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1. An application of a formula of Wiener

1.1. Let X(t) be Wiener's well known random function, defined up to an addi-
tive constant by the condition

(I. 1.1) X (t)-X (to = >tot>to

t being a real and normalized Laplacian (often called Gaussian) random variable.
Suppose 0 _ t < 27r, X(O) = 0, and put

2X () = t X (2ir) + U (t).

The Laplacian function U(t) is completely characterized by its covariance

(1.1.3) E{ U (t) U (t') = u (2 - v)
27r

[u = min (t, I'); v = max (t, t'); 0 _ u < v _ 21r]. We may conclude that it may
be represented by the almost surely convergent Fourier series

(1.1.4) U (t) = = [n (cos nt-1) + sin ntl,

and that

(1.1.5) X(t) = x/2w+ -ltn(cos nt- 1) +t' sinnt],

the Greek letters indicating normalized Laplacian random variables, all independ-
ent of each other. To prove this, it is sufficient to verify that the Laplacian func-
tion (1.1.4) has the covariance (1.1.3).

Thus, the same random function may be defined by (1.1.1) or by (1.1.5). This
theorem was proved by N. Wiener [9] in 1924 and, ten years later, formula (1.1.5)
was used as a definition by Paley and Wiener. Starting from one or the other point
of view, it is easy to prove that X(t) is almost surely a well defined and continuous
function; 5X(t) is generally O(V"i) (di > o), and not O(dt). Thus X(t) is not dif-
ferentiable.

This work has been supported in part by the Office of Naval Research. A more developed state-
ment of the same questions will be printed in another publication.
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The explicit representation of X(t), given by (1.1.5), is often very useful. Yet,
during more than twenty years, the author and other mathematicians did not have
the idea of using it. We shall now apply it to the study of the Brownian plane
curve.

1.2. Let us now put

|X (t) =-g2+ E -7;[ (, (COS nt- 1) + $' sin nt](1~~~~~ ~ .2.i 1)snnh

2 Y(') = 2+n (cos nt-1) +77' sin nIl,

and consider the curve

(C) x=X(t), y= Y(t), O<t<2ir,

and its chord D. The area included by C and D may be formally defined by the
formula

(1.2.2) S fI [X (t) d Y (t) -Y (t) dX (t)]
2 Jo

and a formal calculation leads to the formula

(1.2.3) E n ( 71 d) 77n ( n- /2)]-

Ten years ago, the author proved that, if one considers only the classical theory
of integration, the integral (1.2.2) has no sense [5]. But it is easy to give a stochastic
definition of that integral. Another definition results from the formula (1.2.3), in
which the series is almost surely convergent. We shall now start from this new
definition, and shall in 1.6 come back to the definition (1.2.2).

1.3. Consider first the conditional probability, in the case i'\/2 = h, ('V2 = k
(h and k being given numbers). From

E I e iut} e -ul/2

putting u (71 -h)z, we deduce that the characteristic function of (1 - h) is

co (z, h) =E eie( -h)z} =E{ eC-(-h)lz/2}

- A_ Xfef-(y-h)222+y2]/2dy
Thus

(1.3.1) X (z, h) = gl7 - e -h2z'/2(1+z')

and the characteristic function of ,(7n- h) - Q- k) is

(1.3.2) w(z, h)co(z, k) = pep'Z'/(l+Z2) h22+k2= 2p2

which depends only on z and p. Then, the conditional characteristic function of S,
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under the condition {t2 + '2 = p2, iS

(1.3.3) (z, p) = n_ e

and may be written in the form
(1.3.4) 5(Z P) sh eP [l-TzehTz/ahTzl/2

Now, to obtain the characteristic function 4(z) of S, we have to integrate with
respect to p. Since

Pr ft 2+ I2< p2 } = 1 -e-P2/2
we have

(z) =Jt +(z, p) eP-,/2 d-2 = 3 f e-p-J z(h.z/2 h2z dp

and finally

(1.3.5) 0 (z) =EI eiZs=i' 1
ch 7rz

Thus +(z) and 4(z, 0) = irz/sh 7rz, which is the conditional characteristic func-
tion of S in the case where C is known to be a closed curve, are very simple func-
tions. Changing the unit, we shall consider the simpler functions 01(z) = l/ch z
and +2(Z) = z/sh z, and deduce some properties of the corresponding laws.

1.4. Let us first calculate the frequency functions
1 X~fi(x) I cos xzo4(z) dz, i= 1, 2.
7r o

Using the formula
1 2- -z

ch
=

1-+---2 = 2 E -W e -(2n,+1)zz>
0

we have
I 0

co

f1 (x) = -I e-(2n+l+ix)z+ e-(2n+-iix)zI dzXn 0

It is easy to prove that we may interchange the integration and summation signs.
Then

f1(x) =n(-1) [ 1 + 2n+ 1-ixi
0

and finally

(1.4.1) fl(x) = -.
2 ch 2x

By the same method, starting from
z 2 Z e -z

= 2ze = Y4 2z>0,10)=sh z 1- e-2
0

we get

(1.4.2) 4ch2 2x
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These formulas are not new. Both may be found in the tables of Fourier trans-
forms by Campbell and Forster (formulas 609.0 and 614).

From (1.4.2), we deduce that, conversely: to the characteristic function +3(z) =
1/chl'z corresponds the frequency function

x

(1.4.3) 2 sh
- rX

22s

By the same method as was used to prove (1.4.1) and (1.4.2), it is easy to calcu-
late the moments of the functions f1(x). The results are

(1.4.4) c = f +xlpf(x) dx=-2pI I (2n+1)2P+
+co2p

(1.4.5) c= x2f2(x) dx= (4P-2)Bp,

+ ~~~4p+I (4v+l 1)
(1.4.6) c = / x2pf3(x) dx= 4p+ 2--B +C; 2p+ 2 P+1'

where the Bn's are the Bernoulli numbers. They are valid even for p = 0, if we
define Bo =-1. From (1.4.5) and (1.4.6), we deduce that c and 4' are rational
numbers. From

(1.4.7) 41 (iz) = 1os- = E (
Cos 0 (2p)!

we deduce that cp is also a rational number.
Let us notice that from 03(Z) = Rz(z) results f3(x) = fi(x) * fi(x), or f3 ( X)
2
f

2(X) *f' (-x), that is,

J+ dy 2x
*' J_~~~-C ch ych (x-y) sh x -

1.5. We shall now prove that the three distributions considered are infinitely
divisible and have no Laplacian term. It is clearly sufficient to prove that log f1(z)
(i = 1, 2, 3) may be written in the form

log0i(z) =f (coszu-1)n,(u) du, ni(u) >0.

This is a consequence of the formulas

(1.5.1) _log (I + 22)= 2f -

(cos zu-1) e 1 du, a> 0,

log 4 ( Z) =log 1( rz) = 2 log 43 (TZ) = -slog [1 +(2-n+ 1)2]
0

log40 (Z,O) =lOg 02 OrZ) = ~lOg(1+i)
0
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From these formulas, we deduce immediately

100(z) cos ZU-1 du
(1.5.2) log (z) = u

(1.5.3) og )(z,O) coszu 1 du

and we obtain the values of log 41(z) and log +02(Z) if we change z to z/r and u to 7ru.
Let us also notice that, from (1.3.1), (1.5.1), and

rkcosuleb - +z2a (cos zu -1) e-du= 1+2
we deduce

(1.5.4) log w(z,h) = (cos zu-1)(1+ u)e-u .

Consequently w(z, h) is also the characteristic function of an infinitely divisible
distribution, and, from

4) ( Z, p) = 2 (

we deduce that the same conclusion holds for o(z, p).
1.6. Let us now come back to the definition of S by the integral (1.2.2). It is not

difficult to prove that the stochastic definition of this integral leads almost surely
to the same value as the definition of S by the series (1.2.3). But it is perhaps of
greater interest to show that the fundamental formula (1.3.5) may be deduced di-
rectly from the stochastic definition of the integral (1.2.2).

Let us put

f,'X2 (t) di, j = J y2 (J) dt,

and consider the area s analogous to S, but limited by the arc 0 _ t _ 1 of the
curve C. In his first paper concerning this curve [4], the author proved that

s=-vI+,
t being again a normalized Laplacian random variable, independent of I + J. As
2s and S/r depend on the same law, we have to prove that

EJt e iZ4'/1+ }~ = h-

Again putting

Cos z cn (2n)!Z < 2

as s depends clearly on a symmetric distribution, it is sufficient to prove that

(1.6.1) E {12n (I + J) n} = Cn , n = 1, 2,.
Now, Cameron and Martin proved, six years ago [1], that

(1.6.2) E { eI = (cos \/2iz) -1/2.
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Hence

(1.6.3) El eiz(I+J) ==o c, (2n) '

(1.6.4) El (I+J)n} = 2,n! C(2n)!

(1.6.5) El e2tI(I+J) 2n} =E{ t2-1Et (I+J) 2n} = (2n) ! 2nn! cn =-
which was to be proved.

1.7. Let us now end this first section by remarks which are connected with the
work of M. Kac and J. F. Siegert [4]. Let 0 be a quadratic functional of X(t) and
Y(t). By (1.2.1), it becomes a quadratic function of the variables ', 77',7Z,tn, 7.,77n,
(n = +1, ±... . ), and may be written as a finite or infinite sum

(1.7.1) Xn 2

the (n being normalized Laplacian variables, independent of each other, and not
the same as in (1.2.1). Consequently,

(1.7.2) El ei-j== (1-iXnz) 1/2

Three particular cases may be considered: 10. 4 has a symmetric distribution;
20. 0 is the sum of two independent quadratic functionals having the same distri-
bution; 30. The two preceding circumstances are both realized. In these three
cases, the sum (1.7.1) becomes, respectively,

XA 2 1) Xn ( 2+ 7)2) t2 2- (12 q2 - +71n2n

and the characteristic function (1.7.2) becomes

(1.7.4) H 1 1 11711il-Xjz I+X22

The last case is realized by the area S, and also by the area of a triangle having
as vertices three points of C. For that triangle, the initial proof of the author
[5, p. 521-522], is unnecessarily complicated. The area of such a triangle is

C 7('-7- t') = 2(2 12+ 72-_712) C=
C

Hence its characteristic function is 1/(i + X2z2) and its frequency function is
[1/(2X)] exp (-| x I /X).
As for the integral I, we shall give a proof which is simpler than those given by

R. H. Cameron and W. T. Martin [11, or by P. Erd6s and M. Kac [2], or even by
R. Fortet [3]. If X(t) is written in the form

X (t) = f.0 .uA/
the integral I becomes

I=|fdtf u dujuVdv\[1=f-max(u, v)l -\dudv,
o. o o
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or, changing u and v to 1 - t and 1 - u, and writing again (, and (,, instead of
t_- and -

(1.7.5) I= t i~' min (t, u) v/d1du

This integral may be considered as a quadratic form in Hilbert space. The X, are
the fundamental values of the integral equation

(1.7.6) 2Xf min (t, u) f (u) du = f (t), 0< t_ 1.
0

Now, we shall end the proof exactly as R. Fortet does. This equation may be
written

(1.7.7) 22X) uf (u) du+2Xtf f (u) du= f (t) .

By two successive derivations, we have

(1.7.8) 2Xf f (u) du= f' (t)

(1.7.9) -2Xf (t) = f" (t) .

From (1.7.7) and (1.7.8), we deduce

f (0) = f'(1) = 0.

Then the values of the X,,'s are

(1.7.10) Xi= (2n+1)2 8' n0,1, l,
and we obtain finally

(1.7.11) 4=12 (2n+l)G

(1.7.12) E{ e i2 } = f1 1- + 21 =
L (2n +1)2zr~ v'\Cosx/2Th'

which was to be proved.

2. A general Laplacian process
2.1. The fundamental stochastic infinitesimal equation. We shall now consider a

complex Laplacian process, beginning at the time to (to > - o), and suppose it
may be defined, up to an additive constant, by the equation

(2.1.1) AX (t) dtid tf F (t, u) dX (u) + Pa (t) -vdt,
to

t > to, dt > 0, += 7 is a complex normalized Laplacian random variable.

The symbol - means that, as dt -* 0, the two first moments of the difference of
the two sides are o(dt) or o[dco(t)] [if a,2(t)dt is replaced by dw(t)].

The first term on the right hand is the value of E'{ 5X(t)}, that is, the expected
value of AX(t) which we may estimate at the time t if all the past values of the
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considered function are known. The expected value estimated at the time to will
be written El AX(t) 1.

Although equation (2.1.1) is very general, it implies two important restrictions:
10. E'{ 5X(t) may be written in the form Adt + o(dt); 20. the random term may be
written in the form o- (t)Vd + o(v"Id). ___

Clearly, it would be possible to write this second term in the form ~Vdw(t) +
o[dw(t)], cw(t) being a never decreasing function. In this case, at least if w(t) is
everywhere increasing, we could change the variable and reduce dw(t) to the form
a2(t)dt [even to the form di; we shall suppose a2(t) < M < -, but not neces-
sarily = 1; thus we keep the intervals in which w(t) has a constant value]. Then,
the restriction implied by (2.1.1) is that simultaneously the first term may be
written in the form ,udt + o(dt) and the second in the form Po-(t)Vdt + o(VIdt).

Now, if the process is a Laplacian process, u is a linear functional, and, if the
process is not modified by the addition of a constant term, ,u may be written, at
least formally, in the form of a Stieltjes integral. But generally X(u) is not a func-
tion of bounded variation, and u will be expressed as a Young integral or as a
stochastic integral.

If the function F(t, u) is real, the process will be called a really correlated proc-
ess. In that case, the two terms of X(t) = Xo(t) + iXi(t) are independent of
each other.

2.2. The integration of the fundamental equation. We shall put

tow(t f.t a2 (u) du,

Z(t)= X (t) +iY (t)

W(t) =Z[c(t)],
X(t) and Y(t) being the same functions as in section 1. Then Z(t) is the complex
Wiener function, and W(t) is a generalized complex Wiener function. Now, X(t)
and Y(t) will no longer have the same meaning as in section 1, and X(t) will be
every (necessarily complex) solution of (2.1.1). If we put

(2.2.1) X (t) = W (t) + V (t)

(2.2.2) ft F (t, u) dW(u) = t,O

equation (2.1.1) is transformed into

a V (t) = dtf F (t, u) d V (u) + a (t) dt+ o (dt).
to

Thus V(t) has a derivative V'(t), which is a solution of Volterra's integral equation

(2.2.3) V' (t)- F (t, u) V' (u) du = 40(t)
to

Now, we have to use the well known resolving kernel, which may be expressed



WIENER'S RANDOM FUNCTION I79

as the sum of a rapidly convergent series, and satisfies the equations

(2.2.4) F (1, u) +R (t, u) =j F (t, v)R (v, u) d v

R(t, v)F(v,u)dv, to<u<t.

Then the solution of (2.2.3) is

(2.2.5) V'(t) =R (t) _JR(t, u) (u) du.

If we substitute the value (2.2.2) of +(t), and use (2.2.4) to simplify the resulting
formula, we have

(2.2. 6) V' (t) =-J R (t, u) dW (u) = _JR (t, u) Dua (u) v\'du,

and finally the solution of (2.1.1) which has 0 as initial value is

(2.2.7) X (t) = f [1-f R (v, u) d v] Vu -Id, (u)

the ¢, being independent values of the random variable t.
As to continuity, the properties of X(t) result from the fact that X(t) - W(t)

is differentiable. It is necessary to suppose F(t, u) so chosen that the integral (2.2.2)
exists; it is sufficient that F(t, u) be continuous and have a continuous derivative
with respect to u; but less restrictive conditions are also sufficient.

2.3. The covariance of X(t). 10. We shall put

E {X (t) X-(u) } = r (t, u).

Under not very restrictive conditions, the derivative
2u) r (t1 u)-Y(I, U) altau

exists, except in the case t = u, and we may write

(2.3.1) E {I X (t) AX (u) I = -y (t, u) dtdu + o (dtdu), t # u .

If I = u, we find from (2.2.1) that

(2.3.2) E{IIX (1)|21 = a2 (t) dt + o (dt) .

It is easy to obtain a more precise value of Et | AX(t) 21. If (2.1.1) is multiplied
by X(t), we have

(2.3.3) Et SAX (1) 12} = cy2 (t) dt+ d12 F (t, u) wy (u, t) du+ o (dt2) .

If now we multiply (2.1.1) by X(x)(x < t), we obtain the fundamental integral
equation
(2.3.4) Py(t, x) =u2(x)F(t, x) + F (t, u) y (u, x) du, to-< x <t.

As we shall see later this equation is very useful if -y(t, x) and cr2(x) are given,
and if we have to determine F(t, x). But now y(t, x) is unknown. It would be
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necessary to know this function for t _ x. Then, for each given x, this equation is
again a Volterra integral equation, from which we may deduce -y(t, x) for t > x.
If we know only the values of y(x, x), it is possible to deduce 'y(t, x) from (2.3.4)
and from the evident Hermitian condition y(x, t) = 1(t, x). But, to determine
-y(x, x) it is necessary to use a third condition, which may be deduced from (2.3.3).
But this way is complicated. To determine -y(t, x), it is more convenient to start
from the formulas of 2.2.

20. From (2.2.1) and (2.2.6), we deduce

RvX (t) - -dtJro R (t, v) o,x ( v) -\-v+ r,, (t) V/dt,
ot

5X (u) - -duf R(u, v) o- (v) udv+a (u) xdu.
to

Hence, if u < t

ElIX (t) AX (u) = dtduJ R (t, v)R (u, v) a2 ( v) d v

- diduR (t, u) a2 (u) + o (dtdu)
and

(2.3.5) y (t, u) = -R (t, u) a2(u) +J R (, v)R (u, v) a2 (v) d v, u < t.
to

Then 7(t, t) may be defined as the limit value of y(t, u), and, if u > t, -y(t, u) =
1(u, t).

30. To obtain r(t, u) we may start again from formula (2.2.7). We have at once

(2.3.6) r (t, u)= do (x) [1-J R (v, x) d v] [ 1-f R (v, x) d v],

m being the smallest of the two numbers t and u.
It may be useful to see also how r(t, u) may be deduced from a2(t) and -y(t, u).

Assuming again X(to) = 0, we have

r(t,,u) = r (t,to) = o, rt'(t, to) = o,
and consequently

(2.3.7) Ft(t, u) =fry (t, v) d v, to-u . t.
to

From (2.3.1), we deduce

r (t+ dt, t-+djt) =El [X (t) +-X (t) ] [X (t) + AX (t)O]}
=r (t, t) +o-I2(t) di-+ [1r, (t, u) + 'r (t, u) ].=-dti+ o (dt)

and consequently

d (t, t) =o2 (t) + J [,y (t, v) +y(t, v) ] d v,ditt

and

(2.3.8) r (t, t) = or2(v) d v)f d vf [ (v, w) + (v, w)Idw.
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Then, from
r(t,u) =r(u,u) + rJ (v, u)dv, 1<0u.1t

using (2.3.7), we deduce

(2.3.9) r (t, u) = fJ dw[2 (w) +fj7y (v, w)d v+ (v, w) d v]

where t' = max (t, u) and u' = min (, u).
40. If a2(t) and F(t, u) are given, and if we want to know if the process has

stationary increments, a necessary condition is clearly that o2(t) = cr2 = const.
If this condition is satisfied, we have to calculate -y(t, u), and a necessary and suffi-
cient condition is y(t, u) = 0(t - u).

Let us also notice that if the process is defined by an equation such as

(2.3.10) AX (t) -dtfJ f (t, u) X (u) du+ o (t) \d
to

the fundamental integral equation becomes

(2.3.11) Pr (t, x) f f (t, u) r (u, x) du, to<- x< t .

It is easy to solve these equations directly as we did equations (2.1.1) and
(2.3.4); in this case, it is not necessary to use the intermediary of -y(t, u).

50. Let us now consider the inverse problem. The process is defined, up to an
additive constant, by the data of oa(t) and y(t, u), and we want to determine
F(t, u).

Clearly, a2(t)dt and F(t, u)dtdu are the variance and the covariance of the
infinitesimal increments AX(t). Then the data are acceptable, and determine a
stochastic process in the interval (to, T), if and only if Loeve's condition is satis-
fied, that is, if, for every measurable function +(t), we have

(2.3.12) f 2(t) ] (t) 12 dt+ Jry (t, u) 0 (t) 5 (u) dtdu > 0 .
to to to

Let us at first suppose that this quadratic functional is of strictly positive type;
if this hypothesis holds for the interval (to, T), it may be applied in (to, t), if
to < t _ T. Then: for every given t (to-< t < T), the integral equation (2.3.4) is a
Fredholm equation, with determinant A(t) 0 0, and consequently F(t, x) (to _ x _ t)
is determined by this equation.

PROOF. If we had A(t) = 0, there would exist a function O(t) (not a.e. = 0)
such that, for the considered value t1 of t, we would have

a2(x)c(x)+f 0(u) y(u x) du=0

Then, if we multiply by +(x) and integrate, we see that the quadratic functional
(2.3.12) should not be of strictly positive type. Consequently, in the case considered
above, A(t) # 0 for every t . T.

Now, if T is the smallest root of A(t), the preceding conclusion is valid so long
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as t < T. But, if t = T, there exists at least a function +(t), not a.e. = 0, such that

a,2(XP0(x) +f (u)y(u,x) du =0, to<x<=T.

Then, the integral
4

f To (u) dX (u)

is a linear functional of the increments 6X(x), and verifies

and we have almost surely E{4,t5X(x) I=0, to < x T

(2.3.13) 5=fTX (u) dX (u) = .
to

Now, if t > T, the process which is defined by the equation (2.1.1) is not modi-
fied by the addition of Odt to the right hand. Then, the process may be determin-
istic or undeterministic; in every case, A(t) remains = 0 for every t > T, and
there is no hope, if the process is defined by the data a(x) and 7y(t, x), to deduce
from the equation (2.3.4) a well defined value of F(t, x).

2.4. The explicit representation of X(t) by a Fourier series. The following results
are a generalization of Wiener's formula (1.1.5), and are connected with a paper
by M. Kac and A. J. F. Siegert [4].
We shall suppose the process defined for 0 < t < 27r, and

(2.4.1) Pr {X (27r) = X (0) } = 1.

Let us first observe that this is not an essential restriction. In the most general
case, if we put

(2.4.2) X (t) -X (0) = t [X (27r) -X (0)] + X (t),

X(t) is reduced to a function which verifies the condition (2.4.1).
For instance, if X(t) is a Wiener function, Xi(t) may be considered as the La-

placian random function for which

(2.4.3) P(t,u) =E{Xi(t) Xi(u) =u2(2 ur-t) 0 <u t<27r,

or as the solution of the equation
dt

(2.4.4) 0X,(t) -27 tX(t) + VHi, O_t<2i7r, dt>0

with the condition X1(0) = 0. This equation may be written

(2.4.5) 5X1 (t) - dt dX (u) + d

Consequently, it is a particular case of (2.1.1).
More generally, suppose that in (2.1.1) we have

F (t, u) = -f (t) [1 + E (t, u)]

with the following conditions: 10. f(t) > 0, at least if t > to(O < to < 27r); 20. The
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function f(t) tends to + o as I -* 27r, and the integral
27
f (t) dt

is infinite. 30. -q(t) = max E(t, u)(O _< u t) tends to 0 as I-- 2r-; 40. The integral
'2w

I (t) = e(t, u) dW(u)

exists almost surely, at least as a stochastic integral, and

Pr {I (t)-*Olt--2r I = 1.

If these conditions are fulfilled and if X(t) satisfies the equation

(2.4.6) AX (t) - f (t) dtfJ [I +e(t, u)] dX (u) +a (t) PVdt,

O < t < 27r, dt > 0, it is easy to prove that conclusion (2.4.1) is valid. Then a
solution of this equation may be represented by a Fourier series,

(2.4.7) X (t) , Anenit;

the summation S extends over all integers 5 O (> 0 or < 0); the An are La-
placian variables; the joint probability distribution of these variables is a multi-
variate Laplacian distribution. We write - and not =, because the series is
generally not convergent in the usual sense. But, if F(t, u) is continuous (with re-
spect to t), X(t) is a continuous function and the series is convergent in the sense
of Fejer.

The An are determined by the Fourier formula

(2.4.8) An = f- X (t) e-nitdt,

and the process is determined by the covariance
- 1 J22rj 22T

(2.4.9) E ,=E{ ApAq } = e i(uh-Pt)Ej X (t) X (u) du

I f2J ,, ei(qu-pl)r (t, u) dtdu.

Conversely, if the Ep,q are known, r(t, u) may be calculated by the formula

(2.4.10) 1 (t, u) = E Ep,qei(pt-u)

In the most general case, A1, A-1, A2 .... , may be expressed as linear functions
of independent Laplacian variables P1, ¢-I, ;2 .... An important particular case
occurs if the An are themselves independent Laplacian variables.

THEOREM. The Laplacian variables An are independent if, and only if, r(t, u) =
g (t- u), that is, if the process is a process with stationary increments.

PROOF. 10. If Ep,q = 0 (p 7 q) and Ep, = Ep, we deduce from (2.4.9)

r (t, u) = eEe i(t-u) = g(t-u)
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20. If r(t, u) = g(t -u), putting in (2.4.8) t = u + v, we have

E,Q= 4 2 ei(Pq)uduJ 2ei-vg (2V) d v.

Then, if p id q, Ep,g = 0. Thus the theorem is proved.
If p = q = n, we have

(2.4.11) En= an= 2 , eing (t) dt

and the formula (2.4.7) may be written in the form

(2.4.12) X (t) ~ ¢ ¢eni .

This is a stationary function. Naturally, if we consider the solution of (2.4.6)
which vanishes for t = 0 (and for t = 27r), we have to write

(2.4.13) X (t) = 'an (eni'- 1)

and it is no longer a stationary function.
As an important particular case, we may consider the Wiener function Xl(t),

defined by (2.4.3) and (2.4.4). Let us observe that r(t, u), is then a Green's func-

tion for the operator -t2,that is, the integral
d2t2

f (t) = f r (t, u) eiqudu

is the solution of f,"(t) =-eiQt, vanishing at t = 0 and t = 27r. Then

fq(t) = eiqt -1 q AO,
and, from (2.4.8), we deduce

1 E27, ei(q)t -e-iptP 47r2 J,; q2 dtO
if pq(p - q) £ 0, and

E"27rw2 fO

Then
~,e ""tXi ( ) n '

and the complex Wiener function X(t), if X(O) = 0, is given by

X (t) = tX (27r) + Xi (t) ~ --°+ E ;;. t S5 2ir,

where r0 is independent of the other tn. In the complex form, this is the well known
formula of Wiener.

2.5. A new particular case.' Let A and B be two points in the Euclidean plane,
r(A, B) the distance between these points, and U(A) a complex Laplacian random

I The main results of this n' were stated without proof in the author's earlier papers [7], [8].
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function of A, defined, up to an additive constant, by the condition

(2.5.1) E{IU(B)- U(A)2} = r(A,B).

The existence of this function was proved in the author's book [6, pp. 277-281].
Now let X(t) be the value of U(M) when M is the point x = cos t, y = sin t.

X(t) is clearly a stationary and periodic random function. As to the additive con-
stant, we shall consider three particular cases, and denote X(t) as

Xo(t) if f X(t)dt=0,
0

X (t) if X(0) =X(2X) = 0,

X1 (t) if U (o) = 0 (o being the point x =y =0).

From (2.5.1), we deduce

El IXI(t) 121 =1, E IJXI(t) -X,(u) J2} =2 sin 2-'u
and consequently
(2.5.2) a2(t) =F1I'(t, u) =1-|sin t

(2.5.3) -y(t, u) =-- sin 24

the values of a2(t) and -y(t, u) being the same for the three functions Xo(t), Xl(t)
and X(t).

Since the process is stationary, the Fourier coefficients An are independent, and,
from (2.4.10) and (2.5.2) we deduce

(5{= f eint sin 2 dt
(2.5.4) 2

= r(4n2-1)X n=+ 1,+2,.
Consequently,

(2.5.5) X0 (t) eni t 2'ir (4n2 - 1)

(2.5.6) X (t) (4n2 1) tn,( enit-1.
-co

As for Xl(t), we may write it in the form Xo(t) + at where r is independent of
the variables Pn. To determine a, we let ro(t, u) denote the covariance of Xo(t)
and have

r, (t, 0) = rO (t, 0) + ar2 = I - sin 2, ° _ t _ 27r,2'
and

PO (t, 0) dt=E Xo (0) fXo (t) dt( = 0.
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From these equations, we deduce

(2.5.7) a2= 1-1 f2Tsin dt= 1 _22,, 2 ~~~~~~~7r
and finally

(2.5.8) |1 2 i + L 2-1

Now, in order to obtain the infinitesimal equation satisfied by X(/), we deduce
from (2.3.4), (2.5.2) and (2.5.3)

(2.5.9) sin 2 -=-4F (t, x) + J F (t, u) Isin 2 du,
0 < x < t < 27r.

By taking the derivative twice with respect to x, we have easily

sin 2 = 16 -4F (t, x) + F (t, u) sin-2- du.
Then, by subtracting the second of these formulas from the first

F (X2X 0 , F (t, x)= fo (t) + x fl (t) ,

and, using again (2.5.9), we find easily

( (1+ cos 4)-(4+ sin )
(2.5.10) F (1 ,)4 1+o t+

.u..t 27r.
4 (1 +cos 4)+t sin 4

Finally, the solution of

(2.5.11) AX (t) -dtf'F (t, u) dX (u) + v , 0 _ t < 27r, dt > 0,

F(t, u) being defined by (2.5.10), which vanishes for t = 0, is X(t). If I = 27r-
e -* 27r, we have

F (t, u) = - -

Then we have a verification that the theorem concerning the periodic random func-
tions which was proved in 2.4 is applicable. More precisely, if 27r - t is small
enough, the equation (2.5.11) is asymptotically the same as (2.4.5).

REFERENCES
[1] R. H. CAMERON and W. T. MARTIN, "The Wiener measure of Hilbert's neighbourhood in the

space of real continuous functions," Jour. Math. Phys. Massachusetts Inst. Technology, Vol. 23
(1944), pp. 195-209.

[2] P. ERD6s and M. KAC, "On certain limit theorems of the theory of probability," Bull. Amer.
Math. Soc., Vol. 52, No. 4 (1946), pp. 292-302.

[3] R. FORTET, "Quelques travaux recents sur le mouvement Brownien," Ann. de l'Inst. Henri
Poincare, Vol. 11 (1949), pp. 175-225.

[4] M. KAc and A. J. F. SIEGERT, "An explicit representation of a stationary Gaussian process,"
Annals of Math. Stat., Vol. 18 (1947), pp. 438-442.



WIENER' S RANDOM FUNCTION I87

[5] PAUL LEvy, "Le mouvement Brownien plan," Amer. Jour. Math., Vol. 62 (1940), pp.487-550.
[6] , Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris, 1948.
[71 , "Calcul des probabilit6s-fonctions al6atoires Laplaciennes," C. R. Acad. Sci., Vol. 229

(1949), pp. 1057-1058.
[8] , "Calcul des probabilites-sur l'aire comprise entre un arc de la courbe du mouvement

Brownien plan et sa corde," C.R. Acad. Sci., Vol. 230 (1950), pp. 432-434; errata p. 689.
[91 N. WIENER, "Un probleme de probabilites denombrables," Bull. Soc. Math. France, Vol. 52

(1924), pp. 569-578.


