to the space of probabilities on R with the topology of weak convergence
be continuous.
A condition that for so to be a characteristic funietional of a tight measuie

was given in [5] as follows:
(I) sp is positive-definite and s(0) = 1;
(2) for every e > 0 there exists a compact K, of (E, Z) and a number 6 > 0

such that for any n, any y1, * **Yn E F, and any complex numbers cl, ***, cn,,
the relations

(4.6) cjei<(2yk) < 1 for every x E L',

(4.7) | cjei(X,Yk) < 6 for every x c K,,

imply that I1= cjsc(yj)j < e.
With Sazonov we call S-topology the topology in whiclh a basis of neighbor-

hoods of zero is given by the sets

(4.8) Us(0) = {x: x e H, (Sx, x) < 1}

where S is a nuclear linear operator (S-operator).
THEOREM (Sazoinov [10]). Let H be a Hilbert space and let f be a positive-

deftnite functional on H such that y(0) = 1. Then so is the characteristic functional
of a tight measure on H if and only if it is continutouis for the S-topology.

Prohorov and Sazonov [9] proved that in a Hilbert space there does not exist
aiiy topology for which the equicontinuity of a family of characteristic fulic-
tionals is equivalent to the weak relative compactness of the corresponding
}3orel tight measures. Let (E, Z) be a separated, locally convex space such that
F = Ec'c is nuclear. The uniform C0-condition which is equivalent to the equi-
continuity of characteristic functionals is, in this case, equivalent to the uni-
form C-condition (Schwartz's theorem above). Then if a family of characteristic
fuiictionals are unifoirnly equiconitiiiuous, the correspoinding measures are uni-
formly tiglht. From a theorem of Le Cam [5] a set of cyliinder set measures
satisfying the unifomni C-condition is weakly relatively compact. Tlhus, in this
case, the equicontiiiuity of characteristic functionals implies (but is not equiv-
alent to) the weak relative compactness of the corresponidinlg measures.

Nevertheless, there is a case where some sort of equivalence occurs; it is the
following one.

If E is a nuclear Fr6chet space, then it is reflexive, its strong dual is nuclear,
anid it has the Ec'-topology. In this case the sequential relative conmpactness for
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a family of measures on E is equivalent to the uniform C-condition. Thus the
equicontinuity of characteristic functionals is equivalent to the sequential rela-
tive compactness of the corresponding measures. Prohorov and Sazonov [9]
proved that this is the only case where such an equivalence exists.

5. Gaussian measures

DEFINITION. Let (E, X) be a separated, locally convex space. A cylinder set
measure P on E is called a Gaussian measure if the projective system {PG} consists
of Gaussian measures.

It is easy to prove that P is a Gaussian measure if and only if there exists a
nondegenerate scalar product 63(y1, y2) on F and

(5.1) PG(Y) = (2)n/2 1 (Y) dy, Y C EG

where dy is the Lebesgue measure corresponding to the scalar produc. induced
by (B on G (we identify G and EG) (cf. Gelfand and Vilenkin [4], p. 337). If E
is a Hilbert space (F _ E), we take for 63(yI, Y2) the scalar product of E.

If (F, X) is a separated, locally convex space and E = FI, the Gaussian
measure satisfies the C.-condition if and only if 63(Y1, y2) is continuous.
The use of Gaussian measures allows the construction of counter-examples.
(1) A Gaussian measure on a Hilbert space does not satisfy the C-condition.
(2) If E1 and E2 are two Hilbert spaces and if u is a linear mapping from E1

to E2, which is not a Hilbert-Schmidt one, then there exists a cylinder set meas-
ure P in E1 (for example, the Gaussian measure) such that the image u(P) is
not a measure.

(3) Let (E, E) be a separated, locally convex space. Suppose that every
cylinder set measure in E which satisfies the C.-condition with respect to a fam-
ily e of subsets of E satisfies the C-condition with respect to E. Then E'S,
the dual space of E, provided with the topology of uniform convergence on the
sets of e, is nuclear.

(4) Let (E, Z) be a quasi-complete, separated, locally convex space and
F = E'C. If every positive-definite, continuous functional (p such that '(0) = 1,
on E'c is the Fourier transform of a Borel tight measure, then Ec'c is nuclear.

Application to the [P spaces (Vakhania [12], [13]). It has beeri shown that fP
is a Borelian set in RN; RN is a nuclear Fr6chet space (it is iiot deium-ierably
normed), and its dual space RAr is nuclear.

(1) Every positive-definite, continuous functioinal S dcfinied on R'.N and such
that so(O) = 1, is the Fourier transform of a probability measure in RN.

(2) In order that so(y), y E Pq, (1 < q < +Xo) be the Fourier transform of a
probability measure on [P, it is necessary and sufficient that:

(a) (p is positive-definite, (p(O) = 1;
(b) sp is continuous with respect to the noim topology in (';
(c) liln-_ 7rk=. El,,XIk = 0;
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(d) if P is a Borelian Gaussian measure in P, (1 < p < +x ), then

(5.2) f lxlIP(dx) < for all tin R+.
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