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1. Introduction
In the present paper several alternative definitions of the familiar symbol x2

are discussed. The body of the paper is divided into two parts. In the first part
(sec. 3) a class of estimates is defined, termed best asymptotically normal esti-
mates (BAN estimates, for short), all having the same asymptotic properties
as the maximum likelihood estimates but varying in the ease with which they
can be computed. In the second part (sec. 4) a class of tests is developed which
are all equivalent in the limit to X-tests. Both the computation of BAN esti-
mates and the application of the statistical tests considered involve the mini-
mization of the alternatively defined x2's.
Some of the results given below were announced in 1940 [8].*

2. General conditions
The problems considered refer to the following situation. Consider s se-

quences of independent trials and let n1 denote the number of trials in the ith
sequence. Each trial of the ith sequence is capable of producing one of the vi
mutually exclusive results, say

Rijl, Ri,2y . . .*, Ri,,,i (1)

with probabilities

Pil,Pi,2y-**xii (2)
where

Pi'

E Pi i= 1. (3)
j =1

Denote by nii the number of occurrences of Rii in the course of the nj trials
forming the ith sequence. Also let qii =~ niJni. Finally letN = nj + n2 + * * -

+ n8 and Qi = ni/N. The symbols n,,, and qs,j will be treated as random vari-
ables. The Qi's will be considered as constants. N, the total number of observa-
tions, will be assumed to increase without limit.
The problems treated below arise when the values of the probabilities pisi are

unknown but it is given that each pii (i = 1, 2, ,s; j = 1, 2, * * *, vi) is a
specified function of several parameters 01, 02, * * , Bk. The reasoning which
follows does not depend very much on the value of k, provided k _ 2. In order

* Boldface numbers in brackets refer to references at the end of the paper (p. 273).
[2391
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to simplify the writing we shall assume k = 2. Thus we shall consider the
situation where it is known that

Pii = fii(01, 02) > 0, i = 1, 2, ,s; j= 1, 2,p . * vi , (4)

with the functions fi, satisfying s identities

vi

Efi~i(0, 02) _1, i 1, 2, *- (5)
j=1

It will be further assumed that the inequalities (4) and the identities (5) hold
for the whole range of variation of 01 and 02. There will be no need to specify
this range. The functions fi,, will be assumed to be continuous with respect to 0A
and 02 and to possess continuous partial derivatives up to the second order. We
shall use the notation

fi,= = Of , I (6)

Then the identities (5) imply, for each i = 1, 2, * * , 8,
v; v

Efi k E f - °0. (7)

The parameters 01 and 02 will be assumed independent, meaning that there
exists at least one determinant

Aiaj~ fiji,2
0O. (8)

fa,$,l fa.,,2

In the situation considered, where the values of the pii are unknown, the
actual values of 0A and 02 are also unknown. Let these actual values be pi s0, 010,
and 020.

3. Best asymptotically normal estimates
The BAN estimates are a generalization of the maximum likelihood esti-

mates (ML estimates, for short). As proved by Hotelling [5] and, in a more
general way, by Doob [2], the ML estimates, say &i and i2 of 010 and 020, are
functions of the qi i, do not depend directly on N, and possess the following
properties:

(i) &i is a consistent estimate of 0i°. That is to say, as N - x, the estimate &i
tends in probability to 0i° or, in symbols,

lim p0, = 0, i = 1, 2. (9)
No X
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The equality (9) means that, whatever be e, 1 > 0, there exists a number N.,.
such that N > N.,,, implies

PIOi-Oj01 >E} <X1. (10)

(ii) As N -X a, the distribution of Ai tends to be normal, N (os°, i)

More specifically, whatever the real number t,

lim PJs e-$2dx t(t) (say), (11)
N-- 2-

where oi is a sure number, independent of N.
(iii) If ta is any other function satisfying (i) and (ii), but with a taking the

place of ao, then
a 2- ai. (12)

To the writer's knowledge, these three important properties of the ML esti-
mates form the only rational basis for preferring these estimates to others. It is
obvious, however, that the ML estimates are not the only statistics which
possess properties (i), (ii), and (iii). For example, if so is any bounded function
of the q's and & is the ML estimate of oi°, then the function

bi+p (13)
N

will also possess properties (i) through (iii) and thus, as far as its asymptotic
properties are concerned, be just as good an estimate of Oi° as 0A.
At this place it is convenient to notice that the ML estimates 0s also possess

the following fourth property:
(iv) The ML estimates, 0i considered as functions of the qii, possess contin-

uous partial derivatives with respect to each qi,,.
The foregoing circumstances, combined with the fact that the effective de-

termination of the ML estimates is often very tedious, suggests the following
two problems:

a) To determine the class of all estimates, to be denoted as BAN estimates,
which satisfy conditions (i) thirugh (iv), with the hope that some of them
can be more easily computed thaf the ML estimates.

b) To investigate the class of BAN estimates and to see whether their dis-
tributions, corresponding to a fixed value of N, would make the use of some of
them preferable to others.
The present paper deals with the first problem only.
DEFINITION. A function ta of the random variables qij which does not depend di-

rectly on N is called a BAN estimate of the parameter 0i if it satisfies the four
conditions It) through (iv) listed above.
The search for BAN estimates will be preceded by several lemmas.
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LEMMA 1. If aij (i = 1, 2, * *, s ; j = 1, 2, , i) are any fixed numbers,
then the variance ¢x2 of the variable

X = ai, (qi, - pi,,) (14)
is given by

ax2 = N N Qi- 1 (15)

where
= fjj (aid,- ai.)2pi,j0 (16)

and

ai. = E ai,,pi,30. (17)
j=1

Lemma 1 is easily verified by direct computation.
LEMMA 2. If t is a BAN estimate of D1, then it can be presented in theform

a =010+ X + YNOX, (18)

where X and ax have the structure of (14) and (16) with the ai j depending on the
Pk,10's but being independent ofN and the qk,l's, and where YN standsfor a random
variable which tends in probability to zero as N-> (D. Moreover, it may always be
assumed that, for i = 1, 2, * * * S,

vi

ai. =E ai,jpij0 = 0, (19)
j =1

so that

aX2 = 1 ai,2piji, = N (say). (20)

PROOF. Let

p2= p,.,-piJ')2. (21)

Since every BAN estimate has continuous partial derivatives with respect to
every qig,, Taylor's formula gives

8 Vi

= o + H ai (qi i-pi ,°) + R, (22)

where

as i = d (23)
|qki, = pkl

and where
l BR 0= ° (24)
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It is now necessary to show that the three terms on the right-hand side of
(22) have the properties stated in lemma 2. We notice first that, should the
derivatives (23) fail to satisfy equations (19), then it would be possible to
subtract from (22) the expression

E ai. E (q~i - pi 0), (25)
i.=1 3=1

which is identically equal to zero. Then the BAN estimate would be put into a
form analogous to (22),

d = t0 + a a (aid,- ai.) (qii - pij,) + R, (26)

with the coefficients aii - as. necessarily satisfying condition (19).
In order to show that bo = 010, it will be sufficient to show that the last two

terms in the right-hand side of (22) both tend in probability to zero as N-' CO .
Denote by XN the first of these terms. It is obvious that the expectation of XN
is equal to zero. According to lemma 1 and relation (19), the variance of XN is
given by (20) and tends to zero as N is indefinitely increased. Hence XN tends
in probability to zero as N-o. X.

Instead of proving that the remainder R in (22) tends to zero in probability,
we shall prove a stronger statement, namely, that

YN = R = XR (27)0x 00

tends in probability to zero. For this purpose we shall use the generalized
theorem of Laplace (see David [ 1]), which implies that, as N tends to infinity,
the distribution of products

(qi,--pi,0j) IN (28)

tends to the multivariate normal law with expectations zero and with var-
iances equal to Qipi, 0(1 -pi .

In particular, whatever be y > 0, the probability that the variables qi;, will
satisfy the relation

Np2 = N Z E (qii - pi".,)2 <y2 (29)
i=l j=1

tends, uniformly for -y > 0, to a limit F(-y) obtainable from the multivariate
normal law. Thus, whatever be n > 0, there exists a number M,, such that
N > M, implies

P{ < y } - F(y) - 7 (30)
2

for all values of -Y.
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In order to prove that YN tends to zero in probability, select two arbitrarily
small positive numbers e and q and show that there always exists a number N.,,
such thatN > N, implies

PIIYNI <e}=p{<e RP <e}> 1- (31)
so

Take the selected v and determine M, such that N > M, implies (30) for all
values of y. Consider only values of N exceeding M,. Next select y, so large

that F(,y) exceeds 1-- . Then

2t pX < %} _ (32)

The inequality in braces in the middle term of (31) may be written as follows:

I.I < e. (33)
P0a

It may be satisfied when the two factors on the left-hand side have various
combinations of values, but in particular when simultaneously

pVN < y, and IRI<coE(34)
P 7,

Thus the probability in the left-hand side of (31) cannot be less than the
probability of the simultaneous fulfillment of the two inequalities (34),

P{IYNI <e}>PIP-N< P{y I < |PV'Æ <} (35)

or, owing to (32),

P{IYNI <e} (1 - )P{f I < °E 4P < 7, (36)
-P -Y

Here the probability on the right-hand side of (36) is the conditional proba-
bility of the inequality on the left of the vertical bar, computed on the assump-
tion that p fulfills the inequality on the right of the vertical bar. It will be seen
that there exists a number K,,,, such thatN > K, implies

Pl < Pf~| IN < Sy} .(37)

Fix, for a moment, a value of p > 0 and denote by p(p) the corresponding
maximum value of RI/p. Condition (24) implies that

lim so(p) = 0. (38)
P-O
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Denote by po a number such that p < po implies

0 <- P( ) < 0,0c-e (39)

Then define
K.,,,= (',,/po)2 (40)

and consider the probability in (37) for values of N > K,,,. The assumption
underlying this probability implies that

p< <<PO. (41)

This inequality implies (39) and, owing to the definition of p(p), it also implies
that

I RIl < OE (42)
p lyl

Thus equality (37) is proved, and it follows that ifN > max (M, K,,Ki) then in-
equality (31) must be satisfied.
Thus the two last terms in (22) both tend in probability to zero, and there-

fore a must tend in probability to bo. Since a is assumed to be a BAN estimate
of 010, it follows that bo = 010, which completes the proof of lemma 2.

Consider two sequences of random variables {X"} and { Yn} . Let F.(t) repre-
sent the probability law of X", that is to say,

F.(t) = P{X St. . (43)

LEMMA 3. If as n- - the probability law Fn(t) tends to a continuous probability
law F(t) and if the sequence {Y. I tends in probability to zero, then the probability
law of the sum X. + Y. tends uniformly to F(t),

lim p{X. + Yn < t} = F(t) = him P1X. _ tl (44)

PROOF. In proving lemma 3 it will be convenient to use the following nota-
tion: If A and B stand for some inequalities which might be satisfied by some
random variables, then the probability of the simultaneous fulfillment of both
A and B will be denoted by P{ (A) (B) }.

In order to prove lemma 3 it is necessary to show that whatever be E> 0
there exists a number Ne, such that n > N. implies

lP1{X + Y. < t} -F(t) | < (45)

for all values of t. We have

.P1Xn+yPt_+ tP-X+ (t) (
<5 |P1X + Yn _- tl -PIXn _- tl | + |P1X.-< t} - F(t) | (46)



246 BERKELEY SYMPOSIUM: NEYMAN

Since it is assumed that F(t) is continuous, a theorem of G. P61ya [10] im-
plies that the convergence of F,(t) to F(t) is uniform. Therefore, given any
number i7 > 0, there exists a number Nl, such that n > N1 implies

PIPX, < t) - F(t) | < 77. (47)

It follows that we need consider only the first term in the right-hand side of
(46). Let A > 0 be so small that

F(t + A) -F(t-A) <ii. (48)
We have

lP{Xn + Y.< t} - P{X, _ tl |
= |P{(X. > t)(Yn _ t - X.)} - P (XR _ t)(Yn > t - Xn)j} . (49)

Since the probabilities are non-negative, it follows that the left-hand side of
(49) does not exceed the greater of the two probabilities in the right-hand side.
It will be sufficient to show that one of them tends to zero as n is indefinitely
increased. The proof relating to the other probability runs on exactly similar
lines.

Consider then the probability

PI (X, > t) (Y. -< t - Xn) }
= P (t < X. . t + A) (yn <. t - X.)} + P{ (t + A < Xn) (Yn _ t - X") }

(50)
Obviously

P{(t + A < X.)(Y <- t - X") } < P{ Yn _ -AI. (51)

Since, by hypothesis, Yn tends in probability to zero as n - A, there exists
a number N2, such that n > N2 implies

PI Y.. -A} < X. (52)

Thus, for n > N2, the second term on the right-hand side of (50) will be less
than n. Further

PI (t < X. _< t +A/)(Yn _t -Xn) } :5 P~t < X. _< t + AI
= Fn(t + A) -F.(t) (53)

and it is seen that for n > N1 the right-hand side of (53} must be smaller than
3X1. It follows that if n exceeds both N1 and N2 then the probability in (50) is
smaller than 4q. Since t7 is an arbitrarily small positive number, this completes
the proof of lemma 3.
REMARK. It is believed that the results presented in the foregoing lemmas

either are known or are easily obtainable from those published by other
authors. However, the writer failed to find publications in which the necessary
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results are given in exactly the form needed here. For example, lemma 3 is
obtainable from certain results published by Maurice Frechet [4]. Also, it is
similar to lemma 1 in the paper of J. Wolfowitz [13] .*
Now let to denote a function of qii, q1,2, * , q8, . It will be assumed thatt

has continuous partial derivatives with respect to each independent variable
qjj. Then the proof of lemma 2 implies that

=to+ X + YN OX, (54)

where X and 0x are defined by formulas (14) and (20) and where YN is a ran-
dom variable which tends to zero in probability as N-> - .
LEMMA 4. IfN -O X, then the distribution of (b - bo)/lx tends to the normal

with zero mean and unit variance,

lim pe - <t = 4(t) . (55)
N- ax

PROOF. We have

_=_-- + YN. (56)
axr ax

The generalized theorem of Laplace implies that as N-4Xa the probability law
of X/ax tends to 4'(t). Since ¢F(t) is continuous and since YN tends in proba-
bility to zero, lemma 3 implies lemma 4.
THEOREM 1. For a statistic b(q),function of qjj, q1,2, , q.,8,, but independ-

ent of N, to be aBAN estimate of the parameter 01, it is necessary and sufficient:
a) that b have continuous partial derivatives with respect to all the independent

variables qi,j;
b) that the resul oubstitsting

,j=fi,i(0l, 02), ,i =1, 2, * ;*,S.J= 1, 2, ..* Pivi, (57)

in d(q) leads to the identity
-rbcs-ffi=(58)

c) that if 9*(q) is anyfunction satisfying (a) and (b) and if

dai |= aid and - = bii (59)
I aS= fan|q = fa,,B

then

N Q aii2fi,, < N Q L bii2fii (60)

for all combinations of values of 01 and 02.
* After this paper was submitted for publication, an elegant proof of Lemma 3 was pub-

lished by Harald Cramer in his remarkable book, "Mathematical Methods of Statistics,"
Princeton University Press, 1946.
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Theorem 1 is a direct consequence of the preceding lemmas.
Up to the present, the number of parameters whose values determine the

probabilities pi, played no role. On the other hand, the statement of the follow-
ing theorem does depend on that number and it will be expedient to assume
that each functionfii depends onm independent parameters 01, 02, ,**,X

Pi'i = fi i(0, 02 * * *,Xin) = fii(@) (say) . (61)

As formerly, the independence of parameters will be understood to mean that
for every system of their values there exists at least one determinant of mth
order,

.. (62)

Let

G _=__i l = Go,u(63)

for u, v = 1, 2, , m. The inequality (62) implies, then, that

G1,j G1,2 G,,m
G2,1 G2,2 ... G2,m

> 0. (64)

Gal G,2 . . Gmm

Denote by ti the minor of A corresponding to Gij.
THEOREM 2. For a statistic ^(q), function of qll, ql,2, , q ,,, to be a BAN

estimate of 01, it is sufficient that it satisfy the conditions (a) and (b) of theorem 1
and (d) that

ab ~~~~~Qi
,3qi-i ai i = -f m fif *Al*. (65)

qap = fa,p

It will be seen that values (65) satisfy the condition

W

f aijpts0 = 0, (66)

and that the asymptotic variance of i is given by, say,

Ue2 = 1 ai lfi,i = (67)
N ~ 1NA
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PROOF. If t)(q) is a function satisfying the conditions (a) and (b) of theorem
1, then by differentiating equation (58) with respect to the parameters 01,
02,.0*a a system of m linear equations is obtained:

e IS

E E a.i4fi,i,l = 1
3-1

i Eabisf1,i, = 0, k = 2,3,* ,m, (68)

which must be satisfied by the derivatives asi,. It is then easily found that the
system of values of these derivatives minimizing the expression in the left-
hand side of (60) under the sole restriction that equations (68) are satisfied is
given by formula (65). This proves theorem 2.
REMARK. There is just one system of values of aii which minimize the left-

hand side of (60) subject to conditions (68). However, the question of the ne-
cessity of condition (65) is still left in doubt, because it is not certain that the
expressions on the right-hand side of (65) necessarily possess the property of
being the partial derivatives of the same function taken with respect to the
independent variables on which it depends. In other words, thus far it is un-
certain whether there always must exist a function #(q) whose derivatives
satisfy equations (65). This question may be settled either by studying the
properties of expressions (65) or by exhibiting functions b(q) whose derivatives
equal (65). Since the purpose of this study is to indicate several new forms of
BAN estimates, the second of the two methods of proving the necessity of
condition (65) will be followed.
The next three theorems indicate methods of obtaining three alternative

BAN estimates. The proofs of these theorems are completely analogous and
consist in verifying that a particular method determines a function t)(q) satis-
fying the conditions of theorem 2.1For this reason the proof will be given forl
only one theorem,lnamely theorem5j
The likelihood function of the parameters 01, 02, * * *m, given the observ-

able random variablesGq;Is given by

p = c i[t.3,"'], (69)

where C does not depend on 01, 02, 0,*. The ML estimates of the param-
eters 0 are obtained by maximizing P or by maximizing its 1

L = log C + N Q. qii log fi,i.* (70)
t=1 31

The equations determining the ML estimates are obtained by equating the
derivatives of L to zero:

aL q= , (71)
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THEOREM 3. Under the general conditions described in section 2, the system of k
equations (71) possesses solutions, et(q), (t = 1, 2, *, m) independent of N,
which have thefollowing properties:

a) The substitution qi~j = fij (01, , am) gives, for t = 1, 2, M,

eig(f-=at (72)

b) The functions Ot(q) possess continuous partial derivatives with respect to each
variable qjj.

c) The substitution of qij = fitj (01, * , am) into each partial derivative of ft
gives

did ai,i(t), (73)

q, == (73

where aii(t) is determined by formula (65) in which At,k should be substituted for
A1,k.

Itfollows that the solutions of (72) so obtained areBAN estimates of the O's.
Consider the familiar expression of the symbol x2 as defined by K. Pearson,

2 ~ '(ni.i n~pi,~ - (Qq.~- j) (74)
SE As %$npi ,7jn An pisj

and substitute pij = fi,i(01, 02 , am). We have, say, -

x2(qf) = N QiQi j (qj, - (75)
fii

Keep the qii fixed and minimize this expression with respect to the unrestricted
variation of the parameters 0. This leads to the solution of the system of equa-
tions, say

Vk=ax= -N Qi )fiik=° k= 1, 2,* ,m. (76)
dak i =1 j =1 ,

THEOREM 4. The system of equations (76) possesses a system of solutions, say
ot(q), which have the properties (a), (b), and (d) enumerated in theorem 2. It fol-
lows that the functions At(q) are BAN estimates of the parameters Ot.

Consider now an expression for x2 which is similar to but not identical with
(74). The difference between the two expressions occurs in the denominators
of the particular terms. The new expression is

x12(q,f) = NA Qt (qijfi,1' (77)
i=1 3=1 qi,i

In writing this formula it is assumed that none of the qii is equal to zero.
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The problem of minimizing x,2 with respect to the unrestricted variation of
01, * * *, ,m, while the values of the qi,, are kept constant, leads to the solution
of the following system of equations:

Wk Li - pi j k = ° E k = 1, 2,* ,m. (78)
J=,=i qi,i

THEOREM 5. The system of equations (78) possesses a system of solutions, say
o*t(q), which have the properties (a), (b), and (d) enumerated in theorem 2. It fol-
lows that the functions 0*t(q) are BAN estimates of the parameters Ot (t = 1, 2,

* * ,m).
PROOF. In order to prove the existence of the solutions Ct it is first necessary

to show that, by substituting into (78) any system of values of the O's and
qi,; = fi,i the equations (78) will be satisfied. This, however, is a direct conse-
quence of the identities (7),

3,j

fiik = 0. (79)

Next it is necessary to check whether the derivatives of the Wk with respect
to the parameters 0 and with respect to the qi i are continuous in the vicinity of
the point qii = fi ,(,* O*Xm). We have

k = L Qi Ifi j k +fififijkt = Gk,t, (80)
1 qi qi,> =Ai,

and, remembering that for each i = 1, 2, s,

qiV;= 1-E qjj, (81)
j=

aWk = Q i fiik_- f k Qi ii,)k _A ,k (82)
,aqi,i Vqi, .2 i ik q2i".,^; Aii figs }

q = fmes

for j = 1, 2, , vi- 1. Owing to the assumption that within the region of
variation of the parameters 01, . . ., am all the functions fi, j have positive
values, it is seen that the derivatives (80) and (82) are continuous in the vi-
cinity of the point qi,i = firi

Further, it is seen that the partial derivatives, say 0*t,i, of the 0* ' with re-
spect to qi i (i = 1, 2, * * *, s; j = 1, 2, *, v - 1), taken at the point qii
= fi, are obtained from the system of equations

m ?( fik ,k
EGkmtet i i = f

i
-_ (83)

t=1 fii i



252 BERKELEY SYMPOSIUM: NEYMAN

fork = 1, 2, , m. Comparing these equations with (65), it is found that

0*o; = a.-i(t)_ ai ct (84)

Thus the first-order term of the Taylor expansion of o0t in terms of the differ-
ences qi -fi.i, fori = 1, 2, ,s andj = 1, 2, * i,v- 1, must be, say,

X= E ai,() (qjj - f,) = ai,(t) (qij - ,) (85)

because of the obvious equality

qi, -fi,=-(= i - fri,). (86)
X-1

Thus equations (78) must possess solutions 0* satisfying all the conditions of
theorem 5.
REMARK 1. Since both expressions (75) and (77) are weighted sums of

squares of deviations (qi -Of ), the two methods of determining BAN esti-
mates described in theorems 4 and 5 are, in effect, modifications of the least-
square procedure, with weights selected in a particular way. In these circum-
stances it is interesting that the plain least-square method, or the weighted
least-square method with arbitrarily selected weights, will always give con-
sistent estimates of the 0's which, however, do not necessarily satisfy condition
(d) of theorem 2 and, therefore, have a greater asymptotic variance than the
BAN estimates.
REMARK 2. Theorems 3, 4, and 5, together with the preceding remark, have

an interesting geometric interpretation. Consider the sample space of the qi j
(i = 1, 2, * * *, s; j = 1, 2, * * *, i- 1) as illustrated in the accompanying
figure. Equating qij = fii(01, 02,* * * X,0) and letting the 0's vary within appro-
priate limits, a locus of points (parameter points) is obtained represented by
the curve C. The coordinates of points on this curve are the possible values of
the probabilities pi iand each such point determines a system of values of the
0's. The heavy point within a circle on C represents the "true" values of the 0's.
The observations determine the frequencies qi i represented in the figure by the
point E (the "event point"). The procedure of ordinary unweighted least
squares, applied to the determination of estimates of the true values of the 0's,
reduces itself to finding, on the curve C, the particular point Z whose distance
from E is the least. Here the word "distance" is understood in the ordinary
way, that is to say, as the square root of the sum of the squares of differences
between the coordinates of these two points.
The procedures indicated in theorems 4 and 5 can be interpreted similarly

except that the conception of "distance" between two points is modified by
the presence of weights depending either on the point, say x, on the curve C
(theorem 4) or on the event point E (theorem 5). As a result, the point x on C
minimizing the specially defined distance need not coincide with the point Z
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Z

12

on C, whose ordinary distance from E is a minimum. From this point of view,
the maximum likelihood procedure is essentially similar to those just described,
differing only in the definition of "distance." In order to see the analogy, it is
sufficient to notice that the absolute maximum of the likelihood P, correspond-
ing to the totally unrestricted variation of the pii _ 0, subject only to the con-
dition that

N pij= 1, (87)

is attained when pi i = qii. Let A (q) be that maximum value of P. Now it will
be seen that to maximize the likelihood function P with respect to some varia-
tion of the p ji's means exactly the same as to minimize the logarithm of the
ratio A(q)/P. The absolute minimum value of this logarithm is equal to zero
and is attained when pi,i = qtj. Thus, if the "distance" between the points with
coordinates pinj and another point with coordinates qii is defined to be the loga-
rithm of the ratio A (q)/P, then the maximum likelihood procedure will fit the
general description of the methods of determining the estimates of the param-
eters 0 as follows: the search for estimates of the parameters 0 reduces itself
to the search for that point on the locus C whose generalized distance from the
event point E is the least.
Theorems 3, 4, and 5 indicate that, with large values of N, the repeated ob-

servation of the event point E and the subsequent determination of the least
"distant" point on C will determine the estimates of the O's whose distribution
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about the true values depends on the definition "distance." In fact, the defini-
tions of "distance" implied by theorems 3, 4, and 5 would (eventually, when
N is increased) give tighter clustering of the estimates of the O's than some
other definitions, in particular tighter than the ordinary definition of distance
between two points.
REMARK 3. The procedures for obtaining BAN estimates implied by theo-

rems 3, 4, and 5 will vary in their difficulty according to the nature of the par-
ticular problem. The method of theorem 5 has particular advantages in all
those problems where the functions fit, are linearly connected with the param-
eters 0. In this special case the BAN estimates 0* are determined by a system
of linear equations. Theorem 6 extends this possibility to some other more com-
plicated cases. The presentation of this theorem must be preceded by some
introductory remarks.

It is obvious that the problem of estimating the parameters 01, 02, * is
equivalent to that of estimating all the probabilities pij. In the following, it will
be convenient to use this form of the general problem. Accordingly, it will be
considered, for each i = 1, 2, ,s, that

vi-1

Pi,,i = 1E- pi,ip (88)
,=1

and, similarly, that
vi-1

qi,. = 1-qi- i . (89)
j =1

The information that each pi, i is a known function i,, of m independent pa-
rameters 01, 02 * *m is equivalent to the restriction on

v = E (vi-1) (90)
t=1

independent variables pi i imposed by means of ,u= v-m equations of the form

Ft(p) = Fg(pl,1,X . * * Xp.1v_-) = 0 X t = 1,2, . . , 'g (91)

which are obtainable by eliminating the parameters 0 from the equations
pii = fif4.
The formulation of theorem 6 does not require a distinction between the

probabilities pii or the frequencies qii relating to particular sequences of trials.
Therefore, to simplify the typographical work, the previous notation will be
altered. Thus, instead of writing pi i and qii, the symbols pk and qk will be used
for k = 1, 2, * * *, v.
The assumptions on the functionsfi, imply that the functions Ft possess con-

tinuous partial derivatives up to the second order. Also the true values, say
piO, of the probabilities pi satisfy equations (91). Finally, the independence of
the parameters 0 implies that, for each system of values of the p's satisfying
(91), there exists at least one system of the p's such that the Jacobian

a(F1, F2y * * * 2 F.) * O (92)
(Pi., Pi.. , Pa



THEORY OF X' TESTS 255

In these circumstances, Taylor's formula may be applied to each function
Ft(p) to give its expansion about any point satisfying the conditions pi,i > 0
and /

v-1

E pi,< 1, i= 1,2,.** ,s. (93)
j=1

Taylor's formula will be applied to obtain the expansion of Ft(p) about the
point Pk = qk (k = 1, 2, , v), which we shall denote by E. Thus

Ft(p) = F*, (q, p) + Cti, (pi'-qi)(pi-q (94)
where 2 i - q)j

F*t(q, p) = F,(q) + bt,i(p; -qu) (95)

Here bt,i represents the partial derivative of Ft(p) with respect to pi taken at
the point E. Thus bt,i does not depend upon the p's, so that F*g(q, p) is a linear
function of the p's. On the other hand, the coefficients Ct i i are functions of both
the p's and the q's.
Denote generally by A(p, q) the generalized distance between the point with

coordinates pi, p2, * * *, p, and the point E. It will be assumed that the distance
A(p, q) possesses the following two properties:

(i) A(p, q) possesses continuous partial derivatives of second order with re-
spect to all the independent variables pi, qi (i, j = 1, 2, * * *, v).

(ii) A(p, q) possesses an absolute minimum of zero at the point E.
It will be noticed that the "distances" underlying the three methods of ob-

tainingBAN estimates considered above possess the properties (i) and (ii).
Consider now two problems of minimizing the distance A(p, q). In the first,

the minimization will be effected with respect to such variation of the p's
as is consistent with the p restrictions

Ft(p) = , = 1,2,**, (96)
In the second problem, the minimization will be effected with respect to

such variation of the p's as is consistent with the ,urestrictions of the form

F*t(p) = °, t = 1, 2, **, u(97)

In either problem the method of Lagrange will be used, and it will be neces-
sary to give some detail. Owing to the perfect analogy between the two, the
details will be given only once in relation to restrictions (96). Corresponding
equations referring to restrictions (97) will be obtained from those relative to
(96) by adding asterisks to the appropriate symbols.
Let a,, a - * *, am be some constants. The method of minimizing A(p, q)

with respect to the variation of the p's consistent with (96), while the q's are
kept constant, consists of differentiating the function, say

= A(p, q) + atFt, (98)
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with respect to all the p's, as if they were entirely independent, and in setting
the derivatives to zero. Thus v equations are obtained,

J.

Ak =-+E atFtk = O. k = 1,2,. ,v, (99)
CdPk t - 1

where Ft,k stands for the derivative of F, with respect to pk. Solving (99) for the
pi's, the solutions wri(q, a) are obtained, which obviously are functions of the q's
and of the a's. We shall have to deal with the derivatives of the iri(q, a). These
are obtained by substituting ri(q, a) into each equation (99) and by differen-
tiating. Thus

apk A a2,a Owt*,0~r2A
aq,* = T (\a kap. + E at,- 0 (100)
aq. t£$ d -A;13pi to1 api / qb Opkdq,

fork,u= 1,2,* **and

a~pk = a2A aFtk a3ri =
aav~I~\apkapi~ at ,* -+F,,k=0 (101)da. 3PkdlPi aolpi d3a,

for k = 1, 2,* *,yv;= 1, 2,* *,. As long as the values of the a's are
arbitrary, the functions 7ri (q, a) need not satisfy restrictions (96). In order to
satisfy these restrictions, the functions wri(q, a) are substituted into each of the
equations (96) instead of the p's and the equations obtained, say

Ft[jr(q, a)] = 0, t = 1,2, *. ,j, (102)

are considered as determining implicit functions a.(q) for r = 1, 2, , ju. The
derivatives of the a,(q) are obtained from the following linear equations:

Ft (d + E d~ri da ) (103)

for t = 1, 2, , , and u = 1, 2, , v. The same equations (103) could be
written as

E da. NF dvi+ F, aw1 0 (104)

Once the functions a(q) are obtained, they are substituted into the functions
Irk(q, a) instead of the a's. In this way the functions

Pk(q) = irk[q, a(q)]1, k = 1, 2, * *,. v,1 (105)

are obtained. Among systems of solutions (105) there must be one system
which forqk = pk0 (k = 1, 2, . . *, v) reduces to Pk = pk° (k = 1, 2, *. . , v).
In fact, the numbers pk0 satisfy restrictions (96) and (97) and also ascribe the
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minimum value to A(p0, p0) = 0. Just those solutions which reduce to pk0 at
qk = pk0 will be considered below and will be denoted by Pk(q) and P*k(q),
respectively.

Notice that under the conditions considered the functions Pi(q) and P*,(q)
possess continuous partial derivatives of the first order taken with respect to
each independent variable qi (i = 1, 2, ,
THEOREM 6. The first-order partial derivatives of Pk(q) and P*k(q), taken at the

point qi = pal (i = 1,2, .. , v), with respect to the samevariable qu (u = 1, 2,
v) have equal values,

aPk |Pk = Ak, (say). (106)
O~q. aq.

q; = Pi0 qi = pi0

Theorem 6 implies that the linear terms of the Taylor expansions of Pk(q)
and P*k(q) made about the point qi = pi0 (i = 1, 2, , v) coincide,

v

Pk(q) = Pk0 + N Ak,;(q;- pa) + R,
i=1 1 (107)

P* k(q) = p0 + Ak,i(q - pi) + R*.

It follows that if the generalized distance A(p, q) is such that its minimization
under the restrictions (96) leads to BAN estimates of the pk°, then the minimi-
zation of the same distance A(p, q) under the simpler conditions (97) will also
lead to the BAN estimates of the ph0.
PROOF. The derivatives of Pk(q) and P*k(q) with respect to any variable q.

are obtained as follows: Substitute in each equation (99) the function Pk(q)
instead of pk and the function ac(q) instead of at. This substitution will result in
the identity, say,

Ik(q) O, k = 1,2, ,v. (108)

The derivative of the function 'i'(q) with respect toq, is expressed in terms of
derivatives of all the functions considered,

"k(q) = (-A2 aF,,k) aPi + a2a+ (109)
d3q. &-1 IPh0P t-1 Op.i Oq.u Opkq t-1 Oq.

for k = 1, 2, * * , v and u = 1, 2, *,v. Theorem 6 will be proved if it is
shown that, at qi = p.0 (i = 1, 2, * v), the system of equations (109) coin-
cides with the analogous one corresponding to P*,(q). For this purpose, notice
first that, at the point considered,

Ftek = F*t.k = btk. (110)

Next it is easy to see that, at the same point,

at(p0) = a*t(pO) = 0. (111)
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This follows from the assumption (ii) (p. 255) that A(p, q) possesses an abso-
lute minimum at pk = qk. In fact, this assumption implies that at qk = Pk = Pko
all the derivatives of A(p, q) with respect to the pi's must be equal to zero. As a
result, the system of equations (99) becomes homogeneous with respect to the
a's and, owing to (92), the only solution is provided by (111)-. Returning to
equations (109), it will be seen that to complete the proof of theorem 6 it is
sufficient to show that, at the point qi = ps" (i = 1, 2, ,

hat aa*t (112)
aq. aqu, 12

for t = 1, 2, , p and u = 1, 2, * * *, v'. The derivatives in the left-hand
side of (112) are determined from equations (104); those on the right-hand side
from a system similar to (104) corresponding to minimization of A under re-
strictions (97). In order to prove the identity of these two systems of equations
at the point q. = pul it is sufficient to show that at this point

a7irs _ all-, (113)

da. aa,
and

Ori 0_1r*i (114)
Oqu '3q.

for all combinations of values of the subscripts. But the derivatives in (113)
and (114) are determined by equations of the type (100) and (101), and it is
seen that at the point q. = p,° (u = 1,2, . . , v) the equations (113) and (114)
must be satisfied. Thus the values of the derivatives aPk/aqU and aP*k/aqu at
the point q, = p.0 (u = 1, 2, * - . , v') are obtained from identical systems of
linear equations and the proof of theorem 6 is completed.

It will be seen that by combining theorem`5 with theorem 6 the search of the
BAN estimates of the probabilities pij, is reduced to the solution of a system of
linear equations. If

0i = poi(p) (115)

represents the expression of the parameter 0s in terms of some probabilities pum,
then a BAN estimate 0, of 0P is obtained by substituting in (115), instead of
pu,,, the corresponding BAN estimate.
Whereas the BAN estimates of the O's so obtained possess the asymptotic

properties stated in the definition of the BAN estimates, the question remains
open concerning how good these estimates are when the number of observa-
tions is only moderate.

Before concluding, it may be interesting to notice that the results given in
this section seem to contradict the assertion of R. A. Fisher [3], not a very
clear one, to the effect that "the maximum likelihood equation may indeed
be derived from the conditions that it shall be linear in frequencies, and
efficient for all values of 0."
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4. Class of X2-tests equivalent in the limit to the X-test
Referring to the situation described in section 2, it will be considered as

known for certain that

Pii = fi,i(01, 02, Of 0f+1 ...m)O (116)

with the values of the 6's being unknown. The hypotheses ascribing to the 0's
particular values within certain limits form the set 2 of admissible hypotheses.
The problem considered in this section is that of tests of a hypothesis H,
ascribing specific values to somef < m parameters

Ok 6ko, k = 1,2,* *,f. (117)

The number f, equal to the number of parameters specified by the hypothesis
tested out of all the parameters particularizing the admissible hypotheses,
plays an important role in the theory given below. It will be useful to illustrate
its significance.
EXAMPLE 1. A random variable X is known to be able to assume non-

negative integer values 0, 1, 2, . However, nothing is known about the
probabilities

pi = P{X = i} . (118)

A total of n independent observations of the variable X is to be made, and ni
represents the number of those in which X = i. The hypothesis H. to test is
that X follows a Poisson law, so that

pi = e- "?Ali/ (119)

Limiting the sequence of possible values of X to v categories X = 0, X = 1,
X = -2 and X _ v - 1, it is easy to establish the relation of the

situation described with the above theoretical one, as follows:
Since there is no a priori information concerning the probabilities P {X =m },

it will have to be assumed that the set, say go, of admissible hypotheses con-
tains every hypothesis ascribing some specified values to the probabilities

pm= P{X =m} > 0, m = 0,1,* *,v-2, (120)

and to
---2

Pv-1= 1 E pm > 0. (121)
m =0

Referring to formula (116), it will be seen that in the present case the proba-
bilities (120) play the role of independent parameters 0, whose number is v- 1.
The hypothesis tested Ho, expressed by means of (119), contains just one

parameter X whose value is left unspecified. In other words, out of the v - 1
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parameters involved in Q%, the hypothesis Ho specifies v - 2. Thus, in this
particular case, f = v - 2. In order to bring the situation in this example into
complete correspondence with (116) and (117), it will be sufficient to rewrite
(120) as follows:

po = e-x , (122)

pm = e_ 01,02**...m , m = 1, 2,* *,v-2, (123)

where X and the O's are arbitrary positive parameters subject to the restriction
that pa, of formula (121) is a positive number.
The hypothesis tested Ho specifies, then, that

Ok = Ok = 1, k = 1,2,7.* ,v- 2. (124)

The test considered in this example may be described as the test of the Poisson
law against the unrestricted set of alternatives.
EXAMPLE 2. Consider the random variable X as in example 1 but assume as

given that X follows a contagious distribution of type A with two parameters
(see [7] ) whose probability generating function is

1 -6 -9s(1 -X)
G(u)ee- eI (125)

It follows that in this case the set of admissible simple hypotheses, say 21, is
more restricted than the set Qo of example 1. In fact, each of the simple
hypotheses belonging to £l specifies the probabilities corresponding to (125)
with some particular values of the parameters 01 > 1 and 02 _ 0. If 02 = 0, then
(125) reduces to the probability generating function of the Poisson law.
Consider now the same hypothesis tested as in example 1, namely, that X

follows a Poisson law. Out of the two parameters O1 and 02 characterizing the
admissible simple hypotheses, the hypothesis tested specifies one 62 = 0.
Hence in this case! = 1.

In relation to the x2-tests discussed below, the number! is called the number
of degrees of freedom. Thus, in each case, the number of degrees of freedom is
the difference between the total number of independent parameters which
specify the particular simple hypotheses considered as admissible and the
number of parameters which are left unspecified by the hypothesis tested.

Referring again to the situation described in section 2, it will be necessary
to explain the conception of a test of a single hypothesis H relating to the case
where the number'of observationsN indefinitely increases.

Imagine a rule R1 which associates with every value of N a region, say WN,
in the v = pi- s dimensioned space W of the q's. This region WN will be
called the Nth critical region. Imagine further that in a particular case some N'
observations are to be made and that there is another rule, R2, to reject H



THEORY OF X TESTS 26i

whenever the event point, EN', falls within WN' and not to reject H in other
cases. The combination of the two rules R1 and R2 will be regarded as a test of
the hypothesis H.

Consider now two different tests, T1 and T2, associated with sequences of
critical regions {W'N } and {w "N} respectively.

DEFINITION. If, whatever be the admissible simple hypothesis h, the probability
of the two tests T1 and T2 contradicting each other tends to zero as N is indefinitely
increased, then the tests T1 and T2 are called equivalent in the limit or asymp-
totically equivalent.
The tests T1 and T2 will contradict each other either when EN falls within

w'N but outside of w"N or when EN falls within W'N but outside of W'N. De-
noting by ab the common part of any two regions a and b, the probability of
contradiction of the two tests can be written as follows:

P{E E(W'N -w NW'N) | h1 + PfENe (w N -w'wN)I|wh}. (126)

It follows that, for T1 and T2 to be equivalent in the limit, the expression (126)
must tend to zero asN -a , for every h Q.

It is important to notice that, if T1 and T2 are both consistent so that, what-
ever be the simple hypothesis h' inconsistent with the hypothesis tested H,

lim P{ENewN }h' = lim P{ENew'N }h' = 1 (127)
N-_ N_.

the equivalence of T1 and T2 in the limit will depend only on the properties of
the critical regions wN and wtN with respect to the hypotheses tested. In other
words, to prove the asymptotic equivalence of T1 and T2, it would be sufficient
to show that

lim P{ENe (WN -wWNwN) H} + P{EN e (w'N - WNwN H} =0 . (128)
N-O

Let pi,> denote the ML estimate of pi,i computed without any reference to the
hypothesis tested H, and let pi,i stand for the ML estimate of the same proba-
bility pizi computed on the assumption that H is true. In other words, p5ii is a
function of the q's obtained by maximizing the likelihood function with respect
to the unrestricted variation of Of+,, Of+2, * *, ai, while the q's are kept con-
stant and the other parameters are ascribed the values 1,&2, . . . , 0.f specified
by H. If it happens that H is true, then pi,i will have the properties of a BAN
estimate of pi,,0, but not necessarily so ifH is wrong.

Further, let x,, be the root of the equation

J<,kxf eix-x2dx = e2if-l r (1f) (129)

where e is the chosen level of significance. In other words, x.2 is the tabled value
of the x2 with f degrees of freedom, corresponding to the level of significance e.
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Then the X-test (see [9]), of the hypothesisH consists in the rule of rejecting
H when the expression, say,

XN < e-lxe= { ) ] (130)

and in not rejecting it otherwise. It will be noticed that inequality (130) defines
the sequence of critical regions {WN } associated with the X-test.

In the following, it will be shown that certain x2-tests are equivalent in the
limit to the X-test of the hypothesis H just described. The definition of the x2
considered involves BAN estimates of the parameters 0 or of the probabilities
pi,1-. A certain point in the proof requires the discussion of the method by which
a BAN estimate is determined. Therefore the following theorem 7 relates only
to BAN estimates discussed in this paper, i.e., to ML estimates and to those
mentioned in theorems 4, 5, and 6. As was the case with respect to the X-test,
we shall need both the BAN estimates of the probabilities pi,,0 computed with-
out reference to the hypothesis tested H and those computed on the assump-
tion that H is true. The former will be denoted by pi, j(), and the latter by
pi,i(H). This notation, then, applies to the four categories of BAN estimates
mentioned above.
THEOREM 7. The X-test of the hypothesis H is equivalent in the limit to any one

of thefollowing tests:
Test Ti: Reject H whenever, say,

Xb2 = Xr2- Xa2

8 p,- p,,(H12 812
n=i E[i p(Hj) - n N q,1 ; Xe2. (131)

Test T2: Reject H whenever, say,

Xb2(*) = Xr2(*) - xa2(*)

- 8 [qi1 - pii(H)P] _ "'q' > ix2. (132)

J=i qij

Denote by UN and VN respectively the critical regions defined by (131) and
(132). For any region w, let-W = W - w denote its complementary region.
The proof of theorem 7 is based on the generalized theorem of Laplace.
In order to formulate this theorem in full detail, consider a v dimensioned

space W- of continuous variables xi, (i = 1, 2, * * , s;j = 1, 2, * * *, vi) sub-
ject to the restrictions

ExisiN/°=',o0, ii= 1,2, * * ,s. (133)
j =1
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For every fixed N we shall consider a correspondence between points in W. and
those in the original space W of the q's as determined by the formulas

qii = Pi,. + xi, lNQ . (134)

Here qii is considered merely as a function of xi i and need not have only ra-
tional values with the denominators equal to nj. Whatever be the open set T in
W2, formula (134) will determine the corresponding set, say TN in W.
The generalized theorem of Laplace states, then, that for every n > 0 and

for every open set r in Wz, there exists a number N.,T such that the inequality
N > Name implies

IP{ENe TN -I(T) <-, (135)
2

with
X'2I(T) =Cf dW, (136)

where c is a constant so selected that I(W.) = 1.
Denote by T(n) the region in W. defined by the inequality

8 vi 2

EXili2 < R2 (137)
,-1

where R is a constant satisfying the equation

I[T(fl)] = 1 X7. (138)

Then, forN > N,,

P{ENE TN(X) } > 1 -v (139)

In order to prove the first part of theorem 7 it will be sufficient to show that,
for N sufficiently large,

P{ENE TN(n)[WN-wNuN] h} < v (140)
and

P{ENeTN1)[uN-wNuN] |h} <,X (141)

for everyh e Q. In fact,

WN - WNUN = TN( )[WN - WNUNI + TN(f)[WN - WNUN], (142)

and the probability of EN falling within the region represented by the second
term in the right-hand side of (142), being at most equal to that of EN falling
within TyN(f), must be less than q. Similar argument applies to (141).
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The convenience of dealing with products like rN(n) * Wv, etc., consists in
that the x;,i's are bounded within T(77),

Jxi3i <R. (143)
Thus, using (134),

qi~i-pip < R |Z1O (144)

within all the region TN(?7).
Proof of theorem 7 requires further the following known facts from the

theory of normal variables. Let us use again the letters xi, x2,* * *, x, to de-
note some normal random variables [having no relation to variables xi i of
(134)] independent or correlated, none being a function of the others, and
having variances equal to unity. Let the probability law of the x's be

p(xi, **,x) = ce Q(z), (145)

where Q(x) is a positive definite form
n n

Q(x) =E E Qii(xi - Q)(xi - ta), (146)

with the (i denoting some real numbers.
(i) There exists a system of n random variables yi, y2,* , y. linearly con-

nected with the x's so that

n

Xi = S ai,,i, i = 1, 2, * ,n, (147)
j=1

and a system of constants 71, t2, * n such that the substitution of (147) in
Q(x) gives, say,

n

Q[x(y)W] (y - )2, (148)

which implies that the probability law of the y's is represented by the function

( 1 ) e 2,.i,(v1 vi) . (149)

(ii) Under the general conditions of (i), consider n linear combinations of
some s independent parameters O1, 02, *, 0,

'i= Nbjj, i = 1,2,* .,n, (150)
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such that for a certain system of values 010, 020, , 0.0 of the parameters each
' coincides with {i. Consider also the form, say,

n n
Q'(X) = Ad Qj,,(xi - t'i) (xi - t'i) . (151)

8=1 J=1

The transformation (147) applied to (151) will give, say,

n
Q11y)=( (h, - nJ)2, (152)

where ,t'; stands for a linear combination of the same parameters 01, 02, * , 0.,
say

i= Ci, (153)
j=1

such that for 0s = 0i. (i = 1, 2, 8* s) each 'i has the value 1;.
Then there exists a system of n random variables zi, z2, , zn linearly con-

nected with the y's,

yi = ifizz;, i = 1,2,* *,n, (154)

(and therefore with the x's) such that the substitution of (154) into (152) gives,
say,

Q[8Z)]= E i2+E zn-s+i- jk), (155)
i=1 i=1

with the dik denoting constant numbers and

druid00 j=1,2,* *,s. (156)
A direct proof of the existence of the transformations described is given by

P. C. Tang [11]. The distribution of the variables zi is given by the function

( 2{e-{i'+ -i-( - )} (157)

(iii) Denote by Q. the minimum value of Q'(x) of (151) computed for an un-
restricted variation of the parameters 01, * * *, 0. while keeping the random
variables x1, * * *, Xn fixed. Qa will be termed the absolute minimum of Q'(x).
Obviously it is a function of the x's. Applying to Q'(x) in turn the two trans-
formations (147) and (154), it will be seen from (155) that, for any fixed system
of values of the x's, say x'1, x'2, , X'.,

nf-8
Q.= EZ2, (158)

i=n

where the z' stand for the corresponding values of the z's.
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It follows from (157) that the z's are mutually independent normal variables,
all having unit variances and, for i = 1, 2, * * *, n - s, having their means
equal to zero. Thus the random variable Q. is distributed as a central x2 with
n- s degrees of freedom.

(iv) Letf be a positive integer less than s and let 01, 2, , f be any real
numbers. Assign some fixed values to xi, x2,* * xn, let 0i = 6, for i = 1, 2,

f, and vary Of+i, * , 0.. Under these conditions, let Q, stand for the
minimum value of Q'(x). This minimum will be termed the relative minimum.
Obviously Q, > Qa. Let Qb = Qr - Qa. Referring again to (155), it will be seen
that, if x'l, * * *, x'" and z'l, * , z', are the values of the x's and the z's which
correspond to each other through (147) and (154), then

f
Qb = Ad (Z-..+ijA di,kbk)2. (159)

Thus Qb considered as a random variable may be presented as a sum of
squares of mutually independent normal variables all having variances equal
to unity. It follows that the distribution of Qb is that of a x2 with f degrees of
freedom. If it happens that Ok = Ok° for k = 1, 2, ,f, then Qb is distributed
as a central x2, otherwise as a non-central.
We shall now prove several easy lemmas.
Consider the Taylor expansion of the functions fi, about the "true" param-

eter point Ok = Oko (k = 1, 2, * * *, m),

pi, = fi i = sii + Ri,2a (160)
with

m

soij = pij0 + fiijk (Ok - Oh0) (161)

wherefii,k0 stands for the value of fi i k at the true parameter point. Write
8 l'f (q. - ,)2

Xo2= fini t' i , (162)

and denote by -pi,i the value of pi i minimizing Xo2 with respect to the unre-
stricted variation of the O's. Also let Qa stand for the minimum value of Xo2 in
(162).
LEMMA 5. Whatever be theBANestimate pij (2) of thefour categories considered,

at each point of the region TN (77)

Pii(2) = Pii + (1). (163)

Lemma 5 is proved by following up the process of determining pii(Q) and by
noticing that the values of the derivatives

dpii(£2)p (164)
aqap
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taken at the point q.,, = p.,,0 (u = 1, 2, * * *, s; v = 1, 2, , v.) are deter-
mined by the numbers fi,i,,0. Thus the Taylor expansion of piJ(2) about the par-
ticular point will differ from pi,i only by terms in differences (q,,, - pU,,0) if
order of magnitude higher than the first. However, within rN(n) the differences

qv -pu,0 are all of order O(j-I) , which proves lemmiJ
LEMMA 6. Within the region TN (n) the values of Xa2 and of Xa2(*) differ from Q.

no more than by terms of order 0 (V)* Thus there exists a number C, such

that within TN (X7)

IXa2 - QaI < C, and IXa2(*) -Qal < C, (165)

Simple algebra shows that lemma 6 is a consequence of lemma 5.
LEMMA 7. AsN is indefinitely increased, the differences

A = Xa2 - Q. and A* = Xa2(*) -Q (166)

tend in probability to zero.
Lemma 7 is a direct consequence of lemma 6 and of the fact that for suffi-

ciently large values ofN the probability of the event point falling within rN(n7)
exceeds 1 - .

LEMMA 8. As N is indefinitely increased, the distribution of Q. tends to that of a
central x2 with v - m degrees offreedom.
Lemma 8 is a consequence of the generalized theorem of Laplace and of the

property (iii) of normal variables quoted above (see p. 265).
LEMMA 9. As N is indefinitely increased, the distribution of either Xa2 or Xa2(*)

tends to that of a central x2 with;, - m degrees offreedom.
Since the x2 distribution is continuous, lemma 9 is implied by lemmas 3, 7,

and 8.
Let m

4ii = pi,0 + E fii,° (Ogk - Ok0) (167)
k =f+1

and Qr denote the minimum of

ni N (gin-\6t,7)2 (168)

computed with respect to the variation of Of+,, Of+2, 0* m. Also let Qb =
Qr - Qa >- 0.
LEMMA 10. If the hypothesis tested H is true, then within TN (fl) the values of Xb2

and Xb2(*) differ from Qb no more than by terms of order 0 (i.). Thus there
exists a number C2 such that within TN (X1) N

!Xb2 - QbI < By and |Xb( ) QbI < C2N (169)
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LEMMA 11. As N - O the distribution of Qb tends to that of a central X2 with f
degrees offreedom.
LEMMA 12. If the hypothesis tested H is true, then, as N -> X, the distribution of

Xb2 and that of Xb2(*) tend to that of a central X2 with f degrees offreedom.
Proofs of lemmas 10, 11, and 12 follow exactly the lines of proofs of lemmas

6, 8, and 9.
LEMMA 13. The X-test of the hypothesis H is consistent.
Lemma 13 is a direct consequence of a general theorem of Wald [121 con-

cerning the consistency of the X-tests.
LEMMA 14. Both tests T1 and T2 mentioned in theorem 7are consistent.
PROOF. Notice first that, since as N -* - the distributions of Xa2 and Xa2(*)

tend to that of a central x2 with v- m degrees of freedom, whatever be e > 0,
there exist two numbers A and Nf, such that the inequalityN> N. implies

P{xa2 > A} <,iE
(170)

P{Xa2(*)>A} <c. J

The next step is to show that, if the hypothesis testedH is wrong and therefore
some contradictory simple hypothesis h is true, then, whatever be i7 > 0 and
M, there exists a number N,,M, such that the inequalitiesN > N,,M imply

P{xr2 >M 1h > 1 -X
(171)

P{Xr2(*) > M~h} > 1-a.

The proof consists in showing that for sufficiently large values of N the
inequalities in the braces in (171) will be satisfied within the whole region
TN(v).

It will be sufficient to carry out the proof only in relation to the first of the
inequalities (171). The value of xr2 can be written as

Xr2 = NV(q), (172)
with

V(q) = AQi* [q,,- p,(IH) ] (173)

Whatever be the method of determining pi,(H), the value V(p0) of V(q) taken
at the point qa, = p,80 (a = 1, 2, * * *, s; j3 = 1, 2, * *., 'a) must be positive,

V(p0) -Q =2A> 0. (174)

In fact, V(p0) could be equal to zero only if each pii(H) = pj°. This, however,
is impossible because, if the true hypothesis h contradicts H, then at least one
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of the estimates pi,i(H) must be different from the true value of pi s°. This is im-
mediately evident with such BAN estimates as are based on minimizing the
generalized distance A(p, q) under the exact restrictions on the p's by which
the hypothesis tested is expressed and which, therefore, must be satisfied by
the pi,,(H) but not all by the pij0. However, the same conclusion is also true for
the BAN estimate based on theorem 6, obtained by minimizing a generalized
distance under the linear restrictions (97),

8 Vi

FPt(p)8_F,(q)+ btti,i(pi,i-qisi)=0, t=1, 2, **,v- f. (175)

In fact, if H is wrong, then the substitution of the pijj° instead of pis, will fail to
turn into zero at least one of the functions Ft(p),

Ft(p') $ 0. (176)

Thus if each qii is put equal to pijj and if then each pi j is put equal to pi sO,
then the corresponding value of F*t will be different from zero. It follows that,
whichever of the four categories of BAN estimated is used, if H is wrong, then
(174) must hold good. Since V(q) is continuous, there must exist a vicinity S of
the point q,., = p.,p° say,

E E (qii - pi0)2 < 8, (177)

such that, within S,

V(q) > A. (178)

In the same vicinity

Xr2 > NA, (179)

and may be made as large as desired provided N is taken sufficiently large.
However, the region TN(n7) is defined by the inequality (137) and it will be seen
that, for sufficiently large values of N, rN(P) will be entirely contained in S.

This proves the assertion (171).
It is now easy to see that, in all conditions,

P{xr2 > X.2} > P{Xr2 > A + X.2} - P{Xa2 > A}. (180)

The application of the results just obtained leads to the conclusion that, for
sufficiently large values of N,

P{xb2 > x.21h} >1 - 2iq, (181)

which means that test T1 is consistent. The same argument applies to test T2.
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LEMMA 15. If the hypothesis tested H is true, then within the region TN (v7) the

value of -2 log XN differsfrom Qb no more than by terms of order 0 = - Thus

there exists a number C3 such that, within TN

|-2logXN-Qb| <
C' (182)

PROOF. The expression of the log XN can be written as follows:

logXN= ni i{log- log-} (183)
qi, qi,

Let now pi,i mean any positive numbers, bounded from zero and such that

Pi,; = 1. (184)
Writing

qii = Pi, + UX,; Pi (185)
ni

and applying the familiar expansions, it is easy to find that so long as the pi,i re-
main bounded from zero and qi,j = pi, + 0 (-)

Or

ni j log()=- ni E qijPi1 + 0 (186)

Since the true probabilities pijj° are different from zero and, with the hypoth-
esis H being true, the estimates pi,jand i,i tend topijo as N -i , uniformly
in TN(n), formula (186) may be applied to log XN of (183) giving

8 8 (q;-~\ "'I,q21log XN = niE-̀i^P*? niN(i i2) + 0
%=I j=i Pi,i 1=1 Pi,;,N

(187)
and the proof of lemma 15 is concluded by a reference to lemma 10.
LEMMA 16. If the hypothesis tested H is true, then the probability that the X-test

and either of the tests T1 and T2 described in theorem 7 will contradict each other
tends to zero as N is indefinitely increased.

It will be sufficient to prove lemma 16 in relation to test T1 only. The Nth
critical regions WN and uN respectively of the X-test and of test T1 are defined
by the inequalities (130) and (131), which we shall rewrite as

-2log XN > X.2,
(188)

Xb2 = X.2.
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According to the remark made previously, it will be sufficient to show that as
N - the probability of EN falling within each of the regions

TN(17)[WN - UNWNI and TN(7)[UN - UNWNI (189)

tends to zero. Since in the two cases the reasoning is the same, only the case of
the first of the two regions (189) will be discussed in detail.
The point EN falls within (WN-UNWN) when simultaneously

-2 log N>2 (190)
and

xb2 < X.2 (191)

Owing to lemmas 10 and 15, there exists a number C such that within TN(P)

Qb - C <X2 (192)
and

-2 log XN < Qb+ - (193)
NIN-

It follows that if EN falls within that part of TN which belongs to WN- WNUN,
then Qb must satisfy the inequalities

Qb -
C

< Xe2 < Qb + (194)
or

2_ C <Q<.+ C
X.E2-5/<Qb<X2+ (195)

which means that

P{ENeTN(n)[WN-WNuN] HI .P 2- C
< Qb < x,2+

Cf H

(196)

But as N - O the probability in the right-hand side of (196) tends to zero.
Therefore the probability in the left-hand side of (196) must tend to zero as N
is indefinitely increased. This proves lemma 16.
Lemmas 13, 14, and 16 imply theorem 7. It will be noticed also that which-

ever of the three tests mentioned in theorem 7 is used lemma 12 implies that,
as N -X o, the probability of rejecting the hypothesis tested H when it is true
tends to the selected level of significance e.

5. Summary
1. In many important problems of application the use of the maximum

likelihood estimates and the application of the X-test of statistical hypotheses
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are prohibitive because of the difficulty in solving systems of equations which
these methods involve.

In relation to the situation described in section 2, theorem 6 gives a method
of determining estimates, termed BAN estimates, which have the same asymp-
totic properties as the maximum likelihood estimates. When parameters to be
estimated are expressed as functions of probabilities pi,>, this method reduces to
the solution of a system of linear equations.

2. Theorem 7 determines two types of the x2-test both of which are consist-
ent and equivalent in the limit to the X-test. The application of these tests
depends on the possibility of computing the BAN estimates of the unknown
parameters. Owing to theorem 6, this procedure is frequently reduced to the
solution of a system of linear equations.

3. The machinery of the x2-tests mentioned in paragraph 2 above was first
presented in 1929 by the writer [6]. However, in that early paper the justi-
fication of the tests was based on consideration of the probabilities a posteriori,
of which the present paper is entirely free.
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