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Introduction
Although many articles on the present subject have appeared in the mathe-

matical, statistical, and physical literature, there still seems to be some justi-
fication for one more. The statisticians have applied only small parts of the
theory; the physicists have gone deeper, but write like physicists; the mathe-
maticians have gone furthest, but write like mathematicians, only for pos-
terity. Their work is frequently not understood, and is in general either
ignored or applied in simplified forms which often are formally more formid-
able than the original rigorous one. The present paper attempts to give a
compact outline of the harmonic analysis of stochastic processes, with appli-
cations to physical problems.*
Time series can be analysed from two points of view.

a) A time series is a sequence of numbers, to be analysed for trend,
periodicity, prediction possibilities, and the like. The source of the
series, that is, the mathematics of the background of the numbers, is
ignored.

b) A time series is a sequence of numbers arising from a certain function
f(t) (where t is time) as t takes on a sequence of values. There are
ordinarily probability parameters in f(t), so that the function value
f(to) is not uniquely determined by to; the function values obtained
determine a sample function of a stochastic process. The general
properties of this process are deduced from an analysis of the origin
of the series, helped by the actual sample values obtained. Trends,
periods, and the like are determined in terms of the properties of the
stochastic process.

Although the first point of view is superficial, it is adequate in many appli-
cations. One reason for this adequacy is the parallelism between the proper-
ties of a stochastic process (that is, the average properties of its sample func-
tions) and the properties of almost all the individual sample functions. The
harmonic analysis of an individual sample function is formally almost identical
with that of the process. In other terms, the formal analysis applied to specific
data is largely independent of the background, and is essentially equivalent
to that applied to stochastic processes. Although the main part of this paper

* Note added in proofs, August 10, 1948: Since the present paper was written, almost three
years ago, a number of contributions have appeared in print, particularly by French and
Scandinavian writers. Because of these publications a complete reorganization of the paper
might be in order. However, it was thought best to leave the paper in its original form al-
though it has lost much of its freshness since it was written. This explains the omission of
references to the work of Love, Karhunen, and others.
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is given over to the analysis of stochastic processes, the harmonic analysis of
individual functions will be outlined briefly, in order to exhibit the parallelism
between the two studies, and the greater simplicity of the first.
A continuously varying time parameter presents somewhat greater analytic

difficulties than an integral-valued time parameter, and the rigorous treat-
ment is less well known. Actually, after the initial spade work has been done,
there is little difference between the two cases. Both will be treated below,
although more details will be given in the continuous parameter case.
The functions f(t) to be analyzed below will be complex-valued, and the

harmonic analysis will consist of the development of representations in terms
of linear combinations of terms of the form eSfixt, where X is real. The X's
involved are the frequencies present; their reciprocals are the periods. Speciali-
zation will be made to real functions when desirable, but it is clearer and
simpler to carry through all the work for complex functions before specializing.
The useful case for many applications turns out to be not that for which the
Fourier integral theory can be applied to express f(t) in the form

f(t) = f e21iXtf*(X)dX, (0.1)

in which case the problem is solved, since f* can be found by inverting (0.1).
In fact, the hypotheses imposed on f(t) to make the form (0.1) possible [for

example, the finiteness off If(t) | 2dt] imply roughly that f becomes small

at + a and thus preclude the existence of non-trivial stationary properties of
f(t), that is, average properties as t --> . On the other hand, the functions
f(t) to be considered are precisely those, like eit + erit for example, which
have such average properties.
The representation (0.1) and its inverse

f*(W) e-2Tixtf(t)dt (0.2)

will, however, be fundamentally important below, whenf If(t) |it is finite. In

this case, according to the Fourier-Plancherel theorem, f* defined by (0.2)
satisfies (0.1). (The integrals must be defined as the limits in the mean of the
same integrals extended over finite limits,

rT
l~im. f *)

1. Harmonic analysis of individual functions'
The harmonic analysis of an individual function x(t) is accomplished, for

present purposes, in terms of its correlation function R(t),
1 rT

R(t) lim- I x(s +t)x(s)ds. (1.1)
~~~~T_..c2T -T

'Only the continuous parameter case will be considered in this section. The integral
parameter case is analysed similarly. Most of the material in this section is taken from
Wiener's fundamental paper, Acta Math., vol. 55 (1930), pp. 117-258.
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It is supposed that R(t) exists for all t and is continuous when t = 0.2
It is then bounded and everywhere continuous. The correlation function is
analyzed harmonically in a very simple manner. In fact, it is shown to be the
Fourier transform of a real bounded monotone non-decreasing function F(X),
called variously the spectrum, spectral function, and periodogram, of x(t).

R(t) = f e2itXdF(X). (1.2)

This function makes precise Schuster's idea of a periodogram. It will be seen
that, roughly speaking, the increment of F(X) at p measures the square of the
contribution of the intensity of the term eOrip' in the expansion of x(t) in a
linear combination of such terms, that is, the increment of F(X) at g measures
the strength of the frequency g in x(t). The transition from x(t) to R(t) oblit-
erates phase relations and squares the moduli of intensities. In particular, if
f(t) is a discrete sum of exponentials

x(t) = Ea. e2Tixnt, (1.3)
n

the correlation function R(t) and the spectral function F(X) are easily evalu-
ated explicitly;

R(t) = anj 2e2TiXnt,
(1.4)

{F(X) = Z lan l 2.
X,.< X

Thus in this case F(X) increases by |an 12 when X increases through X.. The
connection with the usual Fourier transform theory is indicated by the fol-
lowing relations. The integrated Fourier transform exists,

1 e-2iriXt- - T 1e-2.iXtYTh =1 x+t) dt + urn. [f + X(t)dt. 3 (1.5)'l -27rt f L_1 -T _ -2it

The natural inversion formula
To

X(t) = l.i.M. e2T~dy(X) (1.6)

is not always true, since the indicated limit on the right side may not even
exist, but it is true if a Cesaro limit in T is taken. The modification

x(t) = lim l.i.m. T e2.itXY(X + e) - y( d-) (1.7)
e.0 Tco -T 2e

is always true. It will be seen that (1.6) is always true for stochastic processes.
2 It is sometimes necessary to weaken these hypotheses slightly, but these refinements will

not be discussed here.
3 The integrand is modified near 0 to ensure boundedness.
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Thus (1.6) and (1.7) give the desired harmonic analysis of x(t). Moreover,
the following equation ties this representation up with the spectral function.

F(X2) -F(Xl) = hintl y(I + C) - y(g - e)2
Xi 2e -dg. ~~~~~(1.8)

This shows how the increment of F(X) measures the intensity of the appear-
ance of corresponding frequency bands in the symbolic representation (1.6)
or in (1.7). In an average sense, y(,g +,E) - y(p - e) is of the order of El12.
These facts will be clearer in the harmonic analysis of stochastic processes.'

2. Harmonic analysis of stochastic processes
Just as the existence of certain long-time averages is presupposed in the

harmonic analysis of individual functions, so certain permanences in time are
presupposed in the harmonic analysis of stochastic processes. The usual
hypotheses are that the first two moments exist, and that they are unaffected
by translations of the time axis, that is, that the means m and R(t) defined by

rE{x(s)l =m,
(2.1)

EE{[x(s + t) - m] [x(s) - = R(t)

are independent of s. In particular, if the process is real and Gaussian, that
is, if for every finite set of values of t the corresponding x(t)'s determine a
multivariate real Gaussian distribution, the values of m and R(t) determine
the process uniquely. In this case the process is temporally homogeneous:'
all probability relations are independent of translations of the t-axis. In gen-
eral, however, the processes considered may not be temporally homogeneous,
and are accordingly called temporally homogeneous in the wide sense.
The hypothesis that a stochastic process is temporally homogeneous, even

if only in the wide sense, is evidently very restrictive, and apparently excludes
all evolutory processes, but this is not quite true, as the examples below will
demonstrate. The examples are all given for integral-valued t; the analogues
for the continuous parameter case are less well known, and will be described
later.

a) Stationary process of uncorrelated variables.-Let . . . , , * * be un-
correlated chance variables with common expectations and variances. The
process thus determined is evidently stationary in the wide sense.

b) Stationary process of moving averages.-Define X. by

Xn= E aj , (2.2)

4 See Wiener and Wintner, Amer. Jour. Math vol. 63 (1941) pp. 415-426, 794-824, for
an analysis of the Fourier coefficients of x(t) and the corresponding analysis for stochastic
processes.

6 The expressions "stationary" and "temporally homogeneous" are used interchangeably
below.
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where the xm are the variables of a stationary process (in the wide sense) of
uncorrelated variables. Unless all but a finite number of the a, vanish, restric-
tions must be imposed to ensure convergence (in the mean). It is sufficient
if E aj and E asj| 2converge. The X process is evidently stationary in the

j ,
wide sense, and is called a stationary process of moving averages. More gen-
erally, if the x process is any stationary process in the wide sense, (2.2) defines
an X process (if there is convergence) which is stationary in the wide sense,
and which is actually stationary if the x process is stationary.

It is now well known that the use of moving averages as in (2.2) may intro-
duce periodicities into the X process which were not present in the basic x
process, or profoundly modify those present. A detailed analysis will be made
of this phenomenon below, since the simple explanation does not seem to be
generally known.

c) Process of linear regression.-A stationary process (in the wide sense) of
linear regression is a stationary process in the wide sense for which the differ-
ence

Xn+N - alX"+N._1 - * * - aNXn = Xn+N (2.3)

is uncorrelated with the chance variables . .. , Xn+N-2 X+ N-1,, for
some integer N and numbersa1,*a,, aN. The x process will then necessarily
be a stationary process (wide sense) of uncorrelated variables. The chance
variable Xn+lY is obtained, when the preceding variables are known, by an
experiment which gives a value of xn+ N. If the process has a definite starting
point when n = 1, successive values of Xm can be found, once X,, * * , X N
are known by evaluation of the xm and calculations using (2.3). The distribu-
tions of the Xm will depend on the initial values X1, . *. , X N, but asymptoti-
cally the Xm will become uncorrelated with early values, in most cases that
occur in practice, and the Xm will determine asymptotically (large M) a sta-
tionary process in the wide sense, however X1, . . *, X N are chosen. The proc-
ess will be actually stationary in the wide sense if X1, * * , XN are suitably
chosen.
The process of linear regression is a special case of the process of moving

averages, since in most cases (2.3) implies

X=. bjXn_ (2.4)

for suitably chosen bi. For example, the simplest non-trivial case of linear
regression,

Xn+1 =` axn + xn+y |lal < 1, (2.5)

leads to

Xn= a'Xn-i. (2.6)
0
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This example shows how the irregularity caused by the stochastic element
xn may just counterbalance an average tendency (in this case a systematic
tendency toward zero due to the fact that a < 1) so that the resulting X,,
process is stationary.

If the x process is stationary in the strict sense, the qualification "in the
wide sense" can be omitted throughout the preceding discussion.

It is usually convenient in studying stationary processes to replace x(t) by
x(t) - m if m #d 0, so that the first moments of the new process vanish, and
this will generally be done below. It will be seen that the correlation function
R(t) determines the average harmonic properties of x(t), and to a consider-
able extent shares these properties. It corresponds exactly to the correlation
function defined in (1.1) for a single function x(t). It is clear, however, that
the individual correlation function of a sample function x(t) from a stochastic
process will in general be a chance variable for each t, varying from sample
function to sample function.6 As in the harmonic analysis of individual
functions, the correlation function is supposed continuous at the origin. It
is then everywhere continuous, and can always be expressed as the Fourier-
Stieltjes transform of a bounded monotone non-decreasing function;

R(t) =f e2wrtxdF(X), F(- co) = 0, F(X) = F(X -0). (2.7)

The function F(X) is called the spectrum or spectral function of the process.
The indicated normalization will be convenient, but is not essential to the
representation.
Formula (2.7) for R(t) is easily inverted, and the details of this inversion

will be useful below. Any linear combination of R(t1), * * *, R(tv) is equal, ac-
cording to (2.7), to the integral with respect to F(X) of the same linear combi-
nation of e2tlx, . . *, e2J'I Hence the formula can be inverted to give
F(^2) - F(,gl), with proper allowance for possible discontinuities of F(X) at
,g,, or /52, by choosing the linear combination to give, under the integral sign,
an expansion of the function which is 1 between /1 and /52, and otherwise
vanishes. In order to make this idea precise, we define a,(X) by

a,,(X) = X) < O. X> s
(2.8)

g>0: = 1/2, X = O. X==,, g < 0: a,, (X) = -a (-),

1_ = 1, O<X<y.
6 If the process is stationary in the strict sense, the limit in (1.1) will exist for almost all

sample functions, at each value of t, in accordance with the strong law of large numbers.
The limit will be a constant independent of the sample function if the transformation group
t -* t + s, (- - < s < cc), is metrically transitive in the probability measure. For further
developments in this direction see the papers of Wiener and Wintner referred to in footnote
4 above.

7A. Khintchine, Math. Ann., vol. 109 (1934), pp. 604-615. This paper laid the foundations
of the theory of continuous parameter stationary processes. Wold, in A Study in the Analysis
of Stationary Time Series (Uppsala, 1938), made the first systematic study of stationary
processes of moving averages and of linear regression.
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Then if p, </2,

c,,.,-s~(X) = °0, 1 >,92,

= 1/2, X =J2, X=pa,

- 1, I1<X< a2.

We can write this function, as a linear combination of terms like elli'^, more
precisely as a Fourier integral,

a 2ru_2ar(X) eJee 28>ds. (2.9)C-X-X) 27ris

Inserting this in (2.7), we obtain the desired inversion,

F(p2 + 0) + F(p2a) _ F(Ali + 0) + F(tti) = I e e -2"su21
2 2 ~~~~~~~~~-2-rs R(s)ds.81 (2.10)

The desired expression for x(t) with E( x(t) = 0, is the analogue of (2.7),

x(t) = f e2ritXdy(x) (2.11)

for suitably defined y(X). The natural way -to find y(X) is to operate on x(t)
just as on R(t) in (2.10). Suppose first that F(X) has no discontinuites and
define y(M) by

ase-21rie-1
y(P) = l.i.m S - 1 x(s)ds. (2.12)

S__Xvs -2ris
The existence of the indicated limit in the mean follows from

E{ [fdS ff S] e-2zia - 1 2} (2.13)E f-s, f-'s -2.-27ris

E{ f8S - fS ]e-22isA -1 e2itia - 1 A

=E t LJ s, J"s, -2ris * 27rt x(s) X(t)dsdtJ
=r- rS, aS e-2Tiisi - 1itp

=~~~~~~~~~~~~~~~d WI*et(8-0 YsdtdF(X2)LJ_X_J- f -2i 2iris 2irit

X S, rS 1 e-2Tis 1_-Xf fs fSI -2ris e2Tisds 2dF(X).

8The improper integral is defined by limr This proof of the Levy inversion formula,
giving a distribution function in terms of its characteristic function, is outlined because it
illustrates and makes natural the later developments. The proof only requires the simple
fact that the integral in (2.9) between the limits - T, T converges boundedly to ai,2(X) -
a,(X) when T -X C. The corresponding proof for integral parameter processes uses Fourier
series instead of Fourier integrals.
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In fact, the last integral converges to zero as S, S' - o because the Fourier
integral for a,(X) converges boundedly to a,(X). Thus (2.12) defines a chance
variable for each p.9 Obviously

Ely(/)l = 0. (2.14)

Moreover, according to (2.13) with S = 0, S' = C,

Et|y(p)12} =fJ a,(X)2dF(X) = F(p) - F(O).

More generally, a similar evaluation shows that

E{ [y(,g2) - y(g) ] [Y(A4) - Y(A3s) ] (2.15)

=- [a.(X) - a,.(X) ] [a,4(X) - a,..(X) ldF(X).
In particular, if p3 = 91, p4 = A2, this becomes

IE| Y(A2) -Y(gl) 21 = F(P2)- F(,Ml). (2.16)

If F(X) has discontinuities, we define y(p) at the continuity points of F(X)
by (2.12). Then (2.16) is true if F(X) is continuous at Mi and M2.
This equation implies that

l.i.m. y(m) = y(Mo + 0), l.i.m. Y(Mt) = y(po -0)
4pgo m4go

exist for every po, and that, if F(X) is continuous at go, these one-sided limits
are equal to y(po) with probability 1. Then we define

Y(p) = Y(,g - 0)

9 The measurability and integrability of x(s) and similar properties used here are too deep
for present study, but are not diflicult to justify, and have been justified in the literature.
The point is that sample functions can be treated just the same as any other function the
stochastic element being simply another parameter in the equations, which traditionally is
not inserted explicitly. That is to say, whenever we write x(t) we really mean that we have
a function of two variables, x(t, t), and the probability of any aggregate of sample functions
x(t) is simply the measure of the aggregate of values of t which, inserted in x(t, E), yield those
sample functions. If desired, measurability and integrability problems can be avoided tem-
porarily by defining the integrals of x(t) and similar functions as the limits in the mean of
Riemann sums, instead of defining them as ordinary integrals for each sample function; but
the measurability and integrability problem must be faced at some stage, and the earner it
is faced, the sooner circumlocutions can be avoided and the sooner the ordinary analytical
methods can be applied with a clear conscience. On the other hand, the more recent theory
that probability is not a mathematical subject, in particular not rigorous, unless the proba-
bility parameter e is always mentioned explicitly, and even that the rigor is enhanced if t
is a real number varying between 0 and 1, probability measure being Lebesgue measure, is a
delusion.
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wherever y(,u) is not already defined; with this definition (2.16) will hold for
all iuL, A2, and (2.15) will also hold with no restrictions on the ,j if each a (X)
is replaced by a, (X - 0). With this change (2.15) now shows that the y proc-
ess is a process whose increments in non-overlapping intervals are uncorre-
lated, even if the intervals have an endpoint in common. Processes with uncor-
related increments will be studied in section 3, where it will be shown that
integrals like that in (2.11) over finite intervals are definable in terms of the
corresponding Riemann-Stieltjes sums, even though y(p) will not in general
be of bounded variation; the integral over an infinite interval is the limit in
the mean of the integral over finite intervals. The truth of (2.11) will now be
shown, with the use of this fact. From (2.12), if pu and jU2 are continuity points
of F(X),

C8 e2TiP2, _ e2Ti8PlE{x(t) [y(p2) - (,L,) ]} = limJ. 2-s E{x(t)x(s)}ds (2.17)

S e2visp2e2gi8ul
= lim J e2r2si(t-s)X dsdF(X)Sj_ fJ- -S 2ris

S rwia8Pi e21i8M2=lim - e---2-ri2Xds e21ItXdF(X)sf, fo_¢_-s 2ris

The quantity in the brackets becomes, as S - , the inverse Fourier integral
of the Fourier integral for a,,(X) -a~(X). Hence

r ) ry~~~~2wXpE x(t) [Y(92) - Y(A1)] }=f e2 dF(X), (2.18)

and it is now clear that (2.18) is true for any iil,,92 since y(,u) = y(,u- 0) and
F(X) = F(X - 0). Let ,uo, , g be the points of a subdivision of a finite
interval (a,b), (a = po < . . * = b). Then if 8 = max. (gj - PJ-), it
follows from (2.18) that

E x(t) ( e2Tip8dy(g) = lim E 4x(t)e2tM8 [y(pj) - y(j )] } (2.19)
0~~~~~~~~~~ ,

= lim 6Ie-2rtrigi e2iitXdF(x) =fb e2Ti(t8)XdF(X)
8 .0 j Jpsi- sa

Hence, if a--- -, b-*+ ,

E x(ft) e2"dy(g)} = f e X dF(X) = R(t - s). (2.20)
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In order to prove (2.11) we need only evaluate the expectation of the absolute
value of the difference squared, getting zero.10
The case in which x(t) is real is of special interest. In this case, according to

(2.12),
Y(g) + K -,g) = 0 (2.21)

if g is a continuity point of F(X). If ,u 4 0, this becomes

y(O + 0) +y(O) = 0, (2.22)

and therefore, at the continuity points of F(X),

y(u) -y(O +0) + ( -,) -y(O) = 0. (2.23)

This implies that, at these values of X, F(X) - F(O + 0) = F(O) - F(- ).
Then (2.7) reduces to

R(t) = 2f cos 2irtXdF(X) - [F(O + 0) - F(O) ] (2.24)

= f cos 2rtXdG(X), G(X) = 2 [F(X)-F(O) ]-[F(O+0)-F(O) ].

If y is separated into its real and imaginary parts, y = y, + iy2, we find from
(2.22) that y2(0 + 0) = y2(0), so that the jump of y(g) at 0, if any, must be
confined to the real part. If (2.23) and this fact are combined with the given
orthogonality relations of the y process, we obtain

fE{JIyY(2) - yi(,1l) 2 F(g2) - F($l), 0 < p, <$2, j = 1,2, (2.25)
2

Et [yj(p2) - Yj($,) ] [Yk(A4) - Yk(A3) ]} = 0, j 6 k,

-0, j = kif0<gl <$2 5 $3 <$4,

and, as we have already noted,

{Y2(0 + 0) -Y2(0) = 0, 0(2.26)

EJ{ yi(O + 0) - yl(0)1 21 = F(O +0) - F(O).
10The expectation of the product of two integrals of the form in (2.11) is evaluated in

(3.11). This evaluation, incidentally, shows how simply the normal form (2.7) for the corre-
lation function follows from (2.11). The normal form (2.11) was derived by Cramer [Ark.
Mat. Ast. och Fys., vol. 28B, no. 12 (1942), pp. 1-17]. Kolmogoroff [C. R. Acad. Sci. URSS,
vol. 26 (1940), pp. 115-118] had already indicated that (2.11) is a special case of the well-
known representation of a unitary transformation in Hilbert space in terms of a canonical
resolution of the identity.
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Hence the yi and Y2 processes are mutually uncorrelated processes, and are
individually real processes with uncorrelated increments. The canonical form
(2.11) reduces to

x(t) = 2f cos 2WtXdy,(X) - 2f sin 2WrtXdy2(X) - [y1(O +0) -yl(O) ]. (2.27)

The function G(X), defined in (2.24) for X > 0 only, is the appropriate spectral
function in the real case. When using this spectral function, note that spectral
intensities are doubled away from the origin; dG(X) = 2dF(X) when X > 0.
The parallelism between the harmonic analysis of individual functions and

stochastic processes (and the greater formal simplicity of the latter) is now
clear. The greater simplicity of the harmonic analysis of processes is indicated
by the fact that (2.11) is always true, whereas the analogue for individual
functions, (1.6), is not true, in general. From now on only processes will be
considered.
The canonical form (2.11) shows that the x(t) of a stationary process (wide

sense) is a limit of linear combinations of exponentials:

x(t) = E5je2rit"i, Et ajl 21 = F(X,+I) - F(Xj), X <X2 <* , (2.28)

where the coefficients {1 j are mutually uncorrelated, with second moments
determined by the increments of the spectral function, as indicated. It has
been customary in the applications to write x(t) as a finite or, infinite series
of the type exhibited in (2.28), that is, series of exponentials with mutually
uncorrelated coefficients."' The present discussion shows two things:

1. There is no loss of generality in writing x(t) as the sum of such a series
(as a first approximation).

2. There is, however, no gain in simplicity in (2.28) over the exact form
(2.11).

If t is an integral-valued parameter, (2.11) reduces to an integral over a
finite range,

x(n)=f e2wi"ndy(X), (2.11')

where y(X) has the same properties as in the continuous parameter case, and
the correlation function R(n) is given by

R(n) = EJx(m + n)x(m)} =f e2rinXdF(X), (2.7')

where
E( | y(,g2) - y(,gI) 2} = F(g2) - F(z,), gt < 12. (2.16')

As in the continuous parameter case, the spectral intensities are doubled,
X > 0, if the processes are real.

11 See, for example, the valuable papers of S. 0. Rice, Bell System Technical Journal, vol.
23 (1944), pp. 282-332; vol. 24 (1945), pp. 46-156.
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The periodic properties of the correlation function R(t) have frequently
been used to derive information on those of x(t). This is justified by the
following theoretical considerations (the continuous parameter case will be
considered). Corresponding to the approximation (2.28) for x(t) is the approxi-
mation

R(t) = E e2ti; [F(^X+1) - F(Xj) ] (2.29)
j

for R(t). This shows that R(t) involves the same frequencies as x(t), with
intensities the mean square intensities of those of x(t). [Compare with (1.3)
and (1.4) and note that the sum in (2.29) is the exact correlation function of
the stationary process defined by the sum in (2.28). ]

3. Processes with uncorrelated increments

The fundamental role of processes with uncorrelated increments, for both
integral parameter and continuous parameter processes, has been indicated,
in the preceding section, in the canonical forms obtained for stationary proc-
esses, (2.11) and (2.11'). Processes with uncorrelated increments play the
role for continuous parameter processes played by sequences of uncorrelated
chance variables for integral parameter processes.

Processes with uncorrelated increments are those whose chance variables
y(t) satisfy the following hypotheses:

EJ{ y(t) -y(s) <2} c<, (3. 1)
and

Et [y(t2) - y(l) - m(t2) + m(ti)] (3.2)

[y(t4) - y(t3) -m(t4) + m(t) ]} = 0, if tl <t2 <t3 <t4,

where
E{y(t) - y(O)} = m(t). (3.3)

The hypothesis (3.2) of lack of correlation between increments in non-over-
lapping intervals implies that, if F(t) is defined by

F(t) = E{ y(t) - y(O) -m(t)121, t _ 0 (34)
-E {jy(t) - y(O) -m(t)I2I, t < 0O

then F(t) satisfies the equation

F(t) - F(s) = E( | y(t) - y(s) -m(t) + m(s) 1 2}, s < t. (3.5)

Hence F(t) is monotone non-decreasing. It is usually more convenient to deal
with processes with uncorrelated increments for which the means {m(t)}
vanish; this can be done by replacing y(t) with y(t) - m(t).
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The average change of yl(t) = y(t) - m(t) with a change h in t is of the
order of hi1, whenever F'(t) exists and does not vanish:

Et yl(t + h)- yl(t)12} = F(t + h) - F(t) | - | hihF'(t), h-*-0. (3.6)

The class of processes with uncorrelated increments is closely related to the
class of processes with independent increments (for which the only hypothesis
is that the increments over any set of non-overlapping intervals are mutually
independent). In fact, if the second moments of the variables in a process of
the latter type are finite, (3.2) is certainly true. Two real processes which are
of this type will be useful below.

Poisson process with independent increments.-It is supposed that the in-
crements of the chance variables {y(t) } only assume integral values, and that

P{y(t) - y(s) = PI = e-c(t-8) (t -s) c, v = 0,1, 2, *, s < t, (3.7)
1.!

where c is a positive constant. In this case

m(t) = E{y(s + t) -y(s)} = ct , (3.8)

F(t) = Et | y(s + t)-y(s)cti 2} =ct, t > 0.

The sample functions are (with probability 1) monotone non-decreasing in t,
increasing only in isolated jumps of magnitude 1.
Gaussian process with independent increments.-It is supposed that, for any

parameter values ti < . . . < tn the real chance variables y(t2) -y(t), * * ,
y(t*) - y(t._1) have an n-variate Gaussian distribution and are mutually in-
dependent. (Note that with real Gaussian chance variables independence
means the same thing as lack of correlation.) In the best known example of
this type of process, m(t) 0_ and F(t) = ct, where c is a positive constant.
IfF(t) is continuous, the general case can be reduced to this special case by a
change of variable (in t).

In the first of the examples above, y(t) is (with probability 1) of bounded
variation in every finite interval. In the second example, although the sample
functions are known to be continuous, the probability that they will be of
bounded variation in finite intervals is zero, if F(t) is continuous,'2 and
actually increases.

In both of the examples, m(t) and F(t) were proportional to t. Processes of
subject type with these additional properties will be said to have stationary
increments in the wide sense, or in the strict sense if the distribution of in-
crements (and not merely the first two moments) is unaffected by translations
of the t-axis.

12 See for exam le Paley and Wiener, "Fourier transforms in the complex domain,"
Amer. iah. Soc. Coo. Publ., vol. 19, chap. 9.
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As just noted, the sample functions of a process with uncorrelated incre-
ments may not be of bounded variation even in finite intervals. In spite of
this fact, "integrals" of the form

f(t)dy(t) (3.9)

are commonly used [see (2.11) ]. They are easily defined in such a way that
the usual formal manipulations on integrals will be admissible. It is clear that
if the "integral" (3.9) is defined in terms of the usual sums then, formally at
least, it becomes a chance variable satisfying

E{f f(t)dy(t) } = 0, if m(t) 0, (3.10)

Etf f(t)dy(t) fb g(s)dy(8)} =bf(t)g(t)dF(t), if m(t) 0. (3.11)

In fact, it will now be shown that, if m(t) a 0, (3.9) can be defined to satisfy
(3.10) and (3.11), to obey the standard rules for manipulation of integrals
(that is, integration by parts and addition of integrals over intervals of inte-
gration with common end points), and, if f(t) is Riemann-Stieltjes integrable
with respect to F(t), to be the limit in the mean of the usual Riemann-Stieltjes
sums. The only hypothesis on f(t) except at the last point is that it be measur-

able with respect to F(X) and that the integralf if 2dF be finite. (We as-

sume for simplicity that F is continuous; otherwise a slight modification would
be required below, in (3.12) and (3.16).)

Suppose first that f(t) = 0 in (a,b) except in the finite subinterval a < t<b,
in which f(t) _ const. = a. Then (3.9) is defined by

rb
f f(t)dy(t) = a [y(bi) - y(ai) ] (3.12)

If f(t) is any linear combination of such functions, (3.9) is defined as the
same linear combination of the y increments. Let H be the set of functions

a
f(t) measurable with respect to F(t), and withfb if12dF < '. The "integral"
(3.9) has now been defined on a linear manifold Ho of functions f(t), and Ho is
everywhere dense in H. Moreover, it is clear that for functions in Ho, at least,
(3.10) and (3.11) are true. Hence

Pb Pb

ElI f(t)dy(t) -J g(t)dy(t)121 (3.13)

rb
=J |f(t) - g(t) | 2dF(t), f,ge Ho, m(t) _ 0.
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Thus the transformation defined by (3.12) from the subset Ho of Hilbert space
H to a subset H'o of the Hilbert space H' of chance variables whose means are
zero and whose dispersions are finite is distance preserving. Therefore the
domain of definition of the transformation can be extended in a unique fashion
to be defined on H and to take it isometrically into a subset of H'. The "in-
tegral" (3.9) is now defined for all the desired functions f(t), if m(t) vanishes
identically. If m(t) does not vanish identically, (3.9) is defined in the obvious
way,

rb b rb
f f(t)dy(t) fJ f(t)d [y(t) - m(t) 1 +J f(t)dm(t), (3.14)

where it is supposed that m(t) is of bounded variation in (a,b) [or in every
finite subinterval if (a,b) is an infinite interval ] and that the last integral in
(3.14) exists. Then (3.10) and (3.11) become

b b
E{J f(t)dy(t) 1 =J f(t)dm(t), (3.10')

rb b rb -b rb
E lf(t)dy(t) * fig(s)dy(s) 1 =ff(t)g(t)dF(t) +f(t)dm(t)fg(s) dmi(s). (3.11')

Suppose now that f(t) is real and bounded, and let to, , t,, be the points of
a subdivision of (a,b) (a,b finite) into subintervals: a = to < . . . < t. = b.
Letfi, , f, be any numbers satisfying the inequalities

g. l. b.f(t) f,f l.u. b.f(t). (3.15)
ts st sts +, ~ti _t _ti +1

El |f [y(t,+l) - y(t,) ]- f(t)dy(t) 21 (3.16)

= E{ | ,if [f, - f(t)] dy(t) 121 = fjf - f(t) | 2dF(t) m(t) 0.

Hence if m(t) _ 0 the usual Riemann-Stieltjes sums converge to the integral
(3.9) (the quotation marks will hereafter be omitted) whenever f(t) is Riemann-
Stieltjes integrable with respect to F(t). Evidently the same is true even if
m(t) does not vanish, provided that m(t) is of bounded variation in (a,b) and
that f(t) is Riemann-Stieltjes integrable with respect to m(t). Finally, the
standard summation procedure shows that integration by parts is permissible
in (3.9) if f(t) is sufficiently regular.'3

In section 2, various classes of integral parameter stationary processes were
defined. Continuous parameter analogues will now be given for two of them.
The analogue of the third will be given later.

13 Integrals of type (3.9) were apparently first discussed by Wiener. For a discussion from
a slightly different point of view, see the reference given in footnote 12.
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Stationary process of uncorrelated variables.-A process determined by vari-
ables {x(t) } which are uncorrelated is not useful in the continuous parameter
case, since x(t) is not then measurable in t except when x(t) is identically
constant. The type process in this connection that is useful is the process with
stationary uncorrelated increments, for which

(m(t) = E{y(t) -y()} = mt,
(3.17)

|F(t) =Et y(t) - y(O) 1 2} = ct, c 20

where m, c are constants. Equations (3.17) lead to

{E{y(t) - y(s)} = m(t -S),
(3.18)

EE{|y(t) - y(s)12} = clt- sI.
Stationary process of moving averages.-Define x(t) by

x(t) = ff(t - s)dy(s), (3.19)

where the y process is one with stationary uncorrelated increments (wide
sense), with m, c defined as in (3.18). It is supposed that f(t) is Lebesgue
measurable and that

|j f(t) d<, ifMHO ,

(3.20)
fJ fut) 2dt < a)D, if c O 0.

The x process thus defined is the analogue of the X process defined by (2.2)
and may therefore properly be called a stationary process of moving averages
(wide sense) in the continuous parameter case. According to (3.10') and
(3.11')

-=s)ds = m f(t)dt,

i ~~~~~~~~~~~~~~~~~~(3.21)
|E( [x(t + h)-,] [x(t)-,g]} = cf''(t-s + h)f(t - s)ds

=cLf,(s + h)f(s)ds = cf I*(X)I 2e2TxhdX,

where f* is the Fourier transform off [satisfying (0.1) and (0.2)1.
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Thus (3.19) determines a stationary process in the wide sense (or strict
sense if the y differences are stationary in the strict sense) and (3.21) exhibits
the correlation function in the standard form (2.7).

In particular, if f = 0 except in the interval (- 5,0), in which f = 1/d, x(t)
becomes the difference quotient [y(t + 8) - y(t) 1/8, which, by (3.21), has
spectral density

1 -e2Ti)x5 2
c - 2iriX8 2c, a 0. (3.22)

In other words, the difference quotient, as far as the frequency spectrum is
concerned, behaves as if y'(t) existed and had constant spectral density c. The
fact that c is not integrable over (-a, oo) corresponds to the fact that y'(t)
does not actually exist. As an example of the apparent constant spectral
density of y', consider the spectrum of a process determined by variables
{Z(t) }, obtained by moving averages over any stationary process (wide sense)
with variables {z(t) }:

Z(t) = f(t- s)z(s)ds, E{z(s)} = m. (3.23)

The correlation function is easily evaluated,

j= E{Z(t)} = fJ f(t - s)E{z(s)lds=mf (t)dt,

E [Z(t +h)-,. [Z(t)-A]} (3.24)

= f(t- s + h)f(t - s')E{ [z(s) - m] [z(s') - m dsds'

-ffff(t - s + h)f(t- s') e2J( -8)Xdsds'dF(X)

=f| f '(X)V2 e2siXhdF(X),14

where F(X) is the spectral function of the z(t) process. A comparison with
(3.21) shows that (3.21) is a (strictly speaking improper) special case, with
y' = z, F' =_ c.
The easiest way to derive (3.21), which gives most insight into its meaning,

is the way dear to the physicist's heart: if y'(s) were a simple exponential,
y'(s) = e2fis, (3.19) would become

x(t) = f f(t -s)e2Tixds = f.(X)e2irX. (3.25)

14The definition (3.23) and the formal work in these equations is easily justified iffs m ffi) de < -s
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In other words, the exponentials are simply multiplied by f*(X). Since e2TiXa
appears in the spectrum of y'(s) with mean square intensity c, it must appear
in that of x(t) with mean square intensity cjf*(X) 2, as indicated in (3.21), if
there is any justice. There is still justice in science.
The superficially puzzling phenomenon of non-integrable spectral densities

has arisen frequently in physics. For example, in a simple single-mesh LCR
electrical circuit with the only driving force provided by the spontaneous
thermal motion of the electrons, the current derivative dI/dt does not exist,
and a formal evaluation of its spectral function will give a spectral density
whose integral is infinite. In all such cases what has been involved is a function
like y' above which actually does not exist, but whose spectral density can
be calculated formally, and has an infinite integral. (See section 5 below for
further details.)

Fourier transform of a process with stationary (wide sense) uncorrelated incre-
ments.-It will be useful below to have the Fourier transform of a process of
the stated type, that is to say, to have a correspondence between pairs of
these processes such that their variables {y(s)}, {y*(s) } satisfy the following
relations:

y = f ety*(s)ds, y'(t) = fme y'(s)ds, (3.26)

I E{y'(t) } = E{y'*(t)} = O, EtJ y'(t) 21 = EJ y*(t) 1 2} .

These symbolic equations are to be interpreted as follows. Let f(t) be any
Lebesgue measurable function whose square is integrable over (-c ).
Then

f(t)dy(t) =f [fr e2ri'8f(t)dt] dy*(s), E{dy(s)} = E{dy*(s)} =0O

(3.27)
f(t)dy*(t) =fr [f 2Tit8f(t)dt] dy(s), Et jdy(s)12} = E{ Idy*(s)121,

are to hold, with probability 1. Note that the integrals in the brackets are
functions of s, Fourier transforms of f, whose absolute values squared are

integrable over (-co, ), with valuer If j2dt, according to the Parseval

identity. Hence both sides of (3.27) are meaningful. In order to justify (3.26),
therefore, y*(s) must be defined and (3.27) must be proved. We suppose that
E{dy(s)} = 0 and define y*(t) by means of a special case of (3.27);

y* (t) = f [j e-2wridr] dy(s) = f 1. 2e.it dy(s). (3.28)

Then E{y*(t) } = 0. In order to avoid writing down proportionality constants,
we suppose that EJ dy(t) 121 = |dt| . In order to show that y*(t) determines a
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process with stationary uncorrelated increments, it is sufficient to show that
for pi, /2, P3, P4

Et1 [Y*(#2)-Y*(A1) 1 [Y*(A4)-Y*(A3) ]

=E { f [f e-2risdrf e 2TiTdr] ds} (3.29)

= fW [a~g2(X)-ay(X) ] [a94(X)-a#3(X) ]dX,

where a,,(X) is defined by (2.8). Equation (3.29) is implied by the Parseval
identity for Fourier transforms. When gu = /13, /12 = P4, (3.29) shows that
E{J dy*(t) 2} =dtj. The second equation in (3.27) is true by definition of
y*(t) for f = 1 on the interval (0,t) and f = 0 otherwise. Since both sides of
the equation are linear in f, the equation must therefore be true for functions
which take on only a finite number of values, each on an interval. Finally,
since any f in (3.27) can be approximated arbitrarily closely in the mean by
functions of this type, and since we can go to the limit under the integral
signs, the second equation in (3.27) must be true in general. Now replace f(t)
in this equation by its Fourier transform,

We obtain
(3.30)

f: (fa e2ritrf*(r)d )dy*(t) =f [f e2it ( f e2ritrf*(r)d)dt] dy(s)

= f(s)dy(s),

which is the first equation in (3.27); the proof is now finished.
As an application of the Fourier transform of a process with uncorrelated

stationary increments, we shall show how to put a stationary process of mov-
ing averages defined by (3.19) into the normal form (2.11). (The y process
will be different in the equations.) Define y*, f* as usual. Then formally

x(t) = f f(t - s)dy(s) = f f(t - s)y'(s)ds (3.31)

= f e2ritf*(s)y'*(s)ds = f e2ritaf*(s)dy*(s),

using again the correspondence between convolutions and products of Fourier
transforms. These formal manipulations must actually be correct, because the
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Fourier transforms were defined to make them so, and as a matter of fact
(3.31) is simply an application of the first equation in (3.27). Hence the moving
average x(t) can be put in the form

x(t) = f e2Tits dy(s), (3.32)

where

p(s) = J f*()X)dy*(X), EJ | dp(s) 12} = clf*(s)l 21 ds, (3.33)

and this is the required form. The forms (3.31) and (3.32) show explicitly
that cjf*(s) 12 is the spectral density, a fact which was deduced indirectly in
(3.21).

4. Mathematical applications
Moving averages.-As a first simple application of spectral theory, we

analyze the effect on the harmonic properties of a stationary process of the
use of moving averages. The details will be carried out in the integral param-
eter case, where moving averages are frequently used for smoothing."5 It
is supposed that a stationary process is given, as determined by (2.2), except
that now the basic variables may be correlated. For simplicity, suppose that
E{x(n)} = 0. Then the correlation function of X(n) is easily evaluated in
terms of the spectral function F(X) of the x(n) process,

E{X(m + n)X(m)} = Zan+mr-jdm-kE{x(j)x(k)} (4.1)
j,k

2f~ an+m,-am e2riU-k)xdF(X)

= 12 Eaj e-2TijlI 2e2win>dF(X).16
j -- i

Thus the harmonic properties of the smoothed process, which has spectral
function P(X), with

dF(X) = |Zaje2ii) |2dF(X), (4.2)
j

depend in an essential way on the properties of the function Eaje-2TiiX. In
i

particular, suppose that the x(n) process is a process of uncorrelated variables.
Then F(X) will be given by

F(X) = Et |x(O) 1 2}(X+ 1/2) (4.3)
6 See the preceding section, (3.23) and (3.24), for the continuous parameter case.
The definition (2.2) and the formal work in these equations is easily justified ifE a, | < X.

j
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so that there are no favored frequencies; dF(X) = const. dX. On the other
hand, the smoothed X(n) process will stress the frequencies near the maxima
of Egi2e 1iiX . In the simplest smoothing, when

1 N
X. = + jEN x(n + j),

2N + 1 j=-N

we have, if F(X) is given by (4.3), so that the basic variables are not correlated,

dF(X) - EJ 'X(O) 21 1 - e2wiX(2N+l) 2 (4)
(2N + 1)2 1 - de. (4.4

Effect of transition from continuous parameter to discrete parameter.-Sup-
pose that a stationary continuous parameter process is given in canonical form,

x(t) = f e21tLxdy(X). (4.5)

Then if7 > 0,

x(nr) = f e2Ttn~dyt(), (46)

where

m=-X { ( Xi) (1/2. (4.7)

The form (4.6) is the canonical form for the integral parameter process with
variables x(nr). A frequency w occurring with positive probability in x(t)
means a jump in y(X) when X = w, and this means a jump in Y,(X) when
X = or-[WT + 1/21, where [t ] is the largest integer < . Thus the stressed
frequency co in the original process becomes a stressed frequency W' in the
contracted process, with

W _ r[w + 1/2] (4.8)

If ,yr| <1/2, the time frequency is therefore unchanged.
Linear prediction.-The problem of least-squares linear prediction in the

integral parameter case can be formulated as follows. (The variables {x(n)}
are the variables of a stationary process in the wide sense.)

Coefficients bj = bi,, (j < i'), are to be found which minimize

Et | x(n) -E bx(n-j) 1 21 = Ii bj e-2Tii"x2dF(X), (4.9)i-i'11 -
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where F(X) is the spectral function of the process. This can also be formulated
as follows. A chance variable p.,, is to be found, in the linear manifold of
chance variables {so} determined by x(n - 1), , x(n- ;,),minimizing

E{Jx(n) - pi 21. (4.10)

Alternatively, by using the right side of (4.9) instead of the left, a function
Xt(X) is to be found, in the linear manifold of functions {4(X) } determined by
e-2 iri ... e-2 ip minimizing

f I1 - D(X)I2dF(X). (4.11)

These last two formulations are important because they allow a direct ex-
tension to the full prediction problem, v = + o In that case a chance variable
(Pn co [a function (P,,(X) ] is to be found, in the closed linear manifold determined
by the chance variables x(n - 1), x(n - 2), * * * (in the closed linear mani-
fold determined by the functions e , e-4iX, *) minimizing (4.10) or
(4.11) for functions in the stated manifolds. Closure means closure with
respect to mean square convergence for the chance variables, mean square
convergence weighted by dF(X) for the functions of X. These formulations
are equivalent because there is an isometry between the chance variables and
the functions of X under discussion, as indicated by (4.9).
The usual argument shows that Pn sPn,2, * * * actually exist, and are de-

termined uniquely in their respective manifolds by orthogonality relations:
x(n) - nv, is orthogonal to x(n - 1),- * , x(n - v); x(n) - Pn O is orthogonal
to x(n - 1), x(n -2), * * * .

If prediction is to be practical, SPnx, must converge in some sense to Pnyco,
as P * a, and the following argument shows that there is actually convergence
in the mean. In the first place, because of the stated orthogonality relations,
x(n) - (n is orthogonal to 1Pn,1,* new. Hence

EJ x(n) - Knew|2} = EJIx(n) - Et | Pn,2} -0 (4.12)

The orthogonality relations just mentioned imply that the chance variables
IS.A = IPnv- rPnp,-11 form an orthogonal set, and with the use of this fact
and (4.12),

ZEEln~,.121 = E( | 1n,. 12} = lim E fvPn,,12} < Eflx(n) 12}. (4.13)

Hence the series E8n,, (and also the sequence {I n,,}) converge in the mean.

Since x(n) - On,, is orthogonal to x(n - N) when v > N, x(n) - I.i.M.Pn,,
is orthogonal to x(n - N) for all N. Thus this limit must be (,n ,,, as was
to be shown.
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The orthogonality of x(n) - n and x(n - m), (1 < m < v), can be stated
in the form

R(m) - Ebi(')R( j)=f [1(m biLz]mdF(X)=0,1<m v z=e2.iX.

(4.14)

Formally, if F(X) is the integral of its derivative F'(X), the problem then be-
comes, according to (4.14), that of finding a function 1-

1 - c(X) 1 - * * (4.15)

(where the series converges for z > 1), such that (1 -tJP)F' is of power
series type,

(1 -I4)F', .-co+cz+ (4.16)

(where the series converges for z < 1). This formulation is the key to the
practical solution of the prediction problem.17

If exact prediction is possible for a finite value of v', that is, if (4.9) can be
made to vanish, F(X) must be constant except perhaps for jumps at the zeros
of the polynomial in (4.9). Conversely, if F(X) is constant except for a finite
number of jumps, the polynomial can be chosen to vanish at those jumps.
Thus exact prediction is possible for v finite if and only if F(X) is constant
except for a finite number of jumps. In this case x(n) is a finite sum of ex-
ponentials with mutually uncorrelated coefficients [see (4.19) below].

Kolmogoroff has shown"8 that for v =i the prediction error (in the gen-
eral case, for arbitrary F) is given by

j | 1- ¢X(X) 2dF(X) = e*log F'(X)d (4.17)

According to this equality, the mean square error vanishes, so that exact
prediction is possible, if and only if the logarithmic integral diverges to-
Note that the practical problem of prediction consists in the evaluation of

bP(X) [or 4',(X)]. Some of the progress made in this direction, by Wiener and
perhaps also by others, has been classified. Wold and Kolmogoroff have shown,
in less cautious regions, that x(n) can always be written as a sum of two terms,
x(n) = xl(n) + x2(n), where, without going into the rather tricky details, the
xl(n) and x2(n) processes are not correlated with each other; the 4,(X) of the
x(n) process solves the prediction problem for the xl(n) process (giving exact

17 Note that the conduct of the functions defined by the series in (4.15) and (4.16) as
if -. 1 has been left unspecified. For the full details, see the original papers by Krein and
Kolmogoroff referred to in footnote 18. In most applications the expansions are valid for
z | > 1 - e and { z < 1 + e respectively, where e is some positive number. This is usually

true, for example when the spectral densities are rational.
18 Bull. Acad. Sci' URSS Ser. Math., vol. 5 (1941), pp. 3-14. See also Krein, C. R. (Dok

lady) Acad. Sci. URSS, vol. 46 (1945), pp. 91-94.
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prediction, with no error) and for the x2(n) process; and the x2(n) process, the
non-singular component, is a process of moving averages defined by a series
of type (2.2) in which the coefficients having negative subscripts all vanish.'9
The details of the continuous parameter case run parallel to those of the

integral parameter case. If F(X) is the spectral function, exact prediction is
possible if and only if

( log F'(X) dX (4.18)J. 1+X2 (.8

Types of spectra; point spectrum.-If F(X) increases only in jumps, say at
Xi }, the canonical form (2.11) becomes a series

x(n) = Zyme2'nxm (4.19)
m

where ym is the jump of y(X) at Xm,

Ym = l.i.m. [Y(Xm + E) - y(Xm - e)]. (4.20)

The ym are uncorrelated and the series converges in the mean. Exact predic-
tion is possible in this case, according to the criterion given above. If the
process parameter is continuous, (4.19) is replaced by

x(t) = Zyme2itXm. (4.19)
m

Slutsky has proved that (with probability 1) the sample functions x(t) are
B2 almost periodic in this case.20
As has already been remarked, any stationary process can be approximated

by one with a point spectrum, by replacing the integral (2.11) or (2.11') by
an approximating sum.

Types of spectra; absolutely continuous spectral function.-If F(X) is the
integral of its derivative F'(X), the canonical forms (2.11), (2.11') can be re-
written in the following forms:

x(t) = e2iritXpo(X)dY(X). (4.21)

rY2
x(n) = f e2Tinlp(X)dY(X), (4.21')

ol2 = F'
19 Wold, A Study in the Analysis of Stationary Time Series (Uppsala, 1938), p. 89; Kolmo-

goroff, Bull. Acad. Sci. URSS, Ser. Math., vol. 5 (1941), pp. 3-14, and Bull. Moscow State
Univ., Math., vol. 2, no. 6 (1941), pp. 24-27.

20 Act. Sci. Ind., vol. 738 (1938), pp. 47-50. See also Wiener and Wintner, Amer. Jour.
Math., vol. 63 (1941), pp. 809-810.
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Here so(X) is any Lebesgue measurable function such that | si 2 = F'; Y(X) is
the variable of a process with uncorrelated stationary increments (wide sense),
determined by

Y(x) dy(X) (4.22)

and y(X) is the variable in (2.11) or (2.11'); E{ ldY(X)12} = idXi .21 Note that
there is considerable choice for op(X); this will be useful below.

It has already been shown above that the spectrum of a stationary process
of moving averages is absolutely continuous. In fact, in the discrete parameter
case the spectral density of the process defined by (2.2) with uncorrelated
summands is given by (4.2) with dF(X) = const. dX; in the continuous param-
eter case, the spectral density of the process defined by (3.19) is given in
(3.21). Conversely, if the spectral function F(X) is absolutely continuous, the
process is a process of moving averages. A Fourier integral proof will be given
for the continuous parameter case; a corresponding Fourier series proof is
easily carried through for the discrete parameter case.22 In order to prove the
theorem, it will be convenient to write (4.21) in the form

x(t) = f eixf*(X)dwu*(X), UM = Y, f* = o (4.21")

Now this is precisely the form on the right side of (3.31), which equation then
shows that x(t) is the moving average

x(t) = f f(t - s)dw(s), (3.31')

where f, w are the Fourier transforms of f*, uw.
It follows from this theorem that if xl(t), . * * , XN(t) are the variables of

processes of moving averages, and if each xi(t) is uncorrelated with. every
xi(s), ($ j; all s, t), then the sum xi(t)+ * + xN(t) is still a process of
moving averages; in fact, the spectral density of the sum is the sum of the
spectral densities, in this case.

Types of spectra; integral parameter, rational spectral density in e2t)i.-If F(X)
is the integral of a rational function of z = e2liX, the process is of a particu-
larly simple type. Since F'(X) is the value on z = 1 of a rational function
of z which is real on Iz = 1, it follows from the Schwarz reflection principle
that to each zero (pole) at a in | z < 1 there corresponds one of the same

21 The definition of Y(X) must be slightly modified if p(X) may vanish.
22 This theorem in the discrete parameter case is due to Kolmogoroff, Bull. Moscow State

Univ., Math., vol. 2, no. 6 (1941), pp. 1-40, theorem 16. We assume in this discussion that
Ely,,} = 0 in (2.2); the only restriction on the as's is then that 2 ail2 < a. Correspond-
ingly we assume that E(x(t) } = 0. j
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order at the inverse point 1/a, and, since F'(X) _ 0, that the zeros on z = 1
are of even order. There can be no poles on = 1, since F'(X) is integrable.
It follows that F' can be written in the form

7rZ- ai) (QXZ- 1) wiz- ajl2
F'(X) =|F'(X) |= const. 1 = const. j 1 2 (4.23)

k Iv

= IA(z)2 ,o<1jGli, O<I1ki <1,
IB(Z)12

where the polynomials A, B, with no common factors, have their zeros in
o < | zj _ 1 and 0 < | zj < 1 respectively, as indicated, and are otherwise
arbitrary. If the process is a real process, F'(X) is an even function of X, from
which fact it follows that A and B can be assumed to have real coefficients.
The variables {x(n) } of the most general process of this type can therefore be
written, if E{x(n)} = 0, in the form

x(n)=f e21inX A(ej2 dy(X), Efldy(X)I2} = ldXI, (4.24)

where y(X) is a process with stationary uncorrelated increments. The correla-
tion R(n), given by

R(n) = f e2tinXF'(X)dX = 2!-fzt-1F'(X)dZ, z = e2riX, (4.25)
jZI-1

is the coefficient of 1/Zn in the Laurent expansion of a rational function of z,
convergent in an annulus enclosing zI = 1. The values of R(n) therefore
decrease exponentially when i--n| ; x(m) and x(m + n) thus become un-
correlated rapidly as n increases.
The linear prediction problem is easily solved explicitly for spectra of this

type. Let A(z), B(z) be given by

{A(z) = aoz + * + a., aoa. . 0, (4.26)

*B(z) = bozb + + bb, bo bb # 0.

The F'(X) can be written in the form

F'(X) - A(z) 12 = Zaz 7_Z zb-(2
B(z) 2 :bjZb-ilbjZi .(.7

j j
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The function 1 - <, which solves the prediction problem can be chosen to
satisfy (4.15) and (4.16) as follows:

1 _so-= B(z)ao Za-b (4.28)
A(z)bo

An expansion of type (4.15) is valid for I z 2 1, if A(z) does not vanish on
| z = 1, since then 1 - 4), will be analytic outside and on the circle, with
value 1 at a. An expansion of type (4.16) is valid for (1 - c,)F', since

Ediziao,
Ebzibo (4.29)
j

which defines a function of z analytic for | z | . 1. If A (z) has zeros of modulus
1, (4.15) cannot be checked without going more deeply into the significance
of (4.15) than was done above. The definition (4.28) is still admissible, how-
ever, since the integrability conditions on 1 - are certainly satisfied and
40,(X) is in the proper manifold; the orthogonality relations which 1 - 4(X)
should satisfy are then easily checked directly.
The prediction error can now be evaluated explicitly, as follows:

| -¢=fi|a° | d = 2 (4.30)

With the use of (4.27) and (4.28),

ao2 ao 2

log [|1-¾zIF'(X) ]2dX= log[ F(X)] dX=log
+ log F'(X)dX. (4.31)

On the other hand, [(1 - (jF' ]2 is, according to (4.29), the boundary func-
tion on | z = 1 of a function which is analytic and non-vanishing in | z | < 1.
Hence

1 r log [1(1- ,)F']2 dz = 2 log [(1 -boo)F'1lo= 2 log |? 2 (4.32)

and since the real part of the left side of (4.32) is the same as the left side of
(4.31) it follows that

log lab9ol =Jb log F'(X)dX, (4.33)

which verifies (4.17) in this particular case.
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In the case under discussion, it is possible to find N - 1 auxiliary variables
x2(n), *** ,'XN(n), where N = max (a + 1, b), such that the N-dimensional
process with determining variables {xl(n) = x(n), , XN(n) } is stationary
(wide sense, or strict sense if the xl(n) process is stationary in the strict sense)
and has the following very simple prediction properties. The linear least-
squares prediction of each xj(n) in terms of the complete past of all variables:
x*(m) for k < N. m < n, is simply a linear combination of xl(n - 1), * * *,
XN(n - 1)23. Conversely, if N - 1 such auxiliary variables can be found, the
spectral function of the process must either be the integral of a rational func-
tion of z = OrO, or differ from such a function by a function increasing only
in a finite number of jumps. If there are J jumps, N = max(a +J + 1, b + J),
where a, b have the same meaning as above; if A(z)- 0, set a = - 1, b = 0.

In particular, suppose that the numerator polynomial is of zero degree,
A _ const. Then, according to the evaluation (4.28) of 4 O, the linear least-
squares prediction of x(n) in terms of its complete past is a linear combination
Ebjx(n - j) = n of x(n - 1), , x(n - N), N = b. In this case the
I
chance variables { s defined above in the discussion of prediction are all the
same for v _ N. This special case is worth examining in more detail at the
risk of some repetition. The regression equation works out very elegantly,
with the use of the normal form (4.24):

fA2 bOZn+ ..+bbZn-bdybox(n) + blx(n - 1)+ * * * + bbx(n - b) Y2 B*z** +_ dy(X)

rY2= zn-bdy(X) = rn (4.34)
(f Y _n-m A2) (A Zb-r

E{x(n-m)iX(n)} =Efl BI ),dy(X)I)Jzn-bdy(X)> = dX (435)BjB(zj) AB (z)

= Zb-ml [-b + higher powers of ] dz=O, m> 1,

and
rY2 rY V2

= E{Jf zn-bdy(X)J zm-bdy(X)} = J zn--dX = °n m, (4.36)

2' Doob, Annals of Math. Stat., vol. 15 (1944), pp. 229-282 theorem 3.9. A stationary N-
dimensional process (wide sense) is one whose first and second moments are stationary; the
expectations E~xi(s) =

El [x(s +± t) -in ] [Xk(S) -m k] = rik(t)
are independent of s. The referenced paper treats only real Gaussian processes. However,
the transition to complex processes is inconsequential, and, as stated in the introduction in
that paper, the hypothesis that the processes are Gaussian is irrelevant to the present con-
siderations. In the real Gaussian case, an N-dimensional process with the simple prediction
properties described is a Markoff process. See Cram6r, Ann. of Math., vol. 41 (1940), pp.
215-230, for the basic theory of N-dimensional stationary processes.
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whereknm is the Kronecker 5. Thus the q. determine a stationary unself-
correlated process and n. is uncorrelated with x(n - 1), x(n - 2), * - - . The
x(n) process is thus a process of linear autoregression and (4.34) (divided
through by bo) is the regression equation; the mean square error is 1/ bo | 2.

Types of spectra, continuous parameter, rational spectral density.-If F(X)
is the integral of a rational function of X, an argument similar to that used in
the integral parameter case shows that F'(X) can be put into the form

IA(X)12 EajXa-iI2
[(X)= = j (4.23-)

j

where A, B are polynomials with no common factor, of degrees a, b respec-
tively, whose zeroes have positive or zero imaginary parts, and positive
imaginary parts respectively. Since F'(X) is integrable, b > a. The canonical
form becomes, if E{x(t) } = 0,

x(t) = e2w'it A(X) dy(X), El 1dy(X)j2J = ld\l; (4.24')

the y process is one with stationary uncorrelated increments. If the process is
real, A (X) and B(X) are even, that is to say, A (it) considered as a polynomial
in t can be assumed to have real coefficients.
The correlation function R(t) is the Fourier transform of the rational func-

tion F' and is therefore a sum of exponentials. Thus R(t) decreases exponenti-
ally when |ti ma; x(s) and x(s + t) become uncorrelated rapidly as | t in-
creases.

Just as in the corresponding integral parameter case, the linear least-
squares prediction problem can be simplified by the use of auxiliary variables.
In fact, b - 1 auxiliary families of chance variables {x2(t), * * * , Xb(t)},
( ca < t < co ), can be found with the following properties: The b-dimensional
process with determining variables {xl(t) = x(t), * * *, Xb(t) } is stationary
(wide sense, or strict sense if the x(t) process is stationary in the strict sense).
The linear least-squares prediction of each xj(t) in terms of all the xk(T) for
k <b, r .s <t is simply a linear combination of xl(s)*. * * , xb(S).24 Conversely,
if N - 1 such auxiliary variables can be chosen, the spectral function of the
process must be either the integral of a rational function of X or differ from
such a function by a function increasing only in a finite number of jumps. If
there are J jumps, N = b + J, where b has the meaning given above.

In particular, suppose that the numerator polynomial A(X) is of degree
zero, A const. Then it has been shown25 that x(t) will have b-1 derivatives,
all determining stationary processes, and that they can be chosen as the
auxiliary variables, xj(t) = x'i-l)(t). The linear least-squares prediction of
x (t) in terms of x(r) for T.s< t is therefore a linear combination of x (s), x'(s),

24 Doob, Annals of Math. Stat., vol. 15 (1944), pp. 229-282, theorem 4.9.
25 Doob, op. cit., theorem 4.9 and corollary.
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* *(b1) (s). Moreover (when s -*- t) this prediction formula becomes a linear
differential equation [corresponding to the difference equation (4.34],

bo (27ri)b+ bi (2iri)b1- + + bbx(t) =y'(t), Et{ dy(t) 2} = | dt *. (4.34')

Here the chance variable D(t) is a chance variable determining a process with
uncorrelated stationary increments, the exact analogue of the process involved
in (4.34). Unfortunately, we have seen that y'(t) may not exist, and (4.34')
must therefore be interpreted symbolically; if (a,f3) is any finite interval, and
if f(t) is any function defined and continuous in that interval, then

___

I f(t)dX(b-1(t) = I' f(t)X(b1)(t)dt
(27ri)if. (27ri) J

(4.37)

+ * * * + bbf f(t)dx(t) = f f(t)dD(t)

with probability 1.26 The y'(t) in (4.34') is uncorrelated with x(s) for s < t,
that is, y(t + h) - y(t) is uncorrelated with these variables if h > 0, and it is,
therefore clear that this x(t) process is the proper analogue of the process of
linear autoregression in the discrete parameter case.

Equation (4.37) can easily be obtained directly, with the use of the normal
form (4.24'):

(2irj)bo f(t)dx(b-l)(t) + + bbJ f(t)x(t)dt (4.38)

fa(t)e2ritxdt dy(X) = f f(t)dy(t),

where the P process is a Fourier transform of the y process [see (3.27) 1. This
simple application shows the formal simplifications gained by the use of these
normal forms.

Spectra with rational density functions are those most frequently encoun-
tered in the applications, because of their intimate connection with finite
systems of linear difference and differential equations. In the next section this
connection will be illustrated in detail.

26 The integrals in (4.37) are ordinary integrals except for the one on the right, and the
first on the left. The former has already been defined, and the latter is defined as the limit
in the mean of the usual Riemann-Stieltjes sums, a limit which exists because of the existence
of the corresponding limits for the other terms in the equation; see also the direct derivation
of (4.37) given below.
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5. Physical application
The following discussion shows how the ideas of the preceding sections are

applied to physical problems involving the Brownian movement, that is, to
problems involving spontaneous thermal motion. In these problems, no matter
what the background, there is one common basis if the mechanisms involved
are linear; non-linear problems are considerably more complicated.

It is supposed that events occur in a random manner at a uniform rate, in
such a way that the numbers of events occurring in any succession of non-
overlapping time intervals are mutually independent. These hypotheses are
equivalent to the hypothesis that the times of the events go in accordance
with the Poisson process with stationary independent increments, discussed
in section 3. The probability that n events occur in a time interval of length
t is given by

-crtCntn=0,1,* , (5.1)

where c is a positive constant, the rate at which the events occur. In the appli-
cations considered, each event has a certain intensity u, and has an effect uf(t),
t time units after its occurrence (linearity of mechanism). The number uf(t)
may be the current in an electric circuit at time to + t ascribable to the passage
of an electron at time to from filament to plate of a vacuum tube in the circuit;
the momentum of a pendulum suspended in air ascribable to the impact on it
of an air molecule t seconds before; etc. It is supposed that u is a chance
variable with finite first and second moments. The simplest case is that in the
shot effect, the first example above, when each event is like any other event
(unless it is assumed that electrons can go over in groups), so that u is a
chance variable taking on some value uo with probability 1. In the pendulum
example, u is evidently more complicated.27 The total effect is given by the
sum of the effects of each previous event (linearity of mechanism):

(t) = Ef(t - tj)uj, (5.2)
j

where ti, t2, * are the times of the events occurring before time t and ul, u2'
* . .are the intensities at these times. The ui are independent chance vari-
ables, each having the distribution of u. These events are the jumps of the
sample function of a y(t) process with stationary (strict sense) increments,
and (5.2) can therefore be written in the form

-a(t) = f(t - s)dy(s). (5.3)

27 In the pendulum problem the effect depends on the state of the mechanism, that is, on
the velocity of the molecule relative to the pendulum bob. Thus there are two complications,
the variation in molecular velocity and the variation in pendulum velocity. The effect of
impacts is equivalent to an average slowing down proportional to the pendulum bob velocity
plus impacts distributed symmetrically on the two sides of the pendulum. It is actually the
latter impacts which are considered here.
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Thus a(t) determines a stationary process (strict sense) of moving averages
(see section 3); we set f(t) = 0 for t < 0. It will be useful to evaluate the follow-
ing first and second moments:

f(t)dt = a, Iffit)|2dt = b, (5.4)
E{u} = a E{u2} =J 3.

E{y(s + t) - y(s)1 = cat,
(5.5)

EJ y(s + t) - y(t) -catI 2 = c(3t.

Et (t)l = cafo f(t)dt = caa, (5.6)
{ [i(t + h) - caa] [ia(t) -caa ]} = cO,f eihxif*(X)12dX,

where f* is the Fourier transform of f [see (3.21) ]. The evaluation of the
dispersion of ta(t),

EJ | (t)-caai 21 c='f If(s)I 2ds, (5.7)

when applied to the shot effect and similar phenomena in which u-uo, so
that ( = a2, is known to physicists as Campbell's theorem.28 The fact that the
expectation is also the time average,

lim fTL | (t) -cal 2dt = EtJ | (t) - caa 2} (5.8)

(with probability 1), is simply the strong law of large numbers applied to this
particular process.29
The characteristic functions of y(t) - y(O) - cat and a (t) - caa are easily

evaluated in terms of the characteristic function of u, 4t(z):
z2

logE {e16[l(t)-Y(O)-cat]} = ct [,P(z)- 1 - iaz] - cto - + co (z2) (5.9)
2

logE {e"[t@(t)-caa] } = cf (4t [zf(s) ]- 1-izaf(s))ds =

Z2 +cf.0[(S2-c(3b - +Ici o[f(s)2z2 Ids. (5.10)
2 Jo

Now in the applications, c is large compared to the time constants of the
physical system involved, and this effectively smooths the y and dis-

28 See A. Khintchine, Bull. Acad. Sci. URSS (1938), pp. 313-322, for a general treatment
of Campbell's theorem and extensions which goes far beyond that given here.

29 The strong law of large numbers is applicable since t (t), and therefore jt&(t) -c aa 12,
define stationary processes in the strict sense. The fact that the limit in (5.8) is constant can
be deduced from the fact that the transformation of chance variables induced by transla-
tions of the time axis is metrically transitive. [See Doob, Trans. Amer. Math. Soc., vol. 43
(1937), theorem 3.2.]
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tributions. In order to see this, let *9v, so,, be the characteristic functions of
[y(t) - y(O) -cat]/cH and of [a(t) - caa ]/cm respectively. Then

Flog~~OVZ)=tZ2 z2 OtZ2~log 'o'(z) = 3t+ cQ. -jt2

log .o(z) C3bz2 +cj' [f(C)z2] ds- - 3bz .

In other words, the y and.. variables are asymptotically Gaussian. An ex-
tension of the preceding argument to the consideration of n, t values simul-
taneously shows that the y and a processes are asymptotically Gaussian
processes. Clearly the limiting y process has stationary (strict sense) inde-
pendent increments and the limiting a process is stationary (strict sense).30
In physical applications it has been customary to take the y process as Gaus-
sian in the first place. The process is then automatically Gaussian. Thus in
all these applications there will be a solution either of the form (5.3), where
y(s) determines a process with stationary independent Gaussian increments,
or possibly of a sum of independent terms of this same form. (It can be shown
that such a sum can be reduced to a single term of this form.) This standard
form will be verified in an important particular case, leading to rational
spectral densities, in the concluding part of this section.
The use of Gaussian distributions is sometimes justified a posteriori by the

fact that the Maxwell distribution of particle velocities is Gaussian. The pre-
ceding discussion shows that there is no mathematical necessity for this Gaussian
hypothesis, however. There are many other y(s) processes with independent
stationary (strict sense) increments, and with finite second moments.

Spontaneous currents in electrical circuits.-In was realized years ago that
the spontaneous thermal motion of electrons in a conductor must result in
spontaneous surges of current, dependent on the absolute temperature of the
conductor.31 In the simplest treatment of electrical networks, the inductances,
resistances, and capacitances are lumped as separate units. In such a treat-
ment it is natural to suppose that each resistor R is actually a generator with
internal resistance R and of appropriate output characteristics. Let y(t) be
the electromotive impulse delivered by the generator between times 0 and t.
The actual electromotive force F(t), whose integral is y(t) in normal usage, is
considered to a first approximation to be unselfcorrelated, with zero means:

IE{F(t)} = 0, (5.12)

_E{F(t)F(s)} = 0 if t - s.

30 See a series of papers by A. Blanc-Lapierre, C. R. Acad. Sci. Paris, 1943-1946, which
deduce this result in the same general way.

31 See, for example, H. A. Lorentz, Les theories statistiques en thermodynamique (Leipzig-
Berlin, 1916), pp. 50 98-99. A detailed discussion of this and related phenomena will be
found in E. B. Mouliin's book Spontaneous Fluctuations of Voltage (Oxford, 1938). Recent
valuable treatments have been given by M. C. Wang and G. E. Uhlenbeck, Reviews of Modern
Physics, vol. 17 (1945), pp. 323-342, and by S. 0. Rice, Bell System Technical Journal,vol.23
(1944), pp. 282-332; vol. 24 (1945), pp. 46-156.
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Actually, y(t) is considered, rather than F(t), and, as suggested by (5.12), it
is supposed that the y(t) process is a process with uncorrelated increments
and zero means. From physical considerations it is clear that the increments
of y(t) are stationary (strict sense). Moreover, the spontaneous voltages in
separate resistors are certainly mutually independent, and have the same
average properties for identical resistors. Hence y(t) considered as a function
of R must be a process with independent stationary (strict sense) increments
also,

E{y(s + t) - y(s)} = 0, (5.13)

EJ | y(s + t)-y(s) 1 2} = const. RI ti.

Some light can be shed on the constant in (5.13) on a priori grounds. The
constant must surely be constant only at a particular value of the absolute
temperature T, and clearly must actually be a multiple of T. Moreover, it is
a well-known principle of molecular physics that wherever there is a T,
Boltzmann's constant k cannot be far behind. Thus the constant should ideally
be some simple multiple of kT. A more detailed analysis, involving the prin-
ciple of equipartition of energy, can be used to evaluate this simple multiple.
It is 2.33

{E{y(s + t) -y(s) = 0, (5.13')

IEfl y(s + t) -y(s) 1 }= 2kTRI t| -

Finally, it is assumed that the y(s) process is a Gaussian process, in accordance
with the general principle developed in the beginning of this section.
The dispersion evaluation (5.13') has been seen in section 3 to have a simple

frequency interpretation; the real form of the frequency spectrum of the
electromotive force (remember that both this force and the frequency spectrum
are only symbolic) has constant density 4kTR. Nyquist deduced this fre-
quency spectrum directly, in order to explain the spontaneous voltages
measured by Johnson.34
The problem of analysing the spontaneous thermal currents in an electrical

network is the problem of solving the Lagrange equations in the mesh charges:

Z [LmnQ`n(t) + RmnQ'n(t) + GmnQn(t) ] = Em(t), (5.14)
n

where the voltages {Em(t) } are chosen to give the determining voltages as-
cribed to the resistors. The solution thus gives the solution to any system of
coupled harmonic oscillators with this type of driving force, for example, to a
mechanical system subjected to external molecular impacts.

32 Strictly speaking, an F(t) process satisfying (5.12) and not vanishing identically is not
measurable, and therefore F(t) cannot be integrated. Corresponding to this fact is the fact
already noted several times above that y'(t) does not exist in general.

33 See, for example, H. A. Lorentz, op. cit., p. 49; the value of this constant will be deduced
by essentially the same method at the end of this paper.

34J. B. Johnson, Phys. Rev., vol. 32 (1928), pp. 97-109; H. Nyquist, Phys. Rev., vol. 32
(1928), pp. 110-113.
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Wang and Uhlenbeck55 solved the system (5.14) with the given stochastic
voltage sources in the sense that they found the transition probabilities for
the 2N-dimensional stochastic process determined by the variables Ql(t), * * *,
QN(t), Q'l(t), * **, Q'N(t). This process is Gaussian and asymptotically
temporally homogeneous (t -m -r), and in fact actually so if the appropriate
particular solution of the system (5.14) is chosen. Wang and Uhlenbeck found
the probability distribution by solving the Fokker-Planck equation for the
transition probabilities, using the fact that this process is a Markoff process.
The system (5.14) itself was used

a) implicitly, to justify by the fact of its linearity the use of the Fokker-
Planck equation (that is, the inference that the Q, Q' process is a
Markoff process);

b) explicitly, to derive the coefficients in the differential equation.

The following method gets at the distribution by finding the specific solution
for the charges and currents. Two alternative approaches will be given, the
first to exhibit an approach which can be used in all linear problems, the
second one specifically adapted to the system (5.14).
A slightly different problem will be considered first, which shows the

principle of the method to be used. Given any two points of the network, A, B,
find the spontaneous voltage generated between them. Let the resistors in the net-
work be R1, * . . , RN and let z. (w) be the transfer impedance from Rn to AB
at frequency w.6 Then if z(w) is the impedance between A and B at frequency

w, the steady-state voltage at AB due to the voltage eTrni at R isz() e2TI.wt

and more generally the steady-state voltage across AB due to a voltage E"(t)
at R. is

Vn(t) = f An(t - s)En(s)ds, (5.15)

where

An(t) = f e2iwt Z (W)) dw.37 (5.16)

:' Op. cit.
36 The transfer impedance is defined as follows: a voltage source with output e2Tilt and

internal resistance Rn placed in the circuit instead of Rn gives rise to a steady-state short-
circuit current eg2lilt/zn(w) between A and B.

37 This standard result is clear formally from the fact that if En (s) is written as a Fourier
integral,

En(8) = f e2iw8E.*(W) dw,

the voltage across AB is
rXz(w)Vn(t) = E.*(w) e2.i.& dw,f-

since the factor z(w)/zn(w) is introduced at each frequency. This evaluation of V. is equiva-
lent to (5.16) because of the relation between Fourier transforms and convolutions.
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In the present application, En(t) corresponds to a real Gaussian process with
stationary independent increments, whose variables {y.(t) satisfy

E{dyn(t)} = 0, EJ | dy(t)1 21 = 2RnkT|RdtI, (5.17)

where T. is the absolute temperature of R,, in the sense that

En(t)dt = dyn(t). (5.18)
Hence

V.(t) = f A'(t - s)dy.(s)Y'3 (5.19)

It has already been seen that this integral makes sense if | An(t) 12 is integrable.
In the present application it is well-known that each zn is rational, with zeros
only in the upper half-plane. It follows from elementary residue theory that
A m(t) vanishes for t < 0, and decreases exponentially as t - + I. The full
voltage across AB is therefore given by

At
V(t) = A.(t - s)dy.(s). (5.20)

n --

The fact that the upper limit of integration is effectively t could have been
deduced from physical principles, since the solution at time t could hardly
depend on the thermal voltages at later times.
Thus V(t) has the form indicated by the general argument initiating this

section. The correlation function of the stationary (strict sense) Gaussian V(t)
process can now be written down, with the use of the general analysis of
processes of moving averages made in section 3 [see (3.21)1,

(E{ V(t)} = 0, (5.21)

{EtV(t+h) 7(t)} =2kET.Rflf Z(W) 2 e2iwh dw.

Since V(t) is actually real, it is customary to use the real form of the frequency
spectrum,

Et V(t + h)V(t) = 4k ZTnRRnJ' Z(,W) i2 cos 2wwh dw, (5.22)

so that the spectral density (real form) of the V(t) process is

4k TnRn Iz(W)1 2

" This is of course only one of the particular solutions, chosen to give a stochastically
steady state.
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This evaluation of the density is due to F. C. Williams, who showed that if
T. = T is independent of n it reduces to Nyquist's formula,

4kT (real part of z).A9 (5.24)

The solution of (5.14) for the charges and currents is essentially the same
problem as that just treated. For simplicity we shall suppose that all the
resistors have the same temperature, T. If 1/P.. is the transfer impedance be-
tween the mth and nth meshes,40 a particular solution to (5.14) is given by

{Q'm(t) = zf Amn(t -s)En(s)ds, (5.25)

lQ'.(t) = Er A'mn(t s)En(s)d,
n a

where

{Amn(t) = wediwtPmnl) d, 41 (5.26)

A'mn(t) = e2itmPn(w)dw.

These equations are the analogues of (5.15) and (5.16). In the present case,

En(t)dt = dyn(t), (5.27)

where {y.(t) } are the variables of a real Gaussian process of stationary inde-
pendent increments, with

Edy.(t)} = 0,

E {| dYn(t) 121= 2kTRmn |dt|, (5.28)

Eldy.(t)dYn(O)}= 2kTRmnn|dti|.
Each yn process is a sum of independent processes corresponding to the re-
sistors in the nth mesh. This means that the yn process and the ym process
are not mutually independent if the mth and nth meshes have common
resistors. This explains the last line of (5.28). The correlation matrices

Et Q(t+h (t)l (Et Qm(t + h) Qn(t)1)
E Q(t + h)Q'(t)1 (E Qm(t + h)Q'n(t)})
E{Q'(t + h)Q'(t)l (E{Q'm(t + h)Q'n(t)1)

39 H. Nyquist, Phys. Rev., vol. 32 (1928), pp. 110-113; F. C. Williams, Jour. Inst. Elec.
Eng., vol. 81 (1937), pp. 751-760.

40 The matrix (--mn) is the inverse of the matrix of complex mutual impedances between
the meshes; -mn is the transfer admittance.

41 It is easily verified that tmn(W)/W remains finite when w -* 0.
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are easily calculated, applying the methods already used in finding the cor-
relation functions of processes of moving averages. The results are, if the
matrices R, o b* are given by

R = (RmR) ; = (¢mn) * = ( ; =

EJ Q(t + h) Q(t) } = 2kTf e2twah (2RM dw (5.29)

E(Q(t + h) Q'(t)} = 2kTf e2riwh pRp dw,

E{ Q'(t + h)Q' (t) } = 2kTf Oi iwh pRp*dw.

The preceding discussion has been indirect. The quickest way to gain real
insight into the solutions of the system (5.14) is to solve the system explicitly.
This can be done very simply, as follows. Definite the N-dimensional matrices
L, R, G by

L = (Lmn), R = (Rmn), G = (Gmn), (5.30)

and the 2N-dimensional matrices U, V, W by

U= ( V=
W = U-

L )
531

X R XLa L-WR

Let Q be a 2N-dimensional vector with components Q,(t), *, QN(t), Q'1(t),
*,Q'N(t), and finally let y(s) be the 2N-dimensional vector with components

(0, , 0, yl(s), ... , yN(s), where the y processes are defined as above, satis-
fying (5.27) and (5.28). Then the system (5.14), with the stochastic voltages
inserted in place of the En, can be written in the form

UQ'(t) + VQ(t) = y'(t). (5.32)

The general solution of this symbolic equation is

toQ(t) = e w(t - to)Qq0) + e-w( sU-ldy(s), (5.33)

where to is any initial point. If to -+>- -a, this becomes the stationary solution

Q(t) = ft e-w(t-8) U-1dy(s). (5.34)

Here we are using the fact that R, L are symmetric and positive definite to
ensure that the transient term disappear and that the integral in (5.34) con-
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verge. (The integrand decreases exponentially as the argument goes to in-
finity.) The particular solution (5.34) is the one obtained by a different method
above. This solution is a stationary process of moving averages, in which Q(t)
involves only past thermal voltages, as required by the physics background.
This property is shared by any solution (5.33) if Q(to) is chosen to be inde-
pendent of future thermal voltages, that is, independent of y(T) differences for
7 > to. If this is done, Q(t) will depend only on Q(to) and on the thermal voltages
at times between to and t. Now suppose the initial conditions have been so
chosen. [In particular, one such choice will give (5.34), at least for t _ to.]
Then, if t > ti > to,

Q(t) = e-w(t - Li) Q(t1) + LL e-w(t U-'dy(s), (5.35)

and the difference
Q(t) - e -W(t - Li) Q(t1)

depends only on thermal voltages after time t1. Hence this difference is inde-
pendent of Q(s) for s < ti, and we have proved that the probability distribu-
tion of Q(t), if Q(r) is preassigned at ti > t2 > . . . _ to has mean value
e -W(t-ti) Q(t1) and dispersion that of the last term in (5.35). Thus this dis-
tribution is entirely unaffected by the values assigned to Q(t2), * . - . In other
words, the Q process is a Markoff process.42 The details of the calculation of
the correlation matrix of the process will be omitted. The matrix has been
found above by a different method.
As an application of these methods, which will clarify the significance of

the results, we solve the Lagrange equation for a single mesh consisting of a
resistance connected across a condenser,

RQ'(t) + Q/C = y', E{dy(t)} = 0, (5.36)
E{Jdy(t)12} = 2kTRjdt|.

(Note again that this equation is interpreted symbolically, since y' does not
exist.) The stationary solution is

1 rt _(t-8)
Q(t) = e RC dy(s). (5.37)

In order to see the significance of the spectrum more clearly, we write Q(t)
in the normal form (2.11), using (3.30),

Q(t) = J 1 dy*(s) E{dy*(s)} = 0 (5.38)
u+ 27riRs

Elidy*(s)121 = 2kTRidsi,
42 The form (5.34) is essentially in a normal form of an N-dimensional Gaussian-Markoff

process; see Doob, Annals of Math. Stat., vol. 15 (1944), theorem 4.3.
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where y* is the Fourier transform of y. Then the spectral density in the com-
plex form is

2kTR (5.39)
F'(X) = 1

+ (2irRX)2

and the correlation function is

r e2rix
E{Q(t + h)Q(t)} = 2kTRJ 1 dX. (5.40)

- 2 + (2wrRX)2

In particular,

E{Q(t)21 = 2kTRf kTC. (5.41)
(2wrRX)2

This equation is in accordance with the principle of equipartition of energy,
since.

E1Q(t)2/C) = kT. (5.42)

Conversely, suppose that we had stopped at (5.13), when it had been deduced
that the y process was a Gaussian process of stationary independent incre-
ments with zero means, and E( | dy(t) 21 = const. | dti but with the value of
the constant left undetermined. Then (5.42) could be used to obtain the con-
stant, 2IRT.

Formally, it might be expected that (5.38) could be differentiated, giving

rXe2,ru82w-sQ'() = ~~ dy*(s), (5.43)
C+ 2wiRs

which might be expected to imply that Q'(t) determines a stationary process
with non-integrable spectral density

2kTR (21X)2 (5.44)
c2 + (2,wRX)2

In fact, non-integrable spectral densities have been derived in essentially this
way, and have caused some confusion. These operations have not been mathe-
matically correct, however. According to (5.36), Q'(t) does not exist, since
y'(t) does not exist, and corresponding to this fact the integral in (5.43) does
not converge. In physical terms, there is no current in this mesh; the charges
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do not change smoothly enough! If there were an inductance in the mesh also,
(5.36) would be replaced by

LQ"(t) + RQ'(t) + Q(t)/C = y'(t), (5.45)

and in this case there would be a current Q'(t), but the current derivative
Q"(t) would not exist. Mathematically speaking, then, there is no difficulty
with these non-integrable spectral densities which have arisen to plague in-
vestigators; they pertain to the spectra of non-existent functions, pertaining
to specters, not spectra. From a physical standpoint, it should be noted that
the reasoning which led to the mathematical hypothesis that y(t) was the
variable of a process with independent increments cannot be taken too seri-
ously; the increments of y(t) either as time increases or along the length of a
resistor are only independent, or nearly so, if the intervals of measurement
are not too close together. A more reasonable hypothesis at the next stage of
approximation, even from the point of view of classical physics, might well
make the y process regular enough to afford derivatives, in which case the
non-integrable spectral densities would not arise, or at least would arise at a
different level. Such a modification would lose some of the formal elegance of
the theory as outlined here, but enough is known about the most general
process with stationary increments to give a complete spectral theory with no
essentially new difficulties.


