RANDOM ELEMENTS
IN LINEAR SPACES

EDITH MOURIER
UNIVERSITY OF POITIERS

1. Introduction

For different applications it is necessary to consider random elements which
take values in linear spaces which are not Banach spaces. On the other hand,
because from a physical point of view these elements are observed with the
help of some “instruments,” two spaces have to be considered; the space E in
which the random element takes its values, and the space F in which the instru-
ments are defined. The case of linear instruments is particularly important. A
mathematical theory of such a situation was proposed by Gelfand, It6, Minlos,
and others. During the past few years this theory was generalized by S. Ahmad
[1] and A. Badrikian [2].

All the spaces considered in this paper are real linear spaces and all the
topologies are separated, locally convex topologies. By measure, we shall always
mean probability measure (that is, positive measure with total mass equal
to one).

2. Paired linear spaces and cylinder sets

DeriNiTION. Let E and F be two real linear spaces and let (x,y) — B(z, y)
be a bilinear form on E X F; we shall say that E and F are paired spaces, by the
pairing functional B, if the two following conditions are fulfilled:

(1) for every x % 0 in E, there exists y € F such that B(x, y) % 0;

(2) for every y 5= 0 in F, there exists x € E such that B(x, y) = 0.

For any y € F, let B, be the linear form z — B(z, y) on E, it is clear that
¥ — B, is a linear mapping of F in the algebraic dual space E* of E. The condi-
tion (1) above means that this mapping is injective, and thus it is possible to
identify F with its image in E* and in the same way F with its image in F*.
When doing so, we write {z, y) instead of B(z, y).

DErINITION. Let E and F be two linear spaces paired by a bilinear form
(x, y) = (x, y). We call weak topology on E, defined by the duality between E and F,
and denote o(E, F), the weakest locally convex topology on E, such that every linear
Jorm on E: z— (x,y), y € F, is continuous.

The topological dual of E with the topology o(E, F) is F. The weak topology
o(F, E) on F is defined in the same way.
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The topology o(E, F) is separated; it is defined by the family of seminorms:
o, yl,yeF.

Let G be a finite dimensional linear subspace of F, and let G* be the subspace
of E orthogonal to G, that is;

2.1) Gt = {z: z € £ suchthat (z,9) =0V ye€l),
= N {z: z € K such that (r,y) = 0}.
yeG

The space G* is o(I, F) closed.

The natural homomorphism I1¢ of £ onto £,/G* is the map which associates
to z € E its restriction on G. Moreover, if G C H are two finite dimensional
subspaces of F, we have the coherency relation I1¢ = Il¢n  IIn where Ilen is
the canonical linear mapping of E/H* onto E/G*. Order the set G by the in-
clusion relation @ C H for which it becomes a directed set. The family of spaces
E¢ = E/G* so indexed is a projective system of linear spaces for the applications
Ilen, G C H. The projective limit set of the sets (K¢)eeg is the algebraic dual
space of F.

The usual mapping of I/ in lim /¢ is that mapping which associates to an

<~

element of I/ the linear form that it defines in F. Then lim Eg is the completion
(——-
of E for the o(E, F) topology, lim E¢ = E,. Instead of considering the family of
h

finite dimensional subspaces of F, it is possible to consider the family & of
circled, convex subsets of F which are bounded with respect to the finest locally
convex topology, ;. Every set in & is contained in a finite dimensional sub-
space and bounded in it. A. Badrikian [2] calls “champ d’instruments” every
element of &. These ‘“‘champs d’instruments” will be provided with the topology
induced by the T;-topology.

It is well known that the dual space Fg, of F with respect to ¥, is the algebraic
dual space of F. It is also the set of linear forms on F whose restrictions to any
“champ d’instruments’” are continuous. Thus it is the set of linear forms for
which small changes of an instrument in a “champ d’instruments” cause small
changes. It is possible to generalize the above definition in the following way.
Let (F, ) be a separated, locally convex space, and let © be a family of T-
bounded, circled, convex subsets of F; then these sets are called “‘champs d’in-
struments.” There exists one and only one separated, locally convex topology,
T, which is the finest topology inducing on every ‘‘champ d’instruments” the
same topology as that induced by the T-topology. The dual space Fgs of F
with respect to T is the set of linear forms on F whose restrictions to every
A € & are continuous with respect to the topology induced by the E-topology.

DEFINITION. A cylinder set in E is any subset of E of the form IIs' (Bg)
where B is a Borel set in Eq. This Bg.is called the basis of the cylinder set 11z (Bg),
and G* is its generating subspace.

Due to the coherency relation, the set of all cylinder sets constitutes a Boolean
algebra @ of subsets of E. Let £ be the o-algebra generated by &; £ is the smallest
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o-algebra such-that all linear forms on E, which are members of F, are meas-
urable.

Let us now consider the case where F is a separated, locally convex linear
space (E,T), and F is its (topological) dual space F = (¥, T) = E¢ C E*.
The spaces £ and F are paired by the canonical bilinear form (z, z’). Then it is
convenient to consider in E not only the £ o-algebra but also the following:

(1) the Baire o-algebra ®g; that is, the smallest o-algebra with respect to
which all bounded, continuous real functions over £ are measurable;

(2) the Borel g-algebra ®¢; that is, the smallest o-algebra generated by the
open sets.

It is obvious that @ C £ C 8z C Bg.

The two main problems that arise are finding conditions such that

(1) £ =@®gor £ = Bg,

(2) a given subspace E, of ¥ is £-measurable. .

It is well known [6] that in any separable Banach space £ = ®. However,
other important results are known, especially the following.

Lemma (Prohorov [8]). Let (E, <) be a real separated, locally convex linear
space. Let K, be an increasing sequence of compact sets in E, and let C = \Uz-1 K,.
Then®z N C=£NC.

If E is the dual of a Fréchet space F (complete, metrizable, locally convex
linear space), and if we consider on E the ¢(&, F) topology T,, then £ = ®Bg,.
If, in addition, F is separable, then

(2.2) L = By, = Bz,

Problem (2) was investigated by A. Badrikian [2].

LeMMma. Let (F,X) be a separable, locally convex space and let K be its dual
space. Let E: be a subset of I, which is a union of an increasing sequence of weakly
closed, equicontinuous, circled convex subsels V, of E; then I} € £.

. Proor. Since V, is equicontinuous, circled, weakly closed, and convex, it is
identical to its bipolar set V;° = (V.)° = V.. But, as V, is equicontinuous, V,
is a neighborhood of zero. Being convex it is identical to the T-closure of its
interior U,. There exists a sequence of points a; dense in U,, and

2.3) Vo= (V3)° = U = {a: z € E|(z, )| < 1yz' € Uy,

= {z: z € K|z, ax)]| < 1Yk € N}.

TaeorREM. Let (F, T) be a separable, locally convex space and E its dual space.
Let E, be a subspace of E. If there exists on F a metrizable topology ¥, weaker
than I, compatible with the structure of linear space, and such that K, is the dual
space of F with respect to X, then E, is £-measurable.

Proor. The space E; is the dual E%, of E; €, being metrizable, there exists
a fundamental sequence {U,} of T;-neighborhoods of zero (T-open) such that
N U, = {0}. But U = V, is an equicontinuous, ¢(E, F)-closed, convex circled
subset of E, and E, = \U U;. Thus the assumptions of the above lemma are
fulfilled.



46 FIFTH BERKELEY SYMPOSIUM: MOURIER

Application 1 (Vakhania [13]). Let E = R¥ be the linear space of all de-
numerable sequences, = {z:}, of real numbers, and let F = RY be the linear
space of such sequences where only a finite number of terms are different from
zero. Let T be the usual inductive limit topology on RY; ¥ is separable and the
dual space of (RY, T) is R¥.

Let ¢», (1 < p < +x) be the usual Banach space of sequences z € RV
such that

(2.4) il = (£l Jo < +.

If ¢ > 1, then ¢« is the dual space of ¢», with (1/p) + (1/¢) = 1. If ¢ = 1,
then ¢! is the dual space of C,, the linear space of sequences 2 € RY converging
to zero, with ||z|| = sups ||

The set RY is dense everywhere in # and in C,. Let T, be the (metrizable)
topology induced in RY by £» (resp. C,); the dual space of (RY, T,) is ¢« (resp. £1).
Then ¢4, (1 £ ¢ < +©) is £-measurable in R¥.

Application 2. The space of Schwartz distributions. Let D be the space of all
infinitely differentiable functions having compact supports in R* and let ¥ be
its usual inductive limit topology; (D, ) is separable and its dual space ©’ is
the space of Schwartz distributions.

Let & be the space of all infinitely differentiable functions in R*, its dual
space & is the space of Schwartz distributions having compact supports. The
space D is a subspace of &, and D is dense everywhere in &. Let &, be the topology
induced on D by &. Note that ¥ is the topology of the uniform convergence of
functions and of their derivatives. The space (D, ;) is metrizable and its dual
space is &. Then &' is a member of the £s-algebra of D': £(D'). On the other
hand, ® is everywhere dense in the Lebesgue space L?{(dx). Since the topology
induced by L? on D is metrizable and weaker than ¥, it follows that .2 € £(D")

ifg> 1.

3. Cylinder set measures and measures

With the above notations let E and F be two paired linear spaces. Let G be
a finite dimensional subspace of F and let E¢ = E/G*.

Gelfand and Minlos call cylinder set measure a projective system of prob-
abilities on the K¢’s, G € G. It is not a measure on £.

DEFINITION. A projective system of probabilities (Borelian on Eg) is a system
(Po)eeg such that if G C H (H* C G*), we have Pgollen = Pue P¢ =
Meu (Pu).

A projective system of probabilities defines an additive (but in general non-o-
additive) set function on the algebra @ of the G-cylinder sets of E. The first
fundamental problem is to know when it defines a probability on @, that is
when there exists a unique extension on £.. However, for many applications
this is not enough. The second problem is the following. If (%2, ) is a topological



RANDOM ELEMENTS IN LINEAR SPACES 47

linear space and F its dual space, when. does the projective system of probabil-
ities define a Baire or a Borel probability; that is, when does it define a probabil-
ity on ®z or on ®g?

3.1.  Farst problem: solution according to Bochner and Kolmogorov.

THEOREM. Let E and F be two paired spaces and let E, = lim k¢ Then a
(_.._

projective system of probabilities (P¢)ceg on the I¢'s defines a measure on the
o-algebra, £(E,), generated by the cylinder sets of E,.

Proor. By Bochner’s results ([3], p. 120) it is sufficient {o prove that the
stochastic family (Egq, ®&¢, ’¢) where &¢ is the Borelian s-algebra of Eg, is
sequentially maximal; that is, for any increasing sequence {@.}, finite or not,
of finite dimensional subspaces of F, the natural mapping lim £¢ = E, — lim Fg,

is surjective. — o
But lim Eg, is the algebraic dual space of U G,; the natural mapping of
<—n

lim E¢ — lim @, is the mapping which to every linear form on F associates its
— =

restriction on U G,; it is surjective if and only if a linear form on U G, may bhe
extended in a linear form on F. Here this is the case.

For the second problem we will use the following condition referred to as the
C-condition. Let (£, ¥) be a separated, locally convex space and F its dual space.
Then a cylinder set measure, that is a projective system of probabilities (P¢)geg,
satisfies the C-condition if for every ¢ > 0 there exists a compact set K. in F
such that

(3.1) Po(llg (K)) > 1 — ¢ VG €q.

TueoreMm. If (E, ) is a separated, locally convex space and F its dual space,
and if a projective system of probabilities (Pg)ceg satisfies the C-condition, then
il defines a unique Borelian probability P on (E, T) such that

(3.2) Pg=M¢e P = P-1IG", VG € G.

Furthermore, for each ¢ > 0 there exists a compact K. such that P(K.) > 1 — e

Indeed, it is known that P is a probability measure on £(E,); let K(1/n) be
compact sets in (B, I), ¢ = U, K(1/n) is a compact set of £, and C C E.
Due to the C-condition, P is “pseudo-portée”’ by C, then from Prohorov results
[8] it may be extended to a unique tight Baire measure and to a unique tight
Borel measure.

Remark. The C-condition may be written in the following way. For every
e > 0, there exists a compact set K, such that for a cylinder set 4, 4 D K,
implies P(4) > 1 — e Such a set function is called tight measure (Le Cam [5])
or cylindrically concentrated (Schwartz [11])7

TuroreEM. If (E, T) vs a Fréchet space, every Borel tight measure for the T topol-
ogy is a Borel tight measure for the weak topology and conversely.

Later on, it will be seen that it is not easy to express the C-condition in terms
of characteristic functionals. Therefore, it is useful to define a weaker condition:
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the Co-condition. If (E, I) is a separated, locally convex space, and F its dual
space, we say that a cylinder set measure satisfies the Ce-condition if for every
€ > 0 there exists a compact K, such that

(3.2) Py(y(Ko)) > 1 — ¢ Vyel.

Schwartz [11] calls a set function which satisfies the (-condition “scalarly
concentrated.”

REMARK 1. Later on we shall need conditions similar to the Ce-condition
resp. C-condition but slightly stronger. Instead of permitting A, {o be any
compact set, we shall impose that K. belongs to a given family &. Then such
conditions will be labeled C.-condition resp. C-condition with respect to &.

ReMark 2. The Cs-condition was introduced in a particular case by Minlos.
Let (E, ) be a separated, locally convex space, and let F be its dual space
provided with the o(E, F) topology. The Minlos continuity condition is equiv-
alent to the C.-condition with respect to the family of subsets of E which are
convex, equicontinuous, circled, and weakly closed. Note that these sets are
weakly compact.

3.2. Cylinder set measures and random functions.

TueoreM (Schwartz [11]). There is a bijective correspondence between cylinder
set measures on a separated, locally convex space (I, T) and real linear random
Sfunctions on its dual space F.

If the Co-condition s fulfilled, then the associated random [unction y — f(y),
(y € F, f(y): random variable) is continuous tn probability when F is provided
with the topology T of uniform convergence on the compact sets of E.

If the C-condition is fulfilled, then the associated random function is almost-
surely continuous on (F, ).

Tor the statement of Minlos’ theorem and related results we shall need the
following definition.

Let E; and E, be two separated, locally convex spaces and let w be a con-
tinuous linear mapping from F; to F.. Let A be a cylinder set in E, (that is,
A =TIs"' (e (4)), with II¢ (4) a Borelian set). Then

(3.3) uw(A4) = w'[[e ' (e (4))]

is a cylinder set in E,. Let P be a cylinder set measure in ;. We define the
cylinder set measure w(l?) induced by P in E; by

(3.4) w(P)(4) = PLu1(4)].

Let £, and E, be two Hilbert spaces. A linear mapping u from £, o It; is a
nuclear linear mapping if

(3.5) w(x) = 2 Nz, 2y, vz €

where z; € E), ||z|| £ 1, and y; € E,, ||y:]] < 1, and A; are scalars A; > 0 such
that 3 ;A; < +o. Such mappings are the S-operators of Sazonov [10]. The
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Hilbert-Schmidt mappings are defined in the same way. The only difference is that
the condition X"; \; < -+ should be replaced by the condition X ; M < +.

Let E be a separated, locally convex space and % an open, circled convex
neighborhood of zero; for every z € E let

(3.6) llz]l. = inf (\: A € R¥; x € M.

Then ||z||, is a seminorm in I; let /£, be the associated normed space (quotient
of £ by the subspace such that |||, = 0). Its completion is the Banach space £..

If w Cu, |||l = ||z||:, let TI. be the canonical mapping from FE, to I,
extended by continuity from £, to E,.

If £, is a Hilbert space, u is called a prehilbertian neighborhood (Schwartz).

A nuclear space is a separated, locally convex space such that there exists a
fundamental system 3 of neighborhoods of zero which are prehilbertian neigh-
borhoods such that for every u € 3 there exists v € 3, v C u, such that the
mapping IL.. from B, to £, is a nuclear linear mapping.

ExampLEs. The space ®, ©' (Schwartz distributions space), RV and RJ,
defined above, are nuclear spaces.

MiNLOS’ FUNDAMENTAL LEMMA. If Ey and K, are two Hilbert spaces, and if u
1s a nuclear linear mapping from Ey to E,, and if P is a cylinder set measure in I
satisfying the Co-condition with respect to the family © of the closed balls, which
are weakly compact in E,, then u(P) satisfies the C-condition and defines a Borel
tight measure in Ey (cf. Gelfand [4], p. 429 or Schwartz [11]).

ReEmMARk. In this lemma the condition “u is a nuclear mapping” may be
replaced by the condition “u is a Hilbert-Schmidt mapping.”

The following theorem was proved by Minlos. If E is the strong dual space
of a denumerably normed nuclear space, then every cylinder set measure in ¥
which satisfies the Minlos continuity condition (that is, the Co-condition with
respect to the equicontinuous, convex, circled, weakly closed subsets of )
satisfies the C-condition with respect to the same family of sets, and thus defines
a Borel tight measure.

The following extension is given by Schwartz [11].

TuEOREM. Let (E,T) be a separated, locally convex space. Assume that its
dual space E: is nuclear when provided with the topology of uniform convergence
on the compact conver sets of E. Then every cylinder set measure in E satisfying
the Co-condition with respect to the compact convex sets of £, satisfies the C-condition
with respect to the same family of sets.

Minlos’ theorem is a particular case of Schwartz’s theorem. Indeed, if £ is
the dual space of a denumerably normed nuclear space, or more generally of a
Fréchet nuclear space (F, £), then E is a nuclear space when it is provided
with the strong topology (uniform convergence on bounded sets of F). There-
fore the topology T is the strong topology on F considered as the dual space
of E. But E being a Montel space (since it is nuclear and complete), the strong
topology on F is the E!, topology.
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4. Characteristic functional

Let (E, T) be a separated, locally convex space and let F = E’ be its dual
space. Let P be a cylinder set measure on E. By analogy with the usual defi-
nition, it would be natural to call characteristic functional of I’, the function
of y € F formally defined by

(+.1) e(y) = f; e P(dz).

But since, in general, I’ does not define a measure concentrated on £, this
formula needs some explanation. Any given y € F defines a continuous linear
mapping z — (z, y) from ¥ to R. The image y(’) of P is a measure I°, on R
such that the usual characteristic functional is

(4.2) /R et (dl) = F(P,)(a).

DEerFiNiTION.  The characteristic functional—or Fourier transform—of a cylinder
set measure I> on (I, T) is the function defined on F by

(4.3) o) = [, e Pty = 5.

The function ¢(y) has the following properties (Prohorov [8]):

(1) it is positive-definite, that is, for any n, any u, ---,y. € I, and any
complex numbers ¢, - - -, ¢,
(4.4) _Zl ¢(y: = yj)ei; 2 0;

1,j=
(2) for every fixed y € F the function ¢(ty) of a real argument ¢ is continuous;
(3) ¢(0) = 1.

Conversely, every functional ¢ on F satisfying conditions (1), (2), and (3) is
the characteristic functional of a cylinder sct measure on E, uniquely defined
by ¢.

A family {P.} of cylinder set measures is said to satisfy the uniform C.-
condition [resp. the uniform C-condition] with respect to a given family & if for
every e > 0 there exists K. € € such that for all y € F and all &’s, onc has
(4.5) Poy(y(K)) > 1 = ¢ [resp. VG € G, Va, Pac(Ile (K)) > 1 — €.

THEOREM. In order thal the P’s satisfy the uniform Co-condition with respect
to &, it is necessary and suffictent that their Fourier transforms be uniformly
equicontinuous on F provided with the topology T of uniform convergence on the
sets of ©.

CoROLLARY. The cylinder set measure I’ satisfies the Co-condition with respect
to S if and only if its Fourier transform is T-continuous.

This result and the Schwartz theorem allow us to obtain a theorem similar
to the classical Bochner theorem for random variables.

TueoREM. Let (E,T) be a separated, locally convex space such that F = K
be nuclear. Then every continuous, positive-definite functional ¢ on F, such that
¢(0) = 1, is the Fourier transform of a Borel tight measure.
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ReMARK. We getl a similar proposition by replacing “‘continuous functional”
with “equicontinuous set of functionals” {¢.}, and “tight measure’” by “tight
set {P,}”; that is, the P, satisfying the uniform C-condition.

THeEOREM (Schwartz). Let P, be a cylinder set measure in (£, I). In order
that P satisfies the Co-condition with respect to &, it is necessary and sufficient
that the mapping y — P, from F, with the topology of uniform convergence on the
sels of &, to the space of probabilities on R with the topology of weak convergence
be continuous.

A condition that for ¢ to be a characteristic functional of a tight measure
was given in [5] as follows:

(1) ¢ is positive-definite and ¢(0) = 1;

(2) for every ¢ > 0 there exists a compact K, of (¥, T) and a number 6 > 0
such that for any n, any ¥, --- y. € F, and any complex numbers ¢, - - -, ¢,
the relations

(4.6) > et < 1 for every z € L,
iz1

n .
Z cjei(lyyk)
i=1

4.7) <38 for every z € K.,

imply that |2_7-1 cie(y))| < e
With Sazonov we call S-topology the topology in which a basis of neighbor-
hoods of zero is given by the sets

(4.8) U 0) = {x: x€ H, (Sz,2) < 1}

where S is a nuclear linear operator (S-operator).

TueorEM (Sazonov [10]). Let H be a Hilbert space and let ¢ be a positive-
definite functional on H such that ¢(0) = 1. Then ¢ is the characteristic functional
of a tight measure on H if and only if it is conlinuous for the S-topology.

Prohorov and Sazonov [9] proved that in a Hilbert space there does not exist
any topology for which the equicontinuity of a family of characteristic funec-
tionals is equivalent to the weak relative compactness of the corresponding
Borel tight measures. Let (£, T) be a separated, locally convex space such that
F = E! is nuclear. The uniform C.-condition which is equivalent to the equi-
continuity of characteristic functionals is, in this case, equivalent to the uni-
form C-condition (Schwartz’s theorem above). Then if a family of characteristic
functionals are uniformly equicontinuous, the corresponding measures are uni-
formly tight. From a theorem of Le Cam [5] a set of cylinder set measures
catisfying the uniform C-condition is weakly relatively compact. Thus, in this
case, the equicontinuity of characteristic functionals implies (but is not equiv-
alent to) the weak relative compactness of the corresponding measures.

Nevertheless, there is a case where some sort of equivalence occurs; it is the
following one.

If E is a nuclear Fréchet space, then it is reflexive, its strong dual is nuclear,
and it has the E.-topology. In this case the sequential relative compactness for
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a family of measures on E is equivalent to the uniform C-condition. Thus the
equicontinuity of characteristic functionals is equivalent to the sequential rela-
tive compactness of the corresponding measures. Prohorov and Sazonov [9]
proved that this is the only case where such an equivalence exists.

5. Gaussian measures

DeriNiTiON. Let (I, ) be a separated, locally convex space. A cylinder set
measure P on E is called a Gaussian measure if the projective system {Pg} consists
of Gaussian measures.

It is easy to prove that P is a Gaussian measure if and only if there exists a
nondegenerate scalar product ®(y1, 2) on F and

(51) PG(Y) = W/Y e~ 18wy (Iy, Y CEq

where dy is the Lebesgue measure corresponding to the scalar produc; induced
by ® on G (we identify G and E¢) (cf. Gelfand and Vilenkin [4], p. 337). If I¥
is a Hilbert space (F = E), we take for &(y, y2) the scalar product of E.

If (F,T) is a separated, locally convex space and E = Fg, the Gaussian
measure satisfies the C.-condition if and only if B(yy, ¥2) is continuous.

The use of Gaussian measures allows the construction of counter-examples.

(1) A Gaussian measure on a Hilbert space does not satisfy the C-condition.

(2) If E; and E; are two Hilbert spaces and if » is a linear mapping from E;
to E,, which is not a Hilbert-Schmidt one, then there exists a cylinder set meas-
ure P in E; (for example, the Gaussian measure) such that the image u(P) is
not a measure.

(3) Let (E,T) be a separated, locally convex space. Suppose that every
cylinder set measure in E which satisfies the Co-condition with respect to a fam-
ily © of subsets of E satisfies the C-condition with respect to &. Then E'S,
the dual space of E, provided with the topology of uniform convergence on the
sets of &, is nuclear.

(4) Let (E,T) be a quasi-complete, separated, locally convex space and
F = E.. If every positive-definite, continuous functional ¢ such that ¢(0) = 1,
on E} is the Fourier transform of a Borel tight measure, then E.. is nuclear.

Application to the £* spaces (Vakhania {12], [13]). It has been shown that £»
is a Borelian set in RY; R~ is a nuclear I'réchet space (it is not denumecrably
normed), and its dual space RY is nuclear.

(1) Every positive-definite, continuous functional ¢ defined on R3 and such
that ¢(0) = 1, is the Fourier transform of a probability measure in E".

(2) In order that ¢(y), y € €9, (1 < ¢ < +=) be the Fourier transform of a
probability measure on £7, it is necessary and sufficient that:

(a) ¢ is positive-definite, ¢(0) = 1;

(b) ¢ is continuous with respect to the norm topology in ¢;

(€) limyse 2-n i |al? = 0;
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(d) if P is a Borelian Gaussian measure in £7, (1 < p < 4«), then
(5.2) [, llali*P(dz) < = forall ¢in R*.

REFERENCES

[1] 8. Aumap, “Les éléments aléatoires dans les espaces vectoriels topologiques,”’ thesis,
University of Paris, to appear.

[2] A. BabrikiaN, thesis, University of Paris, to appear.

[3] S. Bocu~kr, Harmonic Analysis and the Theory of Probability, Berkeley, University of
California Press, 1955.

[4] I. M. GeLranD and N. Y. VILENKIN, Generalized Functions, Vol. 4, New York, Academic
Press, 1964.

[56] L. Le Cam, “Convergence in distribution of stochastic processes,” Univ. California
Publ. Statist., Vol. 2 (1957), pp. 207-236.

[6] E. Mourzer, “Eléments aléatoires dans un espace de Banach,” Ann. Inst. H. Poincaré,
Vol. 13 (1953), pp. 161-244.

[7] Yu. V. Prouorov, ‘“The convergence of random processes and limit theorems in the
theory of probability,”” Teor. Verojatnost. © Primenen., Vol. I (1956), pp. 177-238. (In
Russian.)

[8] , “The method of characteristic functionals,”” Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probabilily, Berkeley and Los Angeles, Uni-
versity of California Press, 1960, Vol. II, pp. 403-419.

[9] Yu. V. ProHoROV and V. SazoNov, ‘“‘Some results associated with Bochner's theorem,”
Teor. Verojatnost. ¢ Primenen., Vol. 6 (1961), pp. 87-93. (In Russian.)

[10] V. Sazonov, “Remarks on characteristic functionals,” Teor. Verojainost. ¢ Primenen.,
Vol. 3 (1958), pp. 201-205. (In Russian.)

[11] L. Scuwartz, “Mesures de Radon sur des espaces topologiques arbitraires,”” Cours de
3d cycle 1964-1965, Institute H. Poincaré, Paris.

[12] N. VakuaNIa, “Sur une propriété des répartitions normales de probabilités dans les
espaces £» (1 < p < =) et H” C. R. Acad. Sci. Paris, Vol. 260 (1965), pp. 1334-1336.

, “Sur les répartitions de probabilités dans les espaces de suites numériques,”’

C. R. Acad. Sci. Paris, Vol. 260 (1965), pp. 1560-1562.

[13]




