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Introduction

This short paper consists of two parts which have little in common except
that in both we discuss characteristic functions of one-dimensional probability
distributions. In the first part we consider characteristic functions of a certain
special type whose principal merit lies in the fact that it is easily recognizable.
In the second part we deal with finite distributions (contained in a certain
finite interval) and with finitely different distributions (coinciding outside a
certain finite interval).

The notation follows that of Cramér’s well-known tract.! A distribution
function is denoted by a capital letter, as F(z), and the corresponding charac-
teristic function by the corresponding small letter, as f(¢). Thus

0 10 =f " o).

F(x) is real-valued, never decreasing; F(— ) = 0; F(«) = 1. Therefore
) f0) =1.

Moreover f(t) is continuous for all real values of ¢ and has the properties

®) lf@l =1,

@) (-0 =10,

that is, f(—¢) and f(¢) are conjugate complex.

I. A SiMpLE TYPE oF CHARACTERISTIC FUNCTIONS
1. A Sufficient Condition for Characteristic Functions

We are given a function, defined for all real values of ¢; is it the charac-
teristic function of some probability distribution? This question is often
important but not often easy to answer. The properties mentioned in the
introduction [relations (2), (3), (4), and continuity] constitute simple necessary
conditions that a given function f(f) should be characteristic. Yet these con-
ditions, taken together, are far from being sufficient. Necessary and sufficient

11 2C3x;a.mér [3]. Boldface numbers in brackets refer to references at the end of the paper (see
p. .
[115]
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conditions have been given,? but they are not readily applicable, in which they
are similar to any perfectly general necessary and sufficient condition for the
convergence of a series. In theorem 1 below we state a simple sufficient con-
dition.

THEOREM 1. A funciion £(t), defined for all real values of the variable t, has the
following properties:

(1.1) £(t) 18 real-valued and continuous,
(1.2) f0)=1,

(1.3) lim f(f) =0,

(1.4) (=9 =1,

(1.5) £(t) s convex for t > 0.3

Such a function f(t) is a characteristic function corresponding to a continuous
distribution function F(x) whose derivative ¥’'(x), the probability density, exists,
s an even function, and 1is continuous everywhere except possibly at the point
x=0.

The essential point of the proof is to show that

1 @

(1.6) e L =1-1r ﬂ " 1(t) cos at dt

is nmever negative for x > 0. For, under the given conditions (1.3), (1.4), and
(1.5), the integral (1.6) visibly converges for any real x different from zero
and represents an even function which we may call ’(z). We obtain, then, by
Fourier’s theorem,

®

(1.7) fo =[ e=F@)dx,

-

which proves (1). The rest is easy, if we know that F'(x) = 0.

In order to show the essential point, let us observe that f'(¢), defined as the
right-hand derivative of the convex function f(¢), exists and never decreases
when t > 0. (We could have considered just as well the left-hand derivative.)
It follows from (1.3) that f’(f) tends to zero as t — « and f'(t) < 0 for¢ > 0.
We define

(1.8) o) = —=f(©®);

2 The origin of these criteria is Toeplitz’s discovery of inequalities, characterizing positive
periodical functions, for the Fourier coefficients. By analogy, the positivity of a function de-
fined for all real values of the variables is characterized by inequalities for the Fourier trans-
form; this observation is due to Mathias [8]. For the complete statement of the criteria see
Bochner [1], p. 76, and [2], pp. 408—409; also Khintchine [6].

3 The formal definition of convex functions and the proofs for their intuitive properties
used in the sequel are given by Hardy et al. [5], pp. 70-72 and pp. 91-96.
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¢(?) is non-negative and never increasing for ¢ > 0, and tends to 0 as { — .
Integrating by parts and using (1.3), we obtain that

(1.9)

ai/:f(t)cosztdt= —’/;Qf'(t)sinxtdt=ﬁm¢(t) sin 2t dt
N A AN T

if z > 0. In fact, the series under the last integral sign is alternating, and its
terms decrease steadily in absolute value, by the properties of ¢(f) just men-
tioned. Thus F'(x), represented by (1.6), is never negative by (1.9), and
theorem 1is proved.*

2. Remarks

I. If a function possesses the properties stated in the hypothesis of theorem
1, its graph is symmetrical with respect to the y-axis. The right-hand half of
this graph is convex from below, falls steadily, and approaches the z-axis,
which is its asymptote. These properties of the curve are immediately visible
in many simple cases, as, for example,

(2.1) f&) =e 1,
(2.2) O =1/0+t)),

1—|¢ when [t] =1,
(2.3) f@) =
0 when [t = 1.

Therefore these functions are characteristic functions.

II. If two characteristic functions are identical, the corresponding proba-
bility distributions are also identical. We may call this well-known proposition
the uniqueness theorem in the theory of characteristic functions.® Could we im-
prove the uniqueness theorem by weakening its hypothesis? Yes, in a trivial
way. If two characteristic functions take the same values in a set of points
everywhere dense in the infinite interval ¢ > 0, the corresponding probability
distributions are necessarily equal. In fact, it follows from continuity and (4)
that the characteristic functions considered are identical. Yet no further
weakening of the condition is possible. If the set of points in which two char-
acteristic functions are supposed to coincide is not everywhere dense in ¢ > 0,

+ Compare the present author’s paper [11}, p. 378, theorem VII. The present theorem 1 is
not formally stated there, or in his later paper [12], p. 104, but has been in fact proved and
even applied in establishing an essential point.

§ See, for example, Cramér [3], p. 27, last lines. The present author is not aware of any
explicit statement of the uniqueness theorem or of a completely proved application of it to

probability prior to that given in his paper [12], p. 105. This, however, appears to have been
forgotten, just as have the remarks in the same paper on pages 106-108.
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the functions may be actually different. In fact, take any function of the spe-
cial type described in theorem 1 whose derivative f'(z) is continuous and
strictly increasing for ¢ > 0, for instance, the function (2.1) or (2.2) [but not
(2.3)]. Replace an arbitrary small arc of the right-hand half of the curve by
its chord and change the left-hand half symmetrically. By theorem 1, the graph
so obtained, containing two rectilineal stretches, still represents a characteristic
function, differing from the former only in two symmetrical, arbitrarily small
intervals, and belonging to a different probability distribution.®

I11. We take for the moment, from now on till the end of the present section,
the notation f(f) as defined by (2.3). Let fi(f) and f(f) denote two different
characteristic functions which, however, take the same values in the interval
—1 =t = 1. The existence of such functions has just been shown in the
preceding paragraph. Then

(24) HQOF®) = £OF0)

for all real values of . In going back to the corresponding probability distribu-
tions, we obtain two different distributions [derived from f(¢) and f;(¢) ] which,
combined with the same third [derived from f(t)], give the same convolution.
Or in other terms, knowing the distribution of the sum of two random variables
and also the distribution of one of these variables, we may be unable to deter-
mine the distribution of the other, for the good reason that it is utterly in-
determinate.”

II. CHARACTERIZING FINITE, AND FINITELY DIFFERENT,
PrOBABILITY DISTRIBUTIONS

3. Finite Distributions
If the distribution function F(z) satisfies the condition

’

=0 for < —h

>0 for z>—N
(38.1) F(z)<
<1 for z< h

=1 for x> h

we say that the probability distribution is finite, contained in the finite inter-

val —h' < z < hbut in no smaller interval. The numbers & and h’ must satisfy
the inequality

(3.2 -k =h,

¢ This remark shows that in Cramér [3] theorem 11, p. 29, is erroneous. See also page 121
of the same work, and Lévy [T], p. 49. This error has been recognized before. The first
counter-example appears to be due to Gnedenko [4]. .

7 Observed by Khintchine [6], in connection with the example given by Gnedenko {4);
see also Lévy [7], p. 190. As mentioned before (footnote 4), the reasoning given in [12], p. 104,
can be regarded as another application of theorem 1.



CHARACTERISTIC FUNCTIONS 119

but any one of them can be negative. We wish to call h, for the moment, the
right extremity of the distribution described by F(z), and denote it briefly thus:
rext [F]. Similarly —A’ is to be denoted by lext [F].

THEOREM 2. A necessary and sufficient condition that a probability distribution
should be finite is that the definition of the characteristic function f(t) can be
extended to complex values of the variable and this extension shows that £(t) is an
entire function of exponential type. Moreover, if the distribution function 13 de-

noted by F(x),
(3.3) ,1%; rtlog |f(—r)| = rext [F], —rl‘i{n rlog |f(ér) | = lext [F].

The proof of this theorem consists of two parts. First we start from F(z)
and work toward f(¢). Then we start from f(f) and work toward F(z). The first
part is easier and will give us an opportunity to recall the definitions of some
function-theoretic concepts involved in the statement of theorem 2.

I. We are given a distribution function F(z) satisfying (3.1). Thus

(3.4) h =rext [F], —h' =lext[F].

We define f(f) by (1) which, by virtue of (3.4), reduces to

(3.5) : @) = [ : e**dF (z) .

This integral exists and represents a function analytic for all complex values

of ¢, that is, an entire function. Let & denote the larger of the numbers || and
|k'|. It follows easily from (3.5) that

(3.6) 701 < Kt

for all complex values of ¢ where K, as k, is a positive constant; an entire func-
- tion satisfying such an inequality is termed of exponential type. (In fact, in our
case, K could be chosen as 1.)

Let r denote a positive number. Then, by (3.5),

3.7) f(—ir) = /: : e=dF(z) < e":/ '; dF(z) = e,

Hence, and from (3.4), we obtain that

(3.8) E rllog |f(—ir)| Srext[F].

II. Now we are given an entire function of exponential type f(¢). Ignoring
(3.4), we now define h and b’ by

(39 h= §§ rlog |f(—ir)|, B = 1‘@ rlog |f(ir)| .
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We know that f(¢) is a characteristic function, linked to a certain distribution
function F(z) by (1). We wish to determine the variation of F(z) in an interval
(z1, ;) where '

(3.10) h<hde=z—e<z1 <2;

2¢ = 1; — h is a positive quantity. We assume that z; and z, are points of
continuity for F(x).
Let r denote a positive number. Then, by (1),

38.11) f(—r) = ) e“dF (x) ;fn e“dF(z) = ™ [F(x;) — F(x1)] .

- A
It follows from (3.9) and from (3.10) that, for sufficiently large r,
(3.12) [F(=3r)| < ®FIr = =9
Comparing (3.11) and (3.12), we find that

(3.13) e ZF(x) —F(x) 20

for a fixed positive e and arbitrarily large r. The left-hand side can be made
arbitrarily small by choosing r sufficiently large, and therefore

(314) F(xz) - F(xl) =0.

Thus the variation of F(z) in any interval to the right of h is zero. Recalling
the definition of “rext,” and that i was defined by (3.9), we can state our
result in the form

(3.15) rext [F] £ ,Tif—?, log |f(—ir)| .

Comparing (3.8) and (3.15), we obtain the first equation of (3.3). The second
can be derived similarly, and so we have proved theorem 2.

4. Finitely Different Distributions

If two distribution functions Fi(z) and Fa(z) are such that their difference
vanishes outside a finite interval, we may call the two corresponding proba-
bility distributions “finitely different.” After the foregoing section, we may
suspect that the distributions corresponding to the functions Fi(z) and F(z)
are finitely different if, and only if, the difference of the respective character-
istic functions, fi(x) — fz(z), is an entire function of exponential type. This is
in fact true, although the proof is much more difficult than that given for
theorem 2. Even a little more is true, namely the following:
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TuaeoreM 3. The function G(x) is defined and of bounded variation in the
interval (— o, o). The necessary and sufficient condition that G(x) should be
constant outside a finite interval s that

4.1) o0 = [ edG(@)

-

should be an entire function of exponential type. If (—h’, h) is the smallest
interval outside of which G(x) is constant, then

(4.2) ,I:‘@ log |g(—ir)| =h, ,1;;; rlog |g(er)| = K'.

The phrase “G(z) constant outside (—h’, h)”’ means that there are two
constants, C and C’, such that

43) Gx)=C for z>h, Gx)=C" for z<-—N.

We see that theorem 2 is contained in theorem 3. This latter is an extension of
an important theorem of Paley and Wiener.? In fact, the simple proof for the
Paley-Wiener theorem given by Plancherel and the present author® can be
modified so that it yields also theorem 3.

Indeed, the proof of theorem 3 consists of two parts. The first part, which
starts from G(x) and works toward g(f), is scarcely different from the corre-
sponding part of the proof as given in section 3, and can be omitted. We con-
centrate on the more difficult second part that starts from g(t).

We are given an entire function of exponential type, g(¢f). The numbers h
and A’ are defined by (4.2). We know that the function G(z) is of bounded
variation in (— », =). We have to ascertain the behavior of G(z) outside

(=K', R).
We know!? that
r ,—int __ ,—izat
(4.4) G(z) — Ga) = lim f_ i__m; g(t)dt

if z; and 2, are any two points of continuity of G(z). (In fact, the formula re-
mains valid, and is scarcely harder to prove, even in points of discontinuity,
provided that

4.5) G(z) = % [G(z — 0) + G(z +0)],

but the weaker fact quoted is enough here.) We wish to evaluate the right-hand
side of (4.4), assuming (3.10) and (4.2) and that g(t) is entire and of exponen-
tial type.

8 See %9], pp. 12-13.

9 See [10], pp. 246-248.
10 See Cramér [3], p. 28.



122 BERKELEY SYMPOSIUM: POLYA
We define f(?) by

(4.6) (6™ — e™™)g(t) = f(t)e ™.
By (3.10), this is equivalent to
(4.7) 1) = g(t)e P+ (1 — g~

Let us observe certain properties of f(¢).
(i) Since g(?) is an entire function of exponential type, the same is true of
f(®), by (4.7).
(ii) By (4.1), g(¢) remains bounded for real {. The same is true of f(t), by (4.7).
(iii) By (4.7)

f(—ir) = g(—ir)e"""")' a- e—(ts—:cn)r) .

The right-hand side remains bounded when the positive variable r tends to
infinity, by virtue of the first condition (4.2) and the last inequality (3.10).

(iv) As a well-known function-theoretic argument shows,* the results (i),
(ii), and (iii) imply that f(¢) is bounded in the lower halfplane:

(4.8) f®)| £C when t=re”', 0Z¢=r~.

Using (4.6), we write (4.4) in the form
(4.9) 2ri[G(zs) — G(z1)] = lim f rf(t)e”*'t“dt.

The integrand on the right-hand side is an entire function [f(0) = 0 by (4.7)].
We deform the originally straight path of integration into a half circle, with
center zero and radius r, located in the lower halfplane where (4.8) holds.
Therefore

(4.10) l f(t)e"‘"‘t‘ldt' <C f Temesine g,
- 0

The right-hand side of (4.10) obviously approaches zero when r tends to in-
finity. Remembering that we have supposed (3.10), we see from (4.9) and
(4.10) that

(4.11) G(xy) = G(z») when 22> >h.

In other words, G(z) is constant for z > h, and we could show by a similar argu-
ment that it is also constant for z < —h’. Thus we have completed the proof
of theorem 3.

1 See, for example, Pé6lya and Szegd, [13], vol. 1, p. 149, Nr. 330.
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