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1. Introduction

We are concerned here with finding a suitable test for the equidependence
of the means of two normal populations on respective linear regression vari-
ables (which may be identical) when no information is at hand regarding the
two variances involved. More precisely, let  be a random variable, normally
distributed with mean h; + k,; £ and variance ¢.2. Here h; and k; are constants,
and the mean thus depends linearly on the single sure variable ¢£. The variance
o1? is independent of £. Similarly, let y be a normal random variable, with mean
hs + ko and variance o.2. Here, likewise, ke and k; are constants, u is a sure
variable and ¢2? is independent of . Under the set of alternatives

{'— @ <h1,h2,k1,k2< ©

0 < a1?, 02?

we seek an exact, unbiased test for the hypothesis

Ho g k1 = ’Cz.
The test will have reference to a sample (x1, 22, - - -, Tm)~ (&1, &, - - - ,Em)
out of the first population, and a sample (y1, 42, - = *, ¥n) ~ (9, %2y * * *, %)

out of the second. The notation here is meant to imply that the random values
(or variables) z;, y; are observed when £ and » have the values £;, 3;, respect-
ively. With no loss of generality, we may assume n = m.

In this problem [(P), for brevity ], as in that of the comparison of constant
means of two normal populations with unknown variances, the question of a
best exact test must for the present go unanswered, for want of sufficiently
powerful methods of determining all similar regions. V. Romanovsky, M. S.
Bartlett, and H. Scheffé, in obtaining solutions of the latter problem, have
brought to bear a specialized procedure based on “Student’s’” t-test, and with
it have produced exact, unbiased tests in that case. The procedure can be
applied to (P) as well (and to a large class of problems, in fact), to yield a test
of the same character; and one which, like those of Romanovsky, Bartiett,
and Scheffé for constant means, has the advantages of having a simple criterion
and requiring only the use of ¢-tables.

The first steps in fashioning and applying the procedure were taken by
Romanovsky [3]! in 1928. It appears, however, that Romanovsky’s paper
was entirely overlooked and the method was later rediscovered by Bartlett in

1 Boldface numbers in brackets refer to references at the end of the paper (p. 449).
[433]
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a less general form. In his paper Bartlett [1] deals with two pairs of inde-
pendent observations, whereas Romanovsky considers an arbitrary number of
pairs of independent or correlated observations. A more general treatment of
Bartlett’s problem is mentioned by Welch [ 6]and by Neyman [2], the latter
of whom cites a definite test. Scheffé [4] completed the scheme, and accord-
ingly determined a test (referred to in the title of this paper as the Romanov-
sky-Bartlett-Scheffé test), by pointing the way to those tests, available under
Bartlett’s prescription, having the greatest power.?

The procedure will be laid out in section 2 in a form adapted to (P). It will
be found to entail the definition of several linear functions of the sample
variables,

m n
Zi = Z;Ia'i r; + ,Zlﬂu Yi
J = ] ==

having certain properties in common. And the test criterion will be a function
of the 2; alone. (P) then becomes embodied in a number of conditions on the
a;; and B;j, and in sections 3 and 4 a solution is developed using the methods
of vector spaces. We do not find the a;; and 8:; themselves, but rather go
directly to the specification of the criterion. The solution will be given in
sufficient detail to indicate clearly how this circumvention is accomplished.

A full description of the test we have determined, depending only on the
notation so far introduced, is contained in the summary, section 5.

2. The Romanovsky-Bartlett-Scheffé procedure for (P)

We define linear functions of the random variables z;, y;:
2 = ,Zlaijxi + ,Elﬁiiyj, t=12---1 1)
i= i=

the coefficients o;;, 8:; being subject to the conditions

() 21, 22, - + -, 25 are independently distributed,
(i) &(25) = k1 — k2 for each i,

(iii) the variances of all the z; are equal; say, o2

Referent to the generic normal random variable z, with mean &k, — k. and
unknown variance ¢?, the best unbiased test for the hypothesis k = &, is
“Student’s” t-test. The critical region in an f-dimensional sample space is, for
the level of significance e,

Wo: | z!| > L,
\/f__(f AR,

zIn the two papers by Neyman and Scheffé the method is that of confidence intervals.
We have interpreted their results in the language of significance tests, which we retain
throughout.
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the limit of significance, ¢., drawing from ¢-tables for f — 1 degrees of freedom.
Then W', the region in the (z,y) sample space defined by Wy, by means of
(1), is an unbiased similar critical region for the hypothesis H,.

The power function of W, and consequently of W’,, is

B(k,—m; 1, \%) =
2 ® <
e vf=1 — .
ﬁP(f— 1) V"2 e~ “_\/2%("“"’)] dudy;
2

=0 u=——t—e—v

f—1

te

1

and it is known that B is monotonic increasing, uniformly at all non-zero
values of k; — k,, with increasing f or decreasing o. It is therefore immediately
evident that we shall want to ascribe to ¢ the minimum value that can be
associated with the f concerned. The choice of f will then follow a study of the
functions B(k; — k) for all possible values of f. Accordingly, we frame the
following further condition on the a;; and 8;;:

(iv) Let oy denote the smallest value of o for the case of f functions z;. Then
the value f, 1s to be chosen for f, such that, if possible, By = B(k; — ks;

Ty . . ]
o, \—/Uf—l) 1s the uniformly greatest of all the above power functions B;
0,

and otherwise, such that By, has some optimum property to be specified.

The necessity for laying down an optimum requirement in conjunction with

g
this last condition may arise only if \%} is not a non-increasing function of f.
If this ratio is non-increasing, then f; is the largest value of f admitted by the
first three conditions; and the corresponding B, is the uniformly greatest power
unction that can be achieved by this procedure. We anticipate our results to

ag
the extent of noting that the quantity \% turns out to be independent of f.

and f, is therefore indicated to be the largest value of f otherwise permitted;
this will be m — 1. These facts will be established in the next section, where
the general solution is found for the problem posed by conditions (i) to (iv).

3. The general solution

Conditions (i), (ii), and (iii) are translated into constraints on the a;; and
B:; by considering expectations, variances, and covariances of the expressions
(1). The result is, for (i).

m
D aian; = 0,
i=h

1% k; 2)
2 Bibri = 0,
i=1
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for (ii),

i=1 J=1

9 n n i=1)2""7f; (3)
Zﬁu =0, Zﬁu"b =1,

i=1 i=1

and for (iii),

=1
) n t=12---,f; 4)
ZB{;Z=C‘22,

i=1

where ¢, and ¢; are two positive numbers, the same for all 7. The common
variance of the z; is then

o = ¢i0y? + clo. (5)

In accordance with condition (iv) we must seek a solution with minimum ¢,
and c.

It is to be noted, as is indicated by equations (3), that the £; may not all
be equal, and similarly for the ;. Clearly, any test cannot be very discerning
if either the &; or the 7;, or both sets simultaneously, are very nearly equal.
For, in the case of the first population, for example, estimates of %, inde-
pendent of A, arise out of the system of equations k; + k:i&; = z;, and depend
inversely on the difference £ — £;. When all these differences are small, com-
pared to the spread of the z;, any estimate of k; is extremely sensitive to small
changes in the sample; and in the limit £, = & = + « - = £, ki is absolutely
indistinguishable from h; + k:£;. This effect will be seen in the dependence of
the minimum ¢; and ¢; on the £; and 5; [cf.(13) ]. The former, of course, in-
fluence the power function B strongly through o.

In preparation for the introduction of vector methods, we make a trans-
formation of the system of equations (2), (3), (4). The numbers ¢; and c; are
restricted, by (4) and (3), to be non-zero; we define

o n
a,, = 'c—: ’ b‘lJ = % o
Further, set
1 m - n
2 = _— 2 2 = —_ 2
8t ms; &—-8, = n; (s — )%,

seel
I}
3=
Ms
oee
=1
I
S| =
Ms
s
N
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and

The reader will easily satisfy himself that the following system of equations
is equivalent to equations (2), (3), (4):

(6a) Z @:j0k; = O, (6b) Z bubk: = Oiky
= ’ =
(78') Ela” =0, (7b) Z biJ' =0,
i= i

=1

2 1

8b biri = —=

\/mslcl (8b) :z=: 17T s

”';k= 1:2) s '7f'

(8a) Z auPJ =

A result of our normalizations is that

(9a) ?L:, {o, =1, (9b) ;:: lnz =1,
(10a) Z pi =0, (10b) Z") 7 =0.

i=1 i=1

Equations (6a) and (6) follow from (2) and (4); (7a) and (7b) from the left
column of (3); and (8a) and (8b) are respectively composed of both upper
and both lower equations of (3). The problem is seen to lend itself, in many
respects, to separate and identical considerations of the a;; and b;;.

We now bring in the terminology of unitary spaces (vector spaces with an
inner product), and introduce a suitable notation. Let R, and R; be two real
unitary spaces of dimensions m and n, outfitted with complete orthonormal
sets (coordinate systems) Q, and Q, respectively. In R, define the vectors
;, o, and e, (vectors will throughout be denoted by bold face symbols) as
those having the components

(aﬂ; a‘i2) Tty aim),

(pll P2, ° ’pm):

respectively, in the system Q,. In similar fashion define the vectors b;, <, and
&5, in R, relative to the coordinate system ;. The inner product of two
vectors g and g, in R, or R, will be represented briefly by (g:, g2). Finally,
let @, be the orthocomplement of ¢, in R,, and O, that of e5 in R,.
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In the new notation, equations (6a) to (10b) are expressed by

(@i, ar) = ba, (bs, br) = b,

(@5 2) =0, (bi,25) = 0,

(a; 0) = \/,7@10 (b %) = \/7_13262 :

(0, 0) =1, (%) = 1, |

(0,2) =0, (%, 60) = 0,
Lk=1,2,---,f.

Thus, the a; are to be f unit vectors, mutually orthogonal, all lying in @,, and
all equally inclined (with the smallest possible inclination, moreover) to the
fixed vector g, the latter being likewise a unit vector and lying in @,. The
interpretation of the conditions on the b; is the corresponding statement in R.

It is readily seen that a solution, for some values of ¢; and c; (putting off
for a moment the question of their minima), exists-for every f < m — 1. The
mutual orthogonality of the a; precludes a solution for f > m;and their further
property of belonging to @, rules out the case f = m. It is evident that m
must be at least 2.2 Let{e,, e, €5, - - -, em—1} and {es, €/, €', - - -, € ni}
be coordinate systems in R, and R,; and V, and V', be orthogonal trans-
formations in these respective spaces, such that

Vaca = &g, Vbcb = &y,

and

H(GE)e e

Then a solution is

a;=V,e,
1=1,2---,f
b; = Vb e, '

This can be verified by direct substitution, but is better seen as follows. The vec-

tors ey, e, - - - €, are mutually orthogonal, lie in @,, and are equally inclined
s

to the unit vectorl Z e;. An orthogonal transformation preserves inner

‘\/f:=1

products, and in particular V, has {e,} and @, for invariant manifolds. There-

3 This condition is fundamental for any exact test. It makes it possible to obtain estimates
of k, and (since n = m) k; which are independent of 4, and h..
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f
\—}7 .';1 e; into g, it carries e, €;, - - -, e
into f mutually orthogonal, unit vectors, in @,, and equally inclined to o. If
the determinant of V', has the value + 1 (which it may be chosen to have),
the solution may be seen even more vividly: the vectors e, e, - - -, ey lie

fore, since V, further transforms

/
along generators of a ‘“circular” cone in @, with axis defined by-lf- > e
t=1
V. reorients this cone in @, without distorting it, so that its axis coincides
with . The generators originally coincident with e, es, - - - , e; now define f
vectors with the properties requisite for a solution. '
The values of ¢, and ¢, associated with this solution are

_ Vi _ N
T Vms O Vs an

They obtain by simple calculations,

C

LI U U S S §
'\/’r—nslcl—(aj,O)_(e"'\/fi-Zle‘> —‘\/f,

and similarly for ¢,. A brief argument will now show that these are the smallest
values of ¢; and ¢; that can attend a solution, for the given f. Let a;, (7 = 1, 2,
+ + +, f), be the first half of a solution. Define m — 1 — f vectors gy41, gy+e,
<+ ,gmasothat {a, - - -, a,941, "+, gma} is a codrdinate system in
®.. Then

b m — 1

1
e = —= . ai‘i‘_E v,
'\/m81011=1 i=f+1

and
f m—1
= = 2
(e,0) =1 m 8. ¢1? +i=fz+1(p' '
From the last equation it follows that ¢, is least when g1 = - « - = @1 = 0,
and the value in this case is % . The same argument applied in R to the
m Sy

second half of a solution establishes our claim for the minimum value of c.
In the last two paragraphs we have established, in addition to the existence
of a minimal solution for given f, the following necessary and sufficient pre-
scription for one: The a; are any f mutually orthogonal, unit vectors in @,, such
that o 1s their normalized sum; and the b; are any {f mutually orthogonal unit
vectors in @, such that = is their normalized sum.
The minimum variance o2 is now calculable. Putting the values (11) into

(5), we obtain
2 2
("5} 02
g 2 = ,.___+ —_—].
» f(msl2 nsf)



440 BERKELEY SYMPOSIUM: BARANKIN

As was announced earlier, :—}% is independent of f. Consequently, fo = m —1,

the largest f for which a solution exists, as has been shown.

We have now fully characterized the most general solution for the z; under
conditions (i) to (iv) of section 2. The a; are any m — 1 mutually orthogonal,
unit vectors in @,, the b; and m — 1 mutually orthogonal, unit vectors in
&, such that

m -1
‘\/ igl ®= \/mT.z—:l b= (12)

For such vectors,

(13)

m—1 m 8% ns? '

In the next section we shall go on to specialize the a; and b; in a particular
way, to an extent which will enable us to state a criterion. But we emphasize
here that the power function B, of the test to be found, is completely defined
at this stage; for fy and o, are specified by the general solution.

4. Determination of a criterion
Let @,, denote the orthocomplement in R, of the manifold spanned by
e, and g. Define @, correspondingly in R;. For definiteness, let 25 be rep-
resented by {w1, w2, - - - , @a}, S0 that &; = 2 bijw;, etc. We shall henceforth
=1

I
view R, as a subspace of R, and identify it with the manifold spanned by
o1, 02, * * -, om In fact, the latter set will be precisely the coérdinate system

Q,; thus, a; = Z a;; »j, etc. We proceed from here on the assumption that

the vector E 7:@;, in R,, is neither the null vector nor a linear combination

g -
of ¢, and g; and later treat these singular cases. Define, in R,, the vector #,
whose coordinates relative to Q, are

_— f,,.) L (19)
EAG

k=1

~

It will be noted that £ (which is identical with = when m = n) is a unit vector
and is orthogonal to e,. The latter vector is the normalized projection of &,
into R,, and # has property that it and e, span the manifold in R, which
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is the projection into R, of the manifold in R, spanned by = and e,. We de-

note, finally, by @, the orthocomplement in R, of the manifold spanned by
¢, and #. Then @, £ O,,,.

Consider the following vectors:
in R,,
ui:af—(“‘;@)o; i=1:27"':m_1; (15)

in R by
Vi=bg—(b.',‘!)1, i=1,2,---,m—1. (16)
The u; are the components of the a; orthogonal to g, and consequently lie in

0..,. They have equal lengths, equal mutual inclinations, and have a null sum.
This is immediately evident from the symmetric nature of the a;, but may be

derived from (15), with the use of the fact that (a, o) = \/—1—1- [ef.(12) ].
m —
We shall want the actual values:
1
(wi, w;) = 6, — m=1"

m — 1 vectors w;, with the properties noted, lying in an (m—2)-dimen-
sional space @,,, define the vertices of a polyhedron which is the analogue
of the regular tetrahedron in 3-space. The u; may be expressed in terms of a
codrdinate system {1, %2, - + * , Am—s} in @,,

m—2
wi = 3 7%, i=12---,m—1; (17)
’-

the +;; being subject to the conditions,

-1
270':0: j=1721"°)m_2)
r=1
(18)
m—2 1 .
,-;“""“”"'=5“‘"rn——1” L,k=12---,m—1

The arbitrariness of the a; now implies the following converse: for any m — 2
mutually orthogonal, unit vectors X1, ds, - - + , Am—g, that span 0.,,,,, and any
system of numbers v,; satisfying (18), the vectors

m—2

1
. == 11 P
a; ,-;1'“ ,+\/

m—1

0, i=1;27"°)m_1’ (19)

constitute the first half of a solution.
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The vectors v; are similarly subject only to the condition that they bem — 1
vectors in @, with null sum, and such that
1

(05 0) = 8 — ——5 -

We may choose the v; to lie in @, 3. This is our first specialization. We make
another immediately. With the same numbers v;; as in (19), the vectors

b= S vw b e
g = 8+
~ 17 i Wi = 1

Jorm the second half of a solution, when w1, ¥, - - + , Ym—2 GT€ ANy M — 2 Mmulu-
ally orthogonal, unit vectors that span @, Here, of course,

%, i=1,2--,m—1, (20)

vﬁ:z’Yﬁl‘i; i=1)2y"';m—1° (21)
i=1

Let us turn now to an examination of the formal criterion (cf. sec. 2):

t= ? . (22)

\/‘“(m' “TDm =2) Z (& —

tmm]

We have replaced f by m — 1. Up to this point it has been tacitly assumed
that m — 2 > 0. It should now be observed that this is a necessary condition
on the size of the z-sample. And again, this condition is not peculiar to the
test we are devising (see footnote 3). Any unbiased test must take account
of the standard deviation of estimates of k&1 — k., and if these estimates are
independent, that standard deviation is based on m — 2 degrees of freedom.
It is, of course, a consequence of this that the ¢ of (22) has m — 2 degrees of
freedom.
Let

Using the values of ¢; and ¢ from (13), we obtain, after substituting expres-
sions (1) for the z;,

- 1 [ 1 & 1 & ]
= — Az = By |, 23
@ ‘\/m—ll_\/msligl %+ nszi; Y (23)
and
1 m—1 N
m—;—i; @—2r = e :.Z Pji z; Tk (24)
+ 2 =1,Z .mR

7 i j P ik Yi Yk,
vV ’n8182k=l ..... N S2ik=1
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where
Pu = mz:(a, - mA_f 1) <a.,, — mA_’° 1) G k=1,2---,m,
% Qe = ":z_:i(b,, - B 1) (b..,, S 1) , Gk=1,2---,n, (25
R

It is thus necessary only to specify the A;, B;, Pj, Qji, and R;i. The first two
are given immediately by (12). The first of (12) is, in component form,

1 m—1
P, a;; = pj, '=1,2,...’ ;
1 ‘z_:l i = Pj J m
that is,
Ai=\'m_lpi) i=12---,m. (26)

In the same way, from the second of (12),
Bi=\/77_——_1‘f:', j=1;27'°°’n' (27)
With the aid of (26) we find

A; 1
a;——— =a;— \_/;n—_Tl p; = ai; — (@, @)ps;

that is, the expressions on the left are the components of the vectors w; with
respect to Q,. For brevity, denote these by u;;. Also, let v;; denote the com-
ponents of ¢; with respect to ;. Equation (27) reveals that

B
bij — m—_—f 1 = Vi

We have then,

( m—1

Py ='5_:1 Uij Uik,
i=
m—1

\ Qi = ~Z:lv‘j Vik, (28)

m—1

L R = Z WUij Vik.
1=1
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Multiply the second equation of (18).by v:r, and sum over 7; bringing the
first of (18) to bear, we get the result

2710 E'Yt:')’:r)"")’kr, k=12 -.--- m-—1;

i=1 =
r=1,2:---,m—2.

These equations have the unique solution

Z Vi Vik = Bk, Jk=12---,m—2 ‘ (29)

3=

Let \;; and u; be the codrdinates of &; and w; with respect to Q4. From (17)
and (21),

= E'Yik)\kj,
k=1
m—2
{E'Yikl-‘ki; i=12---,m,
_ Jk=1
Vi =

0, j=m+1-- - n

With the help of (29) we calculate
m—1 m—1 m —2
Py = zluij Ui = _Zl ( Z 'Yu > (.;1 Yis )\.k)
m—2

ra-l

Z Yir ‘Yu) P D WA

m—2
= Z krj kao

r=1

The corresponding result obtains' for Qji; and (here is the advantage gained
by defining the «; and ¢; with the same numbers v;;) for Rj: we get a simple
bilinear form. We therefore have, in the place of (28),

P =’:;l2>\¢j Niky Bk=12---,m,
) Qi = {.; i Hity ‘?’k =12---,m, (30)
, j>m, k>m,
me2
Rik={i-17mk’ Pk=1,2,m
\ 0, k> m.
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The next step is to make a judicious choice of the vectors &; and w;. We
start by taking

1
,\/1 (9 %)2 [‘e - (Q:Q)Q]) (31)
and
1
U = 1 — (9”“-)2 [9 - (9,%)‘% ]' (32)

The effect of these definitions is the following: ; lies in 0,,,, and, together
with e, and o, spans the same manifold, A, in R, as do e,, ¢ and #. Therefore
22,3 ¢+ ¢+, Am—2 may be any orthonormal set that spans the orthocomple-
ment of A in R,. The vector y, lies in @, and, together with e, and 2, like-
wise spans M. Therefore also the vectors us, ws, * * * , ¥m—a may be any ortho-
normal set that spans the orthocomplement of #f. We choose

v =0 i=2,3---,m—2 (33)

This cinches the eriterion, for we can now evaluate the P;x, @z, and Rji. The

matrix
P P2 st Pm
T — (0,4)p1 ';2 — (0,%)p2 . Tm — (0,2)pm
'\/1 - (E’!e)z '\/1 - (976)2 \/1 — (9,%)?
Az A2z <. A2
A Az <. Asm
\ )\m—z, 1 xm—2, 2 c km—2, m /

is orthogonal, and so gives us

1 + pioe + — (0,8)p;1+[Te — (0,%)px] + Z N Nip = i (34)
m 1 - (9"@)2
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The values of the non-zero expressions in (30) [cf.(33) ],

( m—2

Pix = Mj A + zzkij Aik,
=

m—2
1 Qie = mjpue + _22)\.~j Aiky

m—2
Rjk = Mj pux + 21 N Nik,

fall out with the application of (34) and components of (31) and (32); the
complete result is

,

1 .
Pix = dp — — — pieny k=1,2---,m,
1 A A .
Ojr — ,'_ﬁ = TiTky .77k= 172)' ce,m,
Qir =
J 0, j>mk>m, (35)
( 1 (p; — 7)) (o — T#),
5ik_—_pi;k_ 2 ooa j)k-__l)z’"')m,
m - 2
Ry = 5 ! ,-;1’”‘
07 k > m.

It remains only to substitute into (23), (24), and then into (22) to get the
criterion explicitly. First, however, it will be well to set

x—I
X;= == 1=12, ym,
Vms '
1/ (36)
Y¢=yi‘h‘(§1y‘), i=1,2---,n
n 8

We direct attention to the second of these expressions to point out that the
second term in the numerator is the mean of only the first m values y;, not
the mean of the entire y-sample. With this, the criterion is

vm —2 (ZTPX + ZY) 37)
2 [_)ﬂ_'“,l (=) X1 [él(p.-—:.-) Yil

o
ud A
1-— ‘Epm

i=1

3 AT [ XA I
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Here, caution is again advised with regard to the ranges of summation; all
sums extend from 1 to m, except in the second term of the numerator (the
only place the unroofed r; occur), where the sum extends from 1 to n. We re-
state the following important definitions:

m 1 & -
312 = 117&‘;1 (E: - E) ’ 822 = ﬁ iz:l (771 - 77)2’
S - 1 &
(2 = m EI&‘, n= ﬁi;ﬂ‘) ’
= E; - E, = - +7.7
J Pi \/_ 5 T3 '\/1—'),82 3 (38)

The last of these is obviously equivalent to (14).
At the beginning of this section we noted certain exceptional cases of the

vector E ri0; that require further consideration. They may be classified as

i=1
follows:
m
Case 1. D rq; = 0. Thisis equivalenttom =ne = + + - = g, = 0.
i=1 N
In this case, #, as defined by (14) or (38), is indeterminate. ‘
Case 2. 2 rw; ¢, This occurs whenn =nz = - + « = g, 0.

i=1

Here also # is indeterminate.
Case 3. O 7.0; = ¢10 + ¢nea, o1 7 0. This is the situation when

i=1

m=pt+q(@=12,---,m), with p > 0. In this case, 2 = p.
In the first two cases the manifold @,,, is undefined, and our designation

of the ¢; is without meaning. We may correct this by replacing 2 by ¢ in all
our work. Case 3 starts with this situation. Therefore we obtain the same

solution in all three cases with the further step: let &1, %2, + + + , Am—2 be any

orthonormal set spanning @,,,, and take w; = 24,2 = 1,2, - - - ,m — 2. The

need for making a particular choice [(31) and (32) are indeterminate for
m—2

% = o] of 21 and w is now gone. Just as the sums D, \; Az were calculable
=

1=
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m—2

above, so now the sums E \ij M will be found to be determined. The cri-
i1=1

terion reduces to

' N (i o X+ ,"ET;Y,.)
= —= . (39)

NEwrvri[Sawan]

1=1

A closer analysis will reveal that each of the three cases above is a limit of
non-singular cases with £ >- o, whereby the various constituents of the solution
go over into the forms we have assigned in the foregoing independent con-
struction. The expression (39) is, in fact, the limiting form of (37) for ¢ >
[in this connection formulas (35) may be studied ]. Consequently, (37) and
(39) do not belong to different tests; together they fully define a single test.

1t should be observed concerning the numerator of ¢ in (37) and (39), that

E pX. and — ET.Y are respectively just the sample regression coefficients

of z on £ and y on x; that is, the respective least-square estimates of &, and k..

6. Summary

We have determined an exact, unbiased test for the significance of the
difference between two regression coefficients, in the situation described at the
beginning of section 1 (q.v. for notation). In the course of the work it has been
brought out that, for any test, m must be greater than 2, and neither of the
sets (&1, &, © + + , Em), (9, M2, - - -, ) May consist of all equal elements. Let
the samples (z1, 22, + + -, Zm) ~ (&, - - -, Em)and (Y, ¥z * - -, Yn) ~
M1, M2, * * * , Ma) be ordered in any manner. Then our test, at the level of sig-
nificance ¢, is defined by the critical region (cf. sec. 2) W'y: |t| > t,, where the
criterion tis given by (37),or by (39) whenn; = p &+ ¢, 6 =1,2, - - -, m),
for some numbers p and ¢. The quantities appearing in (37) and (39) are de-
fined by (36) and (38). The criterion has the {-distribution with m — 2 degrees
of freedom.

It is a privilege to acknowledge the assistance, in the preparation of this
manuscript, of Professor J. Neyman, who originally suggested the problem to
the author.
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