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1. Introduction

Let X and Y be independent random variables with continuous cumulative probabil-
ity functions F and G, respectively, and let

(11) X1, Xoy oty Xoms Yi, Yo ', Y
be samples of X and of ¥. Mann and Whitney [1] considered the statistic
(1.2) U = number of pairs (X;, ¥%) such that ¥, < X;.

For m = n an equivalent statistic had been proposed and studied earlier by Wilcoxon
[2]. The main aim of these studies was to develop a test of the hypothesis that X and ¥
have the same probability distribution: F = G. More about this test will be reported in
section 2.

Independently, Haldane and Smith [3] investigated the following problem. In some
hereditary conditions, the probability that a member of a sibship has the condition de-
pends partly on his birth rank. Having records of sibships in the order of birth, stating
for each individual whether it has or does not have the condition, how does one test for
independence of the condition from birth rank? To answer this question, Haldane and
Smith constructed a test statistic which is equivalent with the U statistic (1.2).

Without an attempt at completeness, we shall give in section 2 a brief survey of the
known properties of the U statistic which are of importance for its use in testing hy-
potheses. The main purpose of the present paper, however, is to discuss another use of
this statistic which, while not new, seems to have attracted less attention. Let

(1.3) p=Pr{V <X}

If the samples (1.1) are available, then the statistic
.U

(1.4) p=

can be used to estimate the parameter p. It is this particular use of U which will be ex-
plored in some detail in sections 3 and 4.

2. Properties of U useful in testing hypotheses

Under the hypothesis (H): F = G, Mann and Whitney [1] have tabulated the exact
probability distribution of U for m < n < 8, and proved that
U—3mn
vVmn(m+nt+1) /12
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has asymptotically the normal distribution N(0, 1). This approximation is already
very good for m = n = 8. They showed furthermore that, for alternatives (4): F(s) >
G(s) for all s, the one-sided test of (H) using the critical region U =< mn/2
— t\mn(m + n+ 1)/12 with ¢ > 0 is consistent.

Lehmann [4] generalized one of these results by proving that the random variable

V/n (p — p) is asymptotically nondegenerate normal for any pair F, G, under the as-
sumptions (@) m =cen,n— =, () 0 < p < 1.

The other result of Mann and Whitney was generalized by Van Dantzig [S] who
showed that their one-sided test is consistent against any alternative such that p < %,
and, for sufficiently small significance level, against no other alternative. Similar state-
ments are true for a two-sided test, based on U, of the hypothesis p = § against any
alternative p # %.

3. Estimation of p

3.1. An illustration. If structural components of a mechanism are mass produced, the
strength at failure ¥ of each single component (equals stress at which this component
will fail) may be considered a random variable. The component is installed in an assem-
bly and exposed to a stress which reaches its maximum value X, again a random variable.
If ¥ < X, then the component will fail in use. In this situation, p = Pr{¥ < X} is the
probability that failure will occur because, due to chance, a component with relatively
low strength was paired off with a high stress. It clearly is of interest to estimate this
probability, preferably from samples of X and of Y alone, since installing the compo-
nents in complete assemblies and trying them out under conditions of actual use may in-
volve nearly prohibitive expense and effort. It also will be important to be able to esti-
mate p without knowing the distribution of the strengths of the components, or of the
stresses, or of both.

3.2. Properties of U useful for estimating p. It is easily seen that

U

(3.2.1) E@p) =E (-

=p
so that p is an unbiased estimate of $. Van Dantzig [S] obtained the sharp upper bound
for the variance of $

(3.2.2) () < 23 =P

min (m, n)

and thereby showed that for m — «, n — o the statistic p is a consistent estimate of p.
Lehmann (see pp. 3-23-3-24 in [6]) also proved that p is the UMV unbiased estimate of .

These properties as well as those enumerated in section 2 make p a very good point
estimate of p. If a confidence interval for p is wanted, one can make use of Lehmann’s

theorem on the asymptotic normality of Vn - P), together with Van Dantzig’s in-
equality (3.2.2), to obtain the sample size and the confidence interval for a given confi-
dence level.

Difficulties will arise when a confidence interval for p is desired and the assumptions
of Lehmann’s theorem are not fulfilled. These assumptions are, intuitively speaking,
(a) that the sample sizes m and # are of the same order of magnitude, and (?) that p is
sufficiently far from O and from 1. If one or both of these assumptions are not clearly
satisfied, that is, if one sample size is much larger than the other, or p is close to 0 or close
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to 1, then there is no assurance that the normal approximation is still good enough to be
used.

In practical situations, one or both of these assumptions are often not fulfilled. In the
problem described in 3.1, for example, p will most likely be close to 0. It can also happen
that the cost of obtaining observations on X is so different from that for ¥ that it will
be desirable to choose m and # very differently. In neither case will it be safe to rely on
the normal approximation. This suggests the following concrete problem: to obtain a
statistic ¥ and, for any ¢, a > 0, a pair of numbers M, N, so that

(3.2.3) Pripsvy+el=l—a, imzZM ,nZN,,.

From here on we shall be concerned mainly with this problem.

3.3. A one-sided confidence interval for p, not depending on normal approximation. Let
us first consider the case when F is known and G not known. This situation arises, for
example, when it is easy to obtain a practically unlimited number of observations of X,
and hence to reconstruct F as accurately as desired, but only a finite sample ¥3," - -, ¥,
of ¥ can be obtained [this would correspond to lim (#/m) = 0 in the general case]. Let
Y¥ < Y3 <---< Y} be the ordered sample of ¥ and

for s< Y¥§

(3.3.1) G.(s) = for VS s< Vi

0
k
n
1 for V¥=<s

the empirical distribution function (e.d.f.). We consider the statistic

(3.3.2) ﬁ1=f+°°Gn(s) dF (s) =1—%2F(Y,’f)
o et

1 n
=1—_> F(¥:)

k=1

where, by definition, F(¥V}) = 0, F(Y7;;) = 1. Since
(3.3.3) E(p) =1—EF(Y) = 1—f_+°°F(s) dG ()
= [T ar(s) =9,

$1 is an unbiased estimate of . To obtain a one-sided (upper) confidence interval for p
we observe that

A teo +
(3.34) ?_pl=[-w (G_Gn) dFé S(l:)p {G(S) ‘—‘G,,(S) } = Dn

hence
(3.3.5) Prip—p1<e}= Pr{Df <e} =P.(e).
It is well known [7] that P,(e) is independent of G. Smirnov [8] has shown that

3 _E= = 1 — p—222
(3.3.6) lim P, \/n> 1 — g2,



16 THIRD BERKELEY SYMPOSIUM: BIRNBAUM

In [9] a closed expression is given for P,(¢), as well as a tabulation showing that the solu-
tions e,,. of the equation

(3.3.7) P,(e) =1—a

for a = .10, .05, .01, .001 differ from those obtained by using approximation (3.3.6) by
less than .005 as soon as # > 50. For practical purposes, therefore, (3.3.5) may be re-
written

(3.3.8) Prip<prte} >1— ¢,

This shows that p; 4 e is an upper confidence bound for p on a confidence level greater
than or equal to 1 — exp (—2n¢?), and that 7 is a statistic which answers the problem
stated at the end of section 3.2.

A numerical example may be of interest. If we wish to state that Pr{p < p, + .05}
= .99, the required sample size obtained from (3.3.8) is » = 921. Using Chebyshev’s
inequality and the bound ¢*(p) < (1 — p)/n < (4n)™!, we would obtain » = 10,000.
If we were to use the normal approximation, not knowing whether this is justified, and
the same upper bound for ¢*(%), the result would be » = 541.

3.4. Case of F and G unknown. Let Fn(s) and G,(s) be e.d.f.’s corresponding to the
samples (1.1). It is easily verified that

(3.4.1) gs=f_+°°c,.(s) dF., (s)
and this together with (1.3) yields
(3.4.2) p—;s=f_+°°cd(F—F,,) +f_+°°(c—c,.) dF,,

=f_:°° (Fn—F) dG+f_:w (G—G,) dF,,

so that
(3.4.3) p—p= S(u)p[Fm(S) —F(S)]+su)p[G(S) —G.(s)] = D4+ Df .
s; s

We have, therefore,

(3.4.4) Prip<p+e}Z Pr{D};+ D} <e} =P, (o

which shows that 7 is a statistic of the kind asked at the end of section 3.2, provided we
can determine M, o, N¢,q.

Since D} and D} are independent, and for m = 50, » = 50 Smirnov’s approximation
(3.3.6) is quite close, a good approximation to P, (¢) could be obtained by convolution
of two c.p.f.’s of the form (3.3.6). To make this expression practically useful, one would
need numerical tabulations which are not available at this time. A somewhat crude but
computationally easier procedure is the following. For any % such that 0 < 7 < e we
have

(3.4.5) P, () =Pr{D}+ D} Se}Z Pr{Dt=n} -Pr{DfSe—n},

and using the approximation (3.3.6) we obtain

(3.4.6) P, (0 Z (1— e2m) (1 — em(en?)
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The right-hand term can be maximized in », which requires solving numerically a tran-
scendental equation, and m and » can then be determined to make it equal to 1 — a.
This procedure becomes quite simple if one wishes to have m = #, since then the maxi-
mum of the right term in (3.4.6) is attained for y = ¢/2 and one has

(3.4.7) P, (€ = (1 — e—tre)2

For example, to have ¢ = .05, a = .Ovl, it is certainly sufficient to choose M = N =
4238. Using Chebyshev’s inequality and the bound o*(%) < p(1 — p)/n < (4n)~! one
would again obtain M, N = 10,000.

4. Concluding remarks

The procedure outlined above for obtaining one-sided confidence bounds for p can
clearly be used also for obtaining two-sided confidence intervals. The Kolmogorov sta-
tistic SPPlF (x) — Fu(x)| would then take the place of s(u)p{F (x) — Fu(x)}.

This procedure, for the one-sided as well as the two-sided case, requires sample sizes
which are most likely much too large. The obvious reason is the crudeness of inequalities
such as (3.3.4) or (3.4.3). An improvement could be expected from a study of the asymp-
totic probability distribution of U if mnp is not large, although m and » are large. To
our knowledge, no results are available in this direction. Another possibility of obtaining
improved estimates for p would consist in making additional assumptions on F and G
and arriving at bounds for ¢*(p) which are better than (3.2.2). Some results of this kind
have been obtained and will be published separately [10].
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