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1. Introduction
We are concerned here with finding a suitable test for the equidependence

of the means of two normal populations on respective linear regression vari-
ables (which may be identical) when no information is at hand regarding the
two variances involved. More precisely, let x be a random variable, normally
distributed with mean hi + k1 t and variance c12. Here h1 and k1 are constants,
and the mean thus depends linearly on the single sure variable t. The variance
al2 is independent of t. Similarly, let y be a normal random variable, with mean
h2 + k2n and variance c22. Here, likewise, h2 and k2 are constants, v7 is a sure
variable and cr22 is independent of t7. Under the set of alternatives

{ - < hi, h2, k, k2 < o
0 < cm2, cr22

we seek an exact, unbiased test for the hypothesis

Ho: ki = k2.

The test will have reference to a sample (x1, x2, *, xi)n (ii, Z2, * ,* )
out of the first population, and a sample (y1, Y2, , y.) - (1, 172, * , an)
out of the second. The notation here is meant to imply that the random values
(or variables) xi, yj are observed when t and n have the values {i, ai, respect-
ively. With no loss of generality, we may assume n _ m.

In this problem [(P), for brevity ], as in that of the comparison of constant
means of two normal populations with unknown variances, the question of a
best exact test must for the present go unanswered, for want of sufficiently
powerful methods of determining all similar regions. V. Romanovsky, M. S.
Bartlett, and H. Scheff6, in obtaining solutions of the latter problem, have
brought to bear a specialized procedure based on "Student's" t-test, and with
it have produced exact, unbiased tests in that case. The procedure can be
applied to (P) as well (and to a large class of problems, in fact), to yield a test
of the same character; and one which, like those of Romanovsky, Bartlett,
and Scheff6 for constant means, has the advantages of having a simple criterion
and requiring only the use of t-tables.
The first steps in fashioning and applying the procedure were taken by

Romanovsky [3 1 in 1928. It appears, however, that Romanovsky's paper
was entirely overlooked and the method was later rediscovered by Bartlett in

Boldface numbers in brackets refer to references at the end of the paper (p. 449).
[433]
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a less general form. In his paper Bartlett [ 1 ] deals with two pairs of inde-
pendent observations, whereas Romanovsky considers an arbitrary number of
pairs of independent or correlated observations. A more general treatment of
Bartlett's problem is mentioned by Welch [ 51 and by Neyman [ 21, the latter
of whom cites a definite test. Scheff6 [ 4] completed the scheme, and accord-
ingly determined a test (referred to in the title of this paper as the Romanov-
sky-Bartlett-Scheff6 test), by pointing the way to those tests, available under
Bartlett's prescription, having the greatest power.2
The procedure will be laid out in section 2 in a form adapted to (P). It will

be found to entail the definition of several linear functions of the sample
variables,

m n

Zi= Eaijx+ E ij yj,
j-1 j=1

having certain properties in common. And the test criterion will be a function
of the zi alone. (P) then becomes embodied in a number of conditions on the
aci and 6is, and in sections 3 and 4 a solution is developed using the methods
of vector spaces. We do not find the aij and fi3i themselves, but rather go
directly to the specification of the criterion. The solution will be given in
sufficient detail to indicate clearly how this circumvention is accomplished.
A full description of the test we have determined, depending only on the

notation so far introduced, is contained in the summary, section 5.

2. The Romanovsky-Bartlett-Scheff6 procedure for (P)
We define linear functions of the random variables xi, yj:

mn n
Zi= aijx + Edijyj, i = 1, 2, * ,f (1)

the coefficients aij, oij being subject to the conditions

(i) z1, Z2, *, zf are independently distributed,

(ii) e(zi) = - k2 for each i,

(iii) the variances of all the zi are equal; say, U2.

Referent to the generic normal random variable z, with mean k1 - k2 and
unknown variance o2, the best unbiased test for the hypothesis ki = k2 is
"Student's" t-test. The critical region in an f-dimensional sample space is, for
the level of significance E,

WO: Iz >

2 In the two papers by Neyman and Schefft the method is that of confidence intervals.
We have interpreted their results in the language of significance tests, which we retain
throughout.
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the limit of significance, tf, drawing from t-tables for f - 1 degrees of freedom.
Then W'o, the region in the (xy) sample space defined by Wo, by means of
(1), is an unbiased similar critical region for the hypothesis Ho.
The power function of Wo, and consequently of W'o, is

B(k1-k2;f, a) =

1-V r~ (f - 1){to tb~e2e j2 |; e[u- (ki -k2)l dudv;

and it is known that B is monotonic increasing, uniformly at all non-zero
values of ki - k2, with increasingf or decreasing a. It is therefore immediately
evident that we shall want to ascribe to a the minimum value that can be
associated with the f concerned. The choice of f will then follow a study of the
functions B(k1 - k2) for all possible values of f. Accordingly, we frame the
following further condition on the aii and Pij:

(iv) Let v(f) denote the smallest value of a for the case of f functions zi. Then
the value fo is to be chosen for f, such that, if possible, Bo = B(kl-ke

fo? OVf) is the uniformly greatest of all the above power functions B;

and otherwise, such that Bo has some optimum property to be specified.
The necessity for laying down an optimum requirement in conjunction with

this last condition may arise only if -f is not a non-increasing function of f.

If this ratio is non-increasing, then fo is the largest value of f admitted by the
first three conditions; and the corresponding Bo is the uniformly greatest power
unction that can be achieved by this procedure. We anticipate our results to

the extent of noting that the quantity Ad turns out to be independent of f.

and fo is therefore indicated to be the largest value of f otherwise permitted;
this will be m - 1. These facts will be established in the next section, where
the general solution is found for the problem posed by conditions (i) to (iv).

3. The general solution
Conditions (i), (ii), and (iii) are translated into constraints on the al., and

flij by considering expectations, variances, and covariances of the expressions
(1). The result is, for (i).

(m

* | E ~~~~aijaki = 0,

i i k; (2)
n

| Oijflkj = 0,
j= 1
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for (ii),
m nm

0,E=O. Eijm = 1, 1,2, f; (3)
n n

and for (iii),
m

l j =1%
{ = 1,2,. * ; (4)

n

E 0tJ2 = 2
J= 1

where cl and c2 are two positive numbers, the same for all i. The common
variance of the zi is then

2 = c12a12 + C22o22. (5)

In accordance with condition (iv) we must seek a solution with minimum cl
and c2.

It is to be noted, as is indicated by equations (3), that the {i may not all
be equal, and similarly for the Pi. Clearly, any test cannot be very discerning
if either the {i or the qi, or both sets simultaneously, are very nearly equal.
For, in the case of the first population, for example, estimates of ki inde-
pendent of hi, arise out of the system of equations hi + k1Zi = xi, and depend
inversely on the difference {i- j. When all these differences are small, com-
pared to the spread of the xi, any estimate of ki is extremely sensitive to small
changes in the sample; and in the limit {l = Z2 = . = em, k is absolutely
indistinguishable from hi + kZi. This effect will be seen in the dependence of
the minimum c, and c2 on the {i and i1i [cf. (13) ]. The former, of course, in-
fluence the power function B strongly through o.

In preparation for the introduction of vector methods, we make a trans-
formation of the system of equations (2), (3), (4). The numbers cl and c2 are
restricted, by (4) and (3), to be non-zero; we define

aij Cl , bi = im
Cl C2

Further, set
m 1 ~~~~~n

812 = E 1ii)2, S22 =-nE (ni - 7)2,m mi-i 1
m ~~ni

n i-
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and

(i-i = v v

The reader will easily satisfy himself that the following system of equations
is equivalent to equations (2), (3), (4):

m n

(6a) E aiakJ = dike (6b) Z bijbkj = dik,
m n

(7a) Eai = O. (7b) bj =O,
j=1 j1
m 1 n

(8a) E a.,p1 = , (8b) bij -
j = 1 '/rn-sc _= 1 V"lS2C2

i,k=1,2,* jf.

A result of our normalizations is that

m n

(9a) E p.2 = 1, (9b) ET2 = 1,
i~~~~l ~~i=1

m n

(10a) Eopi = 0, (10b) Tri = °-
i~~~~l ~~~i=1

Equations (6a) and (6) follow from (2) and (4); (7a) and (7b) from the left
column of (3); and (8a) and (8b) are respectively composed of both upper
and both lower equations of (3). The problem is seen to lend itself, in many
respects, to separate and identical considerations of the aij and bij.
We now bring in the terminology of unitary spaces (vector spaces with an

inner product), and introduce a suitable notation. Let R, and Rb be two real
unitary spaces of dimensions m and n, outfitted with complete orthonormal
sets (coordinate systems) Qa and Qb, respectively. In R. define the vectors
ai, e, and ca (vectors will throughout be denoted by bold face symbols) as
those having the components

(ail, an2, , aim),

(P1, P2, Pm)

respectively, in the system 2.. In similar fashion define the vectors bi, x, and
tb, in Rb, relative to the coordinate system 2b. The inner product of two
vectors g, and g2, in R. or Rb, will be represented briefly by (g,, g2). Finally,
let O. be the orthocomplement of ca in R, and 0 b that of £ b in R b.
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In the new notation, equations (6a) to (lOb) are expressed by

(a1, ak) = bik, (bi, bk) =ik,

(a., c.) 0, (bi, £b) = 0,

(at, 9) = 1 (bi,v)= 1
Nim-81C1 -,/s2C2

(LO, L) 1, (T, 'V)=1

(Q. ta) = O (C, £ b) = O

i,k =1,2,.. *,f.

Thus, the at are to bef unit vectors, mutually orthogonal, all lying in 0w, and
all equally inclined (with the smallest possible inclination, moreover) to the
fixed vector Q, the latter being likewise a unit vector and lying in da. The
interpretation of the conditions on the bi is the corresponding statement in Rb.

It is readily seen that a solution, for some values of c, and c2 (putting off
for a moment the question of their minima), exists-for every f _ m - 1. The
mutual orthogonality of the a; precludes a solution for!> m; and their further
property of belonging to da rules out the case f = m. It is evident that m
must be at least 2.3 Let{c,, el, e2, * * *, e-,l} and {Sb, el', e2', * * *, e'n-1}
be coordinate systems in R. and Rb; and V. and Vb be orthogonal trans-
formations in these respective spaces, such that

V. C, = ta, VbEb = Eb,

and

v ( .iei = , Vb E

Then a solution is

at=V.ei=
i = 1,2,* *,f.

bi = Vbe'i,

This can be verified by direct substitution, but is better seen as follows. The vec-
tors el, e2, * *. ef, are mutually orthogonal, lie in 0., and are equally inclined

to the unit vector 1 E es. An orthogonal transformation preserves inner

products, and in particular V. has {ca. and 0& for invariant manifolds. There-
3 This condition is fundamental for any exact test. It makes it possible to obtain estimates

of ki and (since n 2 m) k2 which are independent of hi and hk.



ROMANOVSKY-BARTLETT-SCHEFFE TEST 439

i f
fore, since Va further transforms >P E ei into e, it carries el, e2, ,e
into f mutually orthogonal, unit vectors, in 0., and equally inclined to Q. If
the determinant of Va has the value + 1 (which it may be chosen to have),
the solution may be seen even more vividly: the vectors el, et, , ef lie

f
along generators of a "circular" cone in da with axis defined by O ;j ei.

Va reorients this cone in 0d without distorting it, so that its axis coincides
with Q. The generators originally coincident with el, e2, , ef now define f
vectors with the properties requisite for a solution.
The values of c, and c2 associated with this solution are

C1= Nf, C2 (11)
+VR S1 n S2

They obtain by simple calculations,

= (ai, @) = (ein-E ei) =-E
>mS1 Cl fi=1 W

and similarly for c2. A brief argument will now show that these are the smallest
values of c1 and c2 that can attend a solution, for the given f. Let at, (i = 1, 2,

f, ), be the first half of a solution. Define m - 1 - f vectors gf+1, 9f+2,
ggm-i so that {a,, af, gy+1i * gm-, is a coordinate system in

d Then

1 rn-i

eO =a +a .igi,
V'm iCl i if +1

and
m-

(e, e)= ms2C12+ Eii (1
i f+1

From the last equation it follows that cl is least when p+i = = pm- 0,

and the value in this case is W . The same argument applied in /b to the

second half of a solution establishes our claim for the minimum value of c2.
In the last two paragraphs we have established, in addition to the existence

of a minimal solution for given f, the following necessary and sufficient pre-
scription for one: The ai are any f mutually orthogonal, unit vectors in da, such
that e is their normalized sum; and the bi are any f mutually orthogonal unit
vectors in 0 b, such that c is their normalized sum.
The minimum variance a(f)2 is now calculable. Putting the values (11) into

(5), we obtain

a(,)2=f __i+ a
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As was announced earlier, Of is independent of f. Consequently, fo = m -1,V\If
the largest f for which a solution exists, as has been shown.
We have now fully characterized the most general solution for the zi under

conditions (i) to (iv) of section 2. The ai are any m - 1 mutually orthogonal,
unit vectors in 0(, the bi and m- 1 mutually orthogonal, unit vectors in
C0b, such that

1 rn-i 1 nm-1
Eail= L,y E bi= . (12)

viii i 1ea i = 1

For such vectors,

{ Si
lCl = -_ C.2 = 1 _
I m so n S2

(13)
a2(m-1) _ a2 .22
m-1- is2+7 22

In the next section we shall go on to specialize the a, and bi in a particular
way, to an extent which will enable us to state a criterion. But we emphasize
here that the power function B, of the test to be found, is completely defined
at this stage; for fo and a(f, are specified by the general solution.

4. Determination of a criterion
Let a,p denote the orthocomplement in R. of the manifold spanned by

c. and Q. Define 0bT correspondingly in Rb. For definiteness, let 2b be rep-
n

resented by {1t(, w2, ,* }, so that bi = Ebij, etc. We shall henceforth

view R, as a subspace of Rb, and identify it with the manifold spanned by
wl, a2 * * ,

, 3m. In fact, the latter set will be precisely the coordinate system
m

ga; thus, at = aij x>, etc. We proceed from here on the assumption that
j=1

m
the vector Eri wi, in Ra, is neither the null vector nor a linear combination

i-1

of c. and e; and later treat these singular cases. Define, in Ra. the vector t,
whose coordinates relative to Qa are

= ~ i12. *,m. (14)
Ti - _tE To) i = 1,2 **

Qk-m 2

It will be noted that ^ (which is identical with c when m = n) is a unit vector
and is orthogonal to c.. The latter vector is the normalized projection of £b
into Ra, and F has property that it and ta span the manifold in Ra which



ROMANOVSKY-BARTLETT-SCHEFFE TEST 441

is the projection into ., of the manifold in Rb spanned by c and eb. We de-
note, finally, by 0.,a the orthocomplement in Ra of the manifold spanned by
c. and e. Then davr c Obv.

Consider the following vectors:

in R,
ui = a.-(ai, e), i= 1, 2, ** *,m-1; (15)

in Rb,
vi = bi- (bi, a) i=1,2,***,m-1. (16)

The ui are the components of the a, orthogonal to e, and consequently lie in
Oa&p. They have equal lengths, equal mutual inclinations, and have a null sum.
This is immediately evident from the symmetric nature of the a,, but may be

derived from (15), with the use of the fact that (ai, e) = [cf.(12) ].
>/m-1

We shall want the actual values:

(uiu,) =u r-i .

m - 1 vectors uj, with 'the properties noted, lying in an (m-2)-dimen-
sional space 0i, define the vertices of a polyhedron which is the analogue
of the regular tetrahedron in 3-space. The ui may be expressed in terms of a
coordinate system {I1, 12, ,** m-2 in Oap,

m -2

u= i = 1,2,* ,m- 1; (17)

the yis being subject to the conditions,

mm-1
I £7i = , j =1, 2, m**,- 2,

(18)

l Yij -Ykj = ik m-' i,k = 1,2,* * *,m- 1.

The arbitrariness of the a, now implies the following converse: for any m - 2
mutually orthogonal, unit vectors I,, 2, - *,* n -2, that span ap, and any
system of numbers yii satisfying (18), the vectors

m-2 1

acthe .fi+ rthi=f1,s2,-ml-l1, (19)

constitute the first half of a solution.
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The vectors vi are similarly subject only to the condition that they be m - 1
vectors in dbe, with null sum, and such that

(vi, vi) = ai- m-1

We may choose the vi to lie in a This is our first specialization. We make
another immediately. With the same numbers yij as in (19), the vectors

m-2 1
bi = £ rysi Hi + 1 Ad i =1,22* *m- 1, (20)

form the second half of a solution, when tal, U2, i*m-2 are any m - 2 mutu-
ally orthogonal, unit vectors that span ¢ Here, of course,

m -2

vi= -Yij,, i = 12 ,** m-1. (21)
i-i

Let us turn now to an examination of the formal criterion (cf. sec. 2):

t= r (22)

1~-)(m-2) E-1 z)

We have replaced f by m - 1. Up to this point it has been tacitly assumed
that m - 2 > 0. It should now be observed that this is a necessary condition
on the size of the x-sample. And again, this condition is not peculiar to the
test we are devising (see footnote 3). Any unbiased test must take account
of the standard deviation of estimates of ki - k2, and if these estimates are
independent, that standard deviation is based on m - 2 degrees of freedom.
It is, of course, a consequence of this that the t of (22) has m - 2 degrees of
freedom.

Let
m- m-

Aj = Eaii, B= bij.
i=i jil

Using the values of c1 and c2 from (13), we obtain, after substituting expres-
sions (1) for the zi,

- 1 [ 1 E Ai Xi + 1- E Bx~i]m X1V11 M ; it- i 1 Vns2 i = 1

and
1 r-i 2 1

m- 1 ( ) is2 E PkXjXk (24)

2 n

+ 2Zj e 1w J t m Rik Xwyk + E Qik yj Yk,
On 5152ki m82lk k +n n S22j~k =1
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where

R~k 3 (a,,- A4jd - BAk~ j=k1,2, ..

PiPk = E (ajml ak m-)' i

jk = 1(bjm m)(i m-1 ' i

CRk (E j m-1) (ik m- 1) k-1, 2, n. 25

It is thus necessary only to specify the A,, B,, Pie, Qmj, and Rjk. The first two
are given immediately by (12). The first of (12) is, in component form,

1 m- 1

1 a=p, jA=1 1,2,**,Ai = W im > m = 1,2 1,m.n 26

In the same way, from the second of (12),

Bi =VWii rj, j = 1,2,* *,n. (27)

With the aid of (26) we find

aj_ = aij 1 pj = ai - (a^, Qo)pj;
m-1 ^\/m-1

that is, the expressions on the left are the components of the vectors ui with
respect to Qa. For brevity, denote these by ui,. Also, let vi, denote the com-
ponents of vi with respect to Qb. Equation (27) reveals that

bi B, iim-1 =

We have then,
rn-i

Pik = F Uij Uik,
i-1
rn-1

Ck = Vij Vik, (28)
= i1

rn-1
Rk= Z UiVik.

i= 1
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Multiply the second equation of (18) by yi,, and sum over i; bringing the
first of (18) to bear, we get the result

m-2 m-1 \

Ykj YijYir ==Ykr, k=1, 2,* m 1;
r =1,2,* *,m-2.

These equations have the unique solution

rn-i

NIYijik =5jk, j,k = 1, 2,* *,m-2. (29)

Let Xii and pi be the coordinates of ki and Vj with respect to f4t. From (17)
and (21),

m -2
Uj = EYik Xikj

mn-2{k~l

1:'Yik |gkjy j = ,2 ,m'
Vij = k1

O. j=m+l, *,n.

With the help of (29) we calculate

m-1 m-1 /m2 /m-2 \

Pjik = E Uij Uik
= (EY ir - X.

i)1 i- 1 1

mn-2/mn-1 (\ 'r \=
= Et E Y 'ri) )trjs^
r- 1 i1

m-2

= Xrj^^rk

The corresponding result obtains, for Qjk; and (here is the advantage gained
by defining the u; and v; with the same numbers 'yii) for Rjk we get a simple
bilinear form. We therefore have, in the place of (28),

in-2

P =Aii vAik j,k=1, 2, *3,
m-2

Qk = i , j, = 1,2, ,m, (30)

O., j> m, k > m,

{m-2
E Xii Aik, j,k =1, 2, 'p my

0O, k >m.



ROMANOVSKY-BARTLETT-SCHEFFE TEST 445

The next step is to make a judicious choice of the vectors X, and pj. We
start by taking

;1=x/i - (et)2 [*- (O, ) L (31)

and

Al= V 2 [e - (32)

The effect of these definitions is the following: ;1 lies in 0a.p and, together
with c. and e, spans the same manifold, M, in R. as do c., L and 4. Therefore
2,3, * * m-.2 may be any orthonormal set that spans the orthocomple-
ment of fin R.. The vector Ua1 lies in da and, together with c. and ;t, like-
wise spans M. Therefore also the vectors tt2, V3, * 1** _2 may be any ortho-
normal set that spans the orthocomplement of Af We choose

pi = li, i= 2, 3,** *,m-2. (33)

This cinches the criterion, for we can now evaluate the Pik, Qjk, and Rik. The
matrix

1 1 1

P1 P2 .. pm

Ti - (@,e)Pl T2 - (@,')p2 Tm - (,eO)pm
- t)2 ,Y )2 <1 -

21 X22 .* . . X2m

X31 )32 * 3m

sm-2, 1 X.-2,2 . . . Xm-2, m

is orthogonal, and so gives us

1+ +± - (LbC)Pj I - ( ) =P(34)
m 2i-12(~~)
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The values of the non-zero expressions in (30) [cf. (33) ],

m-2

Pik = Xli X1k + E, Xij Xik,
i-2

| ~ ~~m-2
Ck="Ilj Ilk + Eii Xik,

i=2

m-2

Rik = XBA /lwk + E Xi Xaik,
i-l

fall out with the application of (34) and components of (31) and (32); the
complete result is

Pik =5jk PiPk, j= 1, 2,y* . . ,

i m
Tj-T, ^Jk =1,2, m,

j > m, k > m, (35)

1 A - )(pi
( TPi), k(Pk-2k)

q m 1-Zim jk = 1, 2, * *m

L {0, k > m.

It remains only to substitute into (23), (24), and then into (22) to get the
criterion explicitly. First, however, it will be well to set

[xi xi- i =1,2,-,m

m am(36)
Yi = imili) i= 1, 2, * n. (6

We direct attention to the second of these expressions to point out that the
second term in the numerator is the mean of only the first m values yi, not
the mean of the entire y-sample. With this, the criterion is

v' 2 (I Xi + Eti) (37)
m m

m 2 [I (Pi-;i)Xi ] [a (Pi T'i) Yi]
Hi~1: i+ i)2+ [a(p.Xi+;iYi) ]2+ X e1 = 1

i81 1-m
1 -~
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Here, caution is again advised with regard to the ranges of summation; all
sums extend from 1 to m, except in the second term of the numerator (the
only place the unroofed ri occur), where the sum extends from 1 to n. We re-
state the following important definitions:

1 mn
812 = m E 8t-)22 = - s(it)

in in

(m sol ni=1)

Pi =
/
-= + (38)

77t+ 1
Ti= I

+ E')

The last of these is obviously equivalent to (14).
At the beginning of this section we noted certain exceptional cases of the

m

vector E rTon that require further consideration. They may be classified as
i = 1

follows:

Case 1. ETrii = 0. This is equivalent to 71 = 172 = = = 0.
i = 1
In this case, a, as defined by (14) or (38), is indeterminate.
m

Case 2. ETrci ocea. This occurs when a7 = X72 = * = tm # 0.
i = 1

Here also 4 is indeterminate.
m

Case 3. EI Tji = sple + (p2ea, (pi $ 0. This is the situation when
i-i

nP p ti + q, (i = 1, 2,* ,m), with p $ 0. In this case, 4 =e.
In the first two cases the manifold Oa,, is undefined, and our designation

of the vi is without meaning. We may correct this by replacing 4 by e in all
our work. Case 3 starts with this situation. Therefore we obtain the same
solution in all three cases with the further step: let 1l, 2, *Xm-2 be any
orthonormal set spanning C.,,, and take ti = i,, i = 1, 2, * * , m - 2. The
need for making a particular choice [(31) and (32) are indeterminate for

m -2

4 = e ] of 1l and It1 is now gone. Just as the sums E Xii Mik were calculable
i - 2
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m-2
above, so now the sums Xii Xik will be found to be determined. The cri-

i = 1
terion reduces to

t rmmnAm-2 ( P.Xi + _iyiA
t = m 2 ~~~~~~~~~~~~(39)

xJZ(Xi+Y i)2±+ pi(Xi+Yi)I
A closer analysis will reveal that each of the three cases above is a limit of

non-singular cases with 4 --- Q, whereby the various constituents of the solution
go over into the forms we have assigned in the foregoing independent con-
struction. The expression (39) is, in fact, the limiting form of (37) for 4 4- e
[in this connection formulas (35) may be studied ]. Consequently, (37) and
(39) do not belong to different tests; together they fully define a single test.

It should be observed, concerning the numerator of t in (37) and (39), that
m m

£, pXi and - Fi are respectively just the sample regression coefficients
i=l i=1
of x on Z and y on 7; that is, the respective least-square estimates of ki and k2.

5. Summary
We have determined an exact, unbiased test for the significance of the

difference between two regression coefficients, in the situation described at the
beginning of section 1 (q.v. for notation). In the course of the work it has been
brought out that, for any test, m must be greater than 2, and neither of the
sets (Zi, t2, * * *, Zm) (t1il172, . . * X n)may consist of all equal elements. Let
the samples (xi, x2, .*, Xm) - (h2,6 * * * , (m) and (yl, y2, . , *)-
111, '72, . , On) be ordered in any manner. Then our test, at the level of sig-
nificance e, is defined by the critical region (cf. sec. 2) W'o: | t > to, where the
criterion t is given by (37), or by (39) when Pi = p (i + q, (i = 1, 2, . . *, m),
for some numbers p and q. The quantities appearing in (37) and (39) are de-
fined by (36) and (38). The criterion has the t-distribution with m - 2 degrees
of freedom.

It is a privilege to acknowledge the assistance, in the preparation of this
manuscript, of Professor J. Neyman, who originally suggested the problem to
the author.
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