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1. Introduction

The limit theorems established for the classical case of sums of independent
quantities were not adequate for those questions which arose both in the theory
of probability itself and in its applications.
As far back as the time of Bernstein's woik [1], attempts were made to extend

these theorems to the case of dependeiit quanitities. The most definitive results
[2] to [5] in this direction were, of course, obtained for (*tiantities conniected in
a Markov chaini.

It is abundantly clear that it would be desirable to establish some general
limit theorems at least for quantities which are, in some sense, weakly depend-
ent. The concept of m-dependent random quantities, to which the results of the
classical case of independent quantities can be fairly easily generalized [6] to [8],
arose in a natural way.

Recently somewhat different conditions for weak dependence appeared, the
use of which led to the establishment [9] to [I I ] of a series of new limit theorems.
By far the widest of these conditions was formulated by Rosenblatt [9] for the
case of a stationary sequence t(t). It consists of the requirement that

(t) IP(AB) - P(A)P(B)I _ Of(T),

where A C M'_e, B C Mt'+, and M' is the a-algebra generated by the events of
theform {J(u) < x} for s _ u _ t and a(T) -*O when rT °°.

In this form condition (1), which, following Rosenblatt [9], we shall call the
strong mixing condition, was applied to the arbitrary random process t(t) and
generally to some family of a-algebras Ms of co-sets in a space Q with a proba-
bility measure P(dw).
The strong mixing condition (1) is satisfied in the broad class of ergodic

Markov processes and also in Gaussian processes. In [12] it was established that
for a stationary Gaussian process the strong mixing property is associated with
the smoothness of its spectral density; for example, in the case of discrete time
it is always satisfied if the spectral density is continuous and never vanishes.

For quantities t(t) satisfying the strong mixing condition (1), the central
limit theorem itself was obtained in [11] together with more precise details [17]
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including asymptotic expansions and some results concerned with large devia-
tions.

Another condition of weak dependence was used by Ibragimov [10], also with
reference to a stationary sequence. This condition is more restrictive than con-
dition (1) and is that, with probability one

(2) sup jP(AIM'_E) -P(A) _d(T) 0,IO
A EMt+r

The use of this condition yielded a new derivation of the limit theorems for
Markov processes [4] and also for some special processes which are of interest
in the theory of numbers [15].

2. The central limit theorem for additive random functions

Let Hs t(ow) be a family of random quantities additively dependent upon the
interval (s, t), so that, for all s < u < t,
(3) H8U(,) + HU,t(.) = HS t(w)
with probability one, let

(4) m(s, t) = E{HsA
and let C2(s, t) be the variance of Hsat.
The most important examples of such quantities are those of the form

Hsat = ESs<k.tt(k) and HI,t = f t(u) du where t(t) is a random process. Let

(5) vsat(@) = H8 t(@)-m(s, t)

and let FStZ(x) be the distribution function of the random variable g8t. We shall
be interested in the conditions under which

(6) Fv) f e - d, - s -x

uniformly over the whole family.
We shall say that the random quantities t8a t(w) satisfy the condition L if, for

any e > 0, numbers Ne and Tf can be found such that

(7) f x2dF't,(x) < e t-s > T,.
1.c >A.

It is easily seen that condition (7) is always necessary for the distribution
functions F,,(x) to converge uniformly to some continuous probability law with
zero mean and unit variance. Under certain conditions of weak dependence and
regularity of growth of the variance a2(s, t), condition (7) turns out to be also
sufficient for the convergence of F,-'(x) when t - s -- o. Furthermore, the limit-
ing distribution is normal. Before formulating the relevant theorem [14], we
introduce the symbol a2(s, t) - t - s to mean
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(8) 0°< lim inf 2(8, t) S lim sup 04(s, t) <
t-8- t s t-8--> t - s

THEOREM 1. Let the quantities He t(co) be the functionals defined on trajectories
of a certain random process t(t) satisfying the strong mixing condition (1), let

(9) E{[Ha.t - E(H-tIM'+8)]2} < C(t-s)c(u)
where C is a certain constant and<t(u) -O 0 when u - oo and, in addition, suppose
that

(10) a2(S, t) - t - s.

Then condition (7) is not only necessary but also sufficient for the uniform asymp-
totic normality [see (6)] of the quantities 182t(w).
The qualitatively simple condition (7) is, unfortunately, often difficult to

establish. If the exponent a(t) in the strong mixing condition (1) decreases suf-
ficiently fast, precisely if

(11) a(r) = O[T1]00X

then the asymptotic normality of the quantities 78q"(w) follows [13] from the
existence of moments of a sufficiently high order.
THEOREM 2. Let the quantities He"(c(w) be measurable with respect to the

o-algebras M.' and let them satisfy conditions (10) and (11). Furthermore suppose
that, for a certain A > 0 we have

(12) E{1H8.i -m(s, t)12+6} _ Eo < oo

where t - s A and a > 2/e. Then the quantities HB'L(w) are asymptotically
normal in the sense of (6).

It should be noticed that the above results are easily extended (compare [14])
to the multidimensional case.
Analogous results hold also in the case of the "sequence scheme," that is,

when we have a family of random functions depending on a parameter n, with
n -- oo, and we study the behavior of the distribution function of the quantities
IN '(X) where s = Sn-t = t, and t, -s - when n - oo (see section 6).

3. The locally Gaussian nature of spectral measures for stationary
processes

Many papers in radiotechnology assume that after the transmission of a
stationary process through a narrow linear filter it becomes almost Gaussian.
This fact can be given a rigorous mathematical foundation.

For the sake of simplicity we shall restrict ourselves to the case when the fre-
quency characteristic 04n(X) of the linear filter, transmitting frequencies near Xo,
has the form

(13) Xn) = 1 {[(- Xo)n] + 4[(X + Xo)n]} Vn2
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where the function (4X) is such that 4(-X) = +(X) and 1+(X)12 dX < Xc and
its Fourier transform is uniformly continuous almost everywhere. Let the real
process Q(t), stationary in the wide sense, be defined by

(14) t(t) = cixt 4(dX),
and suppose that t(t) has a bounded spectral density f(X) such that

(15) inf f(X) > 0,
IX-x?l <e

where the infimum is taken over a certain neighborhood of points Xk, with
k = 1, *--,m.

Let us study the random quantities

(16) 77np =
O

f eaXtk44k)(n)k(dX),

where +(X) is a frequency characteristic of the form (13) with Xo = Xk and
a2t the variance of

(17) |: ei t)(X)4(dX).
From theorem 2 we can deduce (compare [11])
THEOREM 3. Let the stationary process t(t) possess the strong mixing property

(1), where in addition

(18) aO(T) = 0[r-1-e]
and for some a > 2/f we have

(19) E[JI(t)2+61] < Eo < oo

for all t. Suppose further that

(20) lim E[77n1P7n('] = bkj k, j = 1, ***, m.

Then the joint distribution function of the quantities q*n*), I(nm) converges to a
normal law with variance-covariance matrix [bkj].

In particular, condition (20) is satisfied when all the frequency characteristics
44nk)(X) correspond to the same function O(X) appearing in formula (13). Also,
condition (20) is satisfied if all the points Xi, X2, * - X,X. are different. In this case
the matrix lbkjl is the unit matrix. Another case of convergence to the normal
law with the unit variance-covariance matrix is that of the joint distribution of
the random variables

(21) =tk- 2R{4(A5k)J d (k) _ 24{4(At)}
_21 t7n -[(Ak)]112 and n [Fit]112[Fn nd[F(Ank)1I
where n\ = (Xk- n-, Xk + n-') for k 1, * * *, m, where the poinlts X,X i , Xrn
are all different, and F(A) = E[Lf (A) 12] is the spectral measure of the process t(t).
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4. Applicability of the central limit theorem to the logarithm of the
likelihood ratio
Let the probability measure P(dw) corresponding to some random process t(t)

depend on a parameter which takes its value from a certain interval, so that

(22) P(dw) = Pe(dw).
We shall denote by Ps,' the probability measure corresponding to the process
t(t) considered only over the interval [s, t]. Thus, Pa,t is defined over the
v-algebra M' and on sets A C M' coincides with the measure P, so that
Pa't(A) = P(A).

Let m(dw) be some measure, not necessarily a probability measure, defined on
the a-algebra M'Z such that PJ'" is absolutely continuous with respect to mt'
for all s and t and let

=Pk"(dw)
(23) ps(w 0) = ma(dw)
be the probability density (the "likelihood ratio").
An important property [14] of (23) is the asymptotic normality where

t - s -o+ o, of the quantities
(24) La.t(w, 0) = log pa't(@,, 0)
and of their derivatives (a/a0) [La t(w, 0)].
We note that, as a rule, it is possible to define the conditional measures

Pat (d,wjMt) in such a way that Pa.t(dw.jM,_s) will be absolutely continuous with
respect to Pa.t(dwIM,_.) whenever u _ v for almost all w.

Let us write

(25) 7rT"(u, v) - Pa"(dwIMs_f)

and similarly

(26) (u, v) = ma(d|MSu)
Further, let

(27) la.i(wZ, 0) - La'(w, 0) - E{L"'}(27) 0) =

0.~~~~{LSat}
THEOREM 4. Let the strong mixing property (1) be satisfied uniformly with re-

spect to the parameter 0, let

(28) t2[Lat(w, 0)] t- s

and let

(29) a2 [log :/Ai]-Ct(t-s)<(u)
where C is a certain constant and +(u) -+0 when u - oo. Then for the asymptotic
normality (uniform with respect to s, t and the parameter 0) of the quantities 18'(w, 0)
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when t - s -* oo, it is necessary and sufficient that they should satisfy condition (7).
For some problems it is of interest to examine the case in which the quan-

tities l8,t(w, O., t) are asymptotically normal, where the parameter 0 changes as
t - s - oo. For this it is only necessary to require that (28) and (29), instead of
being satisfied uniformly in 0, should be satisfied when 0 = Os, t.
An analogous theorem holds for the quantities

(30) Lt(D, 0)

in which we need only replace conditions (28) and (29) by

(31) o.2 [ d L8t(,, 0) tt-s00

(32) a2 a log vIo2'u,)]_ C(t - s)ck(u).

The above facts follow from the application of the general theorem 1 to the
quantities

(33) Hst = L -,t L
and correspondingly to (0/a0) [Hs' (o., 0)], depending on the auxiliary parameter T.

5. A central limit theorem for certain stationary processes

Let the process t(t), where t takes integer values, be stationary in the narrow
sense and satisfy condition (2). Let the random quantity n(co) be measurable
with respect to the o-algebra M' c and let q (t) = j (Stco) be the stationary process
generated by the random quantity 1 and the translation ST, where

(34) S,r(t) = t(t + T).
Let x7 have zero mean and finite variance and suppose

(35) E, [E({n - E[-jM'k]}2)]"2 < cO.
k=l

If the function ,8(T) appearing in condition (2) decreases sufficiently rapidly, so
that

(36) F, 1112(k) < 0

then

(37) a-2= E['q2] + 2 E E[p7,(k)] < .
k=1

Ibragimov [10] has established
THEOREM 5. If conditions (35), (36), and (37) are satisfied, and if a Fd 0, then

(38) P{a
n

E 7(k) <x}x > e -u/2du, n-mc.
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This result implies the central limit theorem [4] for a Markov chain. In this
case, under wide conditions of ergodicity, the function d(r) decreases exponen-
tially.

Unfortunately condition (2) is satisfied by processes of a class which, though
important, is not wide enough. Thus, for example, Gaussian processes are mem-
bers of this class only if the covariance function B(s, t) is identically zero when
It- _s T for some finite T. As we have already noted, condition (2) is satisfied
by ergodic Markov and also by mn-dependent random processes.
Theorem 5 was applied in [15] by Ibragimov to certain special processes and

yielded a series of new results which are of interest in number theory (see also
[16]).
Let us consider an arbitrary number x E [0, 1] and its expansion as a dyadic

fraction

(39) x=
ex

+ e2(x) + *+
(

+2 4 2'k

If the ek(x) are treated as random variables, where the sample space Q is the
interval [0, 1] and the probability measure is simply the Lebesgue measure, we
find that they are independently and identically distributed and

P{ek(x) = 0} P{ek(x) = 1
(40)

P{ei(x) = ii, * es(x) is} =

Consider the stationary process t(t) = et(x) for t _ 0. Obviously, the a--algebra
31' is the algebra generated by the sets Ajk = [(j - 1)/2k, j/2k] forj = 1, * * *, 2k

Let f(x) be an arbitrary function of x such that

(41) f0 f(x) dx = 0, ff2(x) dx < .

It is easy to see that, for x C Ajk, we have

(42) [f]k(X) = E{ff |Mk} = 2k f f(x) dx

4jk

and condition (35) takes the form

(43) E [f If(x) - [f]k(x)I2dx]"1 < o.

Tlhe tranislationi S acts on 52 in accordance with the formula 87x = 2rx (mod 1).
Theorem 1 yields the following
COROLLARY 1. Condition (43) inmplies

(44) a2= 0 f2(X) dx + 2 fg1 f(x)f(2kx) dx <

and if also a id 0 then
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(45) P - f(2'x) <z}I f e-u2/2 du.t-Vn 1 1 \21r_
Condition (43) will be satisfied if, for example, any one of the following three

conditions is satisfied.
(A) f(x) is a function of bounded variation,
(B) 10o If(x) - f(x + h)I2 dx _ Cl loghI2+e, where C is some constant and

f> 0,

(C) the Fourier coefficients an= 101 e2,nx f(x) dx decrease so fast that

la.1 _ Cn12(log n)(S+)/2.
Another result of Ibragimov relates to continued fractions. As before, let

x E [0, 1] and let

(46) x= 1
a1() + a2(X) + *

be its expansion as a simple continued fraction. We shall write x
[al(x), a2(x), * *]. Let us suppose that Sx = [a2(x), a3(x), * * *].
We shall study the measure u on the Lebesgue sets, defined by the formula

(47) A(A)= j | dx
A

It transpires that the sequence t(t) = at(x) is a process, with probability meas-
ure p, which is stationary in the narrow sense, satisfies condition (2), and more-
over is such that the corresponding function ,B(r) decreases very rapidly, in fact

(48) {9(r) < Ce-XV/T

where C is a certain constant and X > 0.
Theorem 5 has the following
COROLLARY 2. Let the function f(x) be such that

(49) f| f(x)p(dx) = 0, f1f2(x) dx <00,

and

(50) ff(x + h) -f(x) _ Cl log-'- hi.

'lhen

(51) r2 = J01f2(x)IA(dx) + 2 ,f1f(x)_ Skx),(dx) <0o

and if moreover a # 0, then

(52) p [x: _- Ef(Skx) < Z] j2 f e-"'/2 du.
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6. Asymptotic expansions and large deviations
To the case of weakly dependent quantities we may transfer the results of

[18] to [20], which make the central limit theorem more precise.
V. A. Statulevichus [17] studied sequences of random quantities {"(t) satisfy-

ing for every n the strong mixing condition (1) in which the functions Ca.(T) have
the form
(53) an(T) = (TC,n) a > 0, a. > 0.

Let the random quantities {n(t) be uniformly bounded,

(54) I0(t)I|- C
and let

(55) [r[ n(t)] _ ca,n(l- k).

THEOREM 6. If the variables M(t) satisfy conditions (53) and (55) and, as
n --+ o

(56) anl 12 -* oo,

then, for lul _ k (log n) 2, when k is an integer satisfying the condition
3 < k < (a - 3)1/2, the characteristic function f.(u) of the random variable

n [ n

- {n(t) E Mt)
(57) '1=n n 1()

° [E {n(t)]

admits the expansion
(58)

fM(u) e-u2/2 + Pnj(iU) + 0 (IuIk+IuIi ) exp -(1 + en)1j=1 n' \rk2 L2J
where

(59) rn =_ an YE n(t)]

(60) Clann _ | < C2 n

and the coefficients of the polynomials Pn,(iu) are uniformly bounded in n, the
constants implied by the O(-) notation depend on k and are uniformly bounded in
n, and en -+0 when n -a oo.

Outside of the interval Jul < k (log n)"/2 we have If.(u)I < exp {-CU2}, where c
is a positive constant.

Further, if the exponents an in condition (53) are bounded away from zero, so
that

(61) an > a > 0,
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and if, in addition, the constant a _ 12, then, for 1 < x < o(\n), the probability
of large deviations
(62) P{,n, > x} = 1 -Fn(x)
say, satisfies the following Cram6r-Petrov relation

(63) = exp [\/- An\/n) [\1+/n)
Ax eu/ du I

V 1 n V n n
P+ ( )

where the power series for Xn(y) converges for small y uniformly in n.
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