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Introduction

In the first part of the present paper the probability integral in one dimen-
sion is considered. This first part may be regarded as an illustration of the prin-
ciple that “no problem whatever is solved completely.” In fact, the problem
of computing the total area under the Gaussian curve was solved by Laplace
or, even before him, under a slightly different form, by Euler, and this solution
has been presented since under various forms. In the present paper there are
offered two different solutions of the same problem, and an inequality, derived
from Laplace’s solution, all of which seem to be new and are certainly very
little known. :

In the second part of the paper the probability integral in two dimensions
is considered. In this part, which had its origin in a practical problem, formulas
and inequalities which appear to be useful in computing volumes under the
normal probability surface are presented.

We use the following notation:

(1) g(z) = @2m) 1272,

@ @) = f g0,
(3) L = L(a,a’;b,';7)

-/. " o1 — g1~ 2 + /(1 — )],

4 M =MMk;r) = Lhk; + =,+ ;7).

The symbols g(x) and G(z) should remind us of ‘““Gauss.” The limits a,b in L
correspond to z, and a’,b’ to z’. The quantity M is represented by an integral

of the type
JoL

I. Tae ProBaBILITY INTEGRAL IN ONE DIMENSION

1. An inequality
We try to see something new in the most usual method of evaluating the
total area under the Gaussian curve. Following that method, we consider

[63]
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a a
20(a) = [ ) Y2e " Pdx = [ (2x)"VZeV/24y,
—a —a
where @ is any positive quantity. Therefore

.y 2ei20@ ) =f [ e daay.

The integral (1.1) is extended over a square with area 4a?. Generalizing (1.1),
we consider the integral

(1.2) ﬂe‘“’"""ﬁz dzdy ,
B

where R is any region the area of which is 4a2. Specializing R, we consider a
circular region, with center at the origin, of which the area is 4a%. We call this
region Ry; its boundary has the equation

(1.3) m(z? + y?) = 4a?.

The circle (1.3) is a closed level line of the integrand of (1.2). Let us vary R,
subject only to the condition that its area remains constant, equal to 4a2. Then
the integral (1.2) varies; we say that it attains its maximum when R = R,.

In fact, the contribution of the common part of the two regions R, and R to

(1.4) ff e~ @2 4 dy — ff e~ @2 gz dy
Ro B

is zero. Therefore it is sufficient to extend the first integral under (1.4) over
that portion of R, which is not contained in R, and the second integral over
that portion of R which is not contained in R,. The areas of the two considered
partial regions are equal, but in the former, which is inside the circle (1.3), the
values of the integrand are greater than in the latter, which is outside (1.3).
Hence the difference (1.4) is positive (unless R, coincides with E), which is the
fact we wished to prove.!

The domain of integration in (1.1) is a special region R. Hence we infer that

2% [2ax—1/2
27r[2G(a)]? <ﬂe'(”+”’)/2dxdy =f f e " Prdrde
0 1]
Ro

=2r(1 — e~ 2/7),
We note the result, writing z for a; forz > 0

(1.5) 2G(z) < (1 — e~ 2/m)172,

1 This kind of argument is well known because of the importance given it in the work of
J. Neyman and E. S. Pearson.
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We can of course extend the foregoing argument from 2 to n dimensions. We
note just the result: If we define

(1.6) G = 20-12[T{(n/2) + 1}]Vn,
then we have
anz 1/n
.7 G(z) < a,"1(2r)12 [n/ =1 =072 gy ]
0

forn =2,3,- - - and z > 0. Our (1.5) is the special case n = 2.

2. Other proofs of the inequality

We shall use (in the present section only) the symbol H(z) defined by the
equation

2.1) 2H(z) = (1 — e~/
With this abbreviation, we can write the inequality (1.5) in the concise form
(2.2) G(r) < H(z) .

Comparing the sides of this inequality in various manners, we find that all
three functions

(23) H(z) — G(z), H(z) — G¥(z) H(z)/G(z)

behave in the same way in the interval 0 < x < . They first increase, reach a
unique maximum, then decrease, and, as x — , each tends toward the same value
that 1t takes at the point x = 0.

The value taken at the two extremities of the interval (0, «) is zero for the
first two functions (2.3) and one for the last function. Therefore the propo-
sition just stated involves that

(24) H(x) — G(x) >0, H(z) — G*(z) >0, H(z)/G(z) > 1
for z > 0. Thus we obtain three different proofs of the inequality (2.2), that
is, of (1.5).

As z approaches infinity, both G(z) and H(z) tend to the same value 1/2.
Moreover, we have the expansions into powers of =

G(z) = (2,;)—1/2:5[1 _%24. .. .:I’

H@) = (27r)‘”’x[1 SE S ]

which show that H(z) is greater than G(z) for small positive values of x. Both
functions take the value zero at the point x = 0, and their quotient takes the
value one there.
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These remarks prove a certain part of the proposition stated. We have still
to show, however, that the derivatives of the three functions (2.3) behave in
the same way in the interval z > 0: they change sign only once, each derivative
has just one posttive root which is simple.

Since it would take up too much space to discuss all three cases, we shall
restrict ourselves to the last function, which is the most instructive. The
equation

[H(z)/G(x)]" =0

can be written.in the form

(2.5) oo @ —1) e=’/‘*f e 2dt=0.
Xz 0

We need the expansion of the left-hand side into powers of x. We consider,
therefore, the function

(2.6) y= e“’/zf e 2 dt
0

and observe that it vanishes at the point x = 0 and satisfies the differential
equation

2.7) y=zy+1.
We expand the solution of this equation into powers of z by the usual method,

taking into account the initial condition that y = 0 as £ = 0. Thus we obtain
the elegant series

z 3 5 7
2.8 ,,,i[ g TP B T
(28) &7 f e 1t TmsTEar T

Now we can write (2.5), expanding the left-hand side, in the form

© 1 2 n—1 _ 1 ot
(2.9) ”Z; [m (-Tr) 135 - (2n — 1)]:” =0.

In this expansion we say that the coefficient of 2® is negative and the other
coefficients, those of z5, 27, - - -, are positive. For the first two coefficients
(those of z® and z5) this assertion may be verified by computation. For the
other coefficients we use mathematical induction. If we know that

n—1

135---(2n—1) (g) o1
123-:--n o

and n = 3, we can infer that

13- -'(2n—1)(2n+1)(g
1.2 - -n(n+1)

2 >1.

>">2n+1
T n—+1

EIRE V]

2
T

PR



PROBABILITY INTEGRAL 64

Dividing the left-hand side of (2.9) by x5, we obtain a series of the form
(2.10) ~2tatantfantt o,

where all the numbers a, ag, a;, a,, - - - are positive. Now, obviously, a series
of the form (2.8) represents a steadily increasing function, varying from — «
to = as z increases from zero to infinity. Such a function takes the value zero
just once, and so we have proved our assertion.?

3. An approximation to the probability integral

On the basis of the proposition proved in the foregoing section, the usual
tables allow a quick evaluation of the unique maximum of H(x)/G(x). Thus
we find that the following remark may be made concerning (1.5): If we take
the right-hand side of this inequality as an approximation to 2G(z), the error
committed is less than one per cent (even less than 0.71 per cent) of the
quantity approximated.

4. A derivation of the total area
We may rewrite (2.8) in the form

z, 2 z:1
T+l R
41 z _‘g/zdt_ 1.3 1.3.5"’(2n_1)
D o © - 1+a_:f+_x_‘_+.”+_xfl‘___+.“
2 24 246 - --2n

For any positive value of z, there is, in each series on the right-hand side, a
term whose absolute value is maximum. Being given z, we locate the maxi-
mum term by examining the quotient of the general term and of the foregoing
term, which is

272 xz

. and —
2n —1 2n

in the numerator and in the denominator, respectively. We examine especially
the place where this quotient passes the value one, and we find the following:
When

(4.2 Von<z<Von+1,

the maximum term in the numerator is the one containing #?"~, and the maxi-
mum term in the denominator is the one containing xz?*, Now we can foresee
heuristically, and confirm afterward by rigorous argument, that the quotient of
the series differs from the quotient of the maximum terms only by a quantity

2 We have proved here, in fact, a simple case of an extension of Descartes’ rule of signs.

See G. Pélya and G. Szegd, Aufgaben und Lehrsdize aus der Analysis (1925), vol. 2, p. 43,
problems 38 and 40.
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tending to zero when x tends fo infinity. Thus, connecting r and n by (4.2), we
obtain from (4.1) that

x2n—l

lim 135---2n—1)

I ®

z
(4.3) lim e gt =
>

0 x2n

246---2n

lim 246---2n 1 _ (1_r)”2
135 --(2n—1) (2m)2  \2

The last equation is based on Wallis’ formula. We have found a new derivation
of the total area under the probability curve.

The heuristic reasoning suggested above is as follows: In each series, the
terms “‘close’” to the maximum term differ but little from it, and the terms
which are “far’” from it are relatively small so that they contribute only a
negligible amount to the sum of the series. Thus the proportion of the maxi-
mum terms tends to become the proportion of the series. This heuristic reason-
ing contains a certain germ from which the rigorous proof can be evolved.?

The value of the probability integral can be derived from Wallis’ formula in
various ways, all rather different from the foregoing.*

5. Another derivation of the total area

Many definite integrals can be evaluated by means of the calculus of residues,
but the one expressing the total area under the normal curve is not so evaluated
in the usual textbooks.® We shall see, however, that such an evaluation is
possible.®

We work now in the complex z-plane. We call P the parallelogram with
vertices ’

R +R, —R —R, -R+1—1R, R+14:R;

R is positive (and large). The center of P is at the point z = 1/2, two sides
of P are horizontal and of length one, the other two sides pass through the
points z = 0 and z = 1, and the side passing through the origin bisects the
angle between the coordiante axes. We take the integral

(5.1) £ e tanwz - dz

counterclockwise around the boundary of P. The integrand has just one

8 The rigorous proof follows, as a special case, from G. P6lya and G. Szegé, op. cit., vol. 2,
p. 12, problem 72 (with 8 =1,b = 1/2, k = 1/2).

+ See especially T. J. Stieltjes, uvres complétes, vol. 2, pp. 263-264.

‘(See (S‘r N'.7 Watson, Complex Integration and é’auchy’s Theorem, Cambridge Tracts No.
15 (1914), p. 79.

¢ This w?ll not surprise anyone who is familiar with the evaluation of the Gaussian sums,
important in the theory of numbers, by means of complex integration. The argument used
there yields, as will be shown here, the desired definite integral, if used in the opposite direc-
tion in an appropriate special case.
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singular point inside P, a simple pole at the point z = 1/2, the center of P,
and the residue at this pole is

1
(5.2) .

-T

Thus we know the value of (5.1). We let R tend to infinity. Then the contri-
bution of the two horizontal sides becomes negligible, and (5.1) goes over into
two integrals, extended along infinite parallel straight lines. We can transform
the integral along the right-hand line by a change of the variable of integra-
tion, and sp we finally obtain

(1) = . . ;
f [e7E+D' — ") tan xz - dz = 2mie™/t/(—7) .
(149 =

The integral is extended along the first bisector of the coérdinate axes.
Hence we obtain, transforming the integrand,

: (1 +1) ° 123 : ;23 2wiz —
(53) 204/ = f (grinbari _ iy €75 = 1 de

~A+)w A+ 14
atpe
= (1/2) e (1 — "%)dz
-+ e

Ao Qe

= (1/4) [f edz +f g+ dz]
—(1+) w ~(1+i)
Ao a4+

= (1/2) [f e dz +f e dz:|
-1+ = 1-(1+) o

) =
= (2/4) Pz,
—(1+1) =

The step before the last one was a change of the variable of integration; it
involves shifting the line of integration by a unit length westward. The last
step shifts back this line of integration until it coincides with the first bisector
of the axes. This step is justified by Cauchy’s theorem and involves, if con-
sidered in detail, integration around the parallelogram P and shifting the
horizontal sides of P to infinity, as before.

Finally we change the variable of integration in the last integral under

(5.3), setting
z=¢"4y.

Then ¢ is real, and we obtain
2¢™/4 /5 = (26714 /7) e~ dt.

This equation yields, after a trivial transformation, the total area under the
normal curve.



70 BERKELEY SYMPOSIUM: POLYA

II. THE PrOBABILITY INTEGRAL IN Two DIMENSIONS

6. Results

We consider now the volume under the normal bivariate surface and over a
rectangle whose sides are parallel to the axes. The numerical value of this
volume, denoted by L(a,a’; b,b'; r) in the introduction under (3), is often
needed in practical applications of statistics. The computation of L is easily
reduced to that of M(h,k; r), defined under (4), and there exist well-known
tables for M (Tables for Statisticians and Biometricians, Part IT). These tables,
however, demand a rather unsatisfactory interpolation, and therefore it may
be advantageous to use numerical integration or some other kind of approxi-
mate formulas instead of, or conjointly with, the tables. Various results helpful
in such work have been obtained recently in connection with a practical prob-
lem.” Three of them will be stated here: a double inequality, an approximate
formula, and an enveloping series. The proofs of these results will be given
in the last three sections.

a) A double inequality.—We suppose that

6.1) 0<r<l1, rth—k>0.
Under these conditions
62) Mhk;r) < % — G,

>i_em-L=Zw|L-a( =
63) M(hk;r) > >~ Gh) rh_.kg(k)[z G((l_,a)m)}

The abbreviations g, G, and M are defined in the introduction under (1), (2),
and (4). The right-hand side of the rather obvious inequality (6.2) is the limit
toward which the left-hand side tends when k and r are constant and k ap-
proaches — « ; or when h and k are constant and r approaches one. This follows
from (6.3). _

b) An approximate formula.—We assume that a < b, ¢’ <b’, and that r
differs but little from one. We define nine new quantities a, o/, 8, £/, 7, 7/,
5, §’, and p by the equations

1 -\
(6.9) o= (30)"
_ a+ad b4 b b+a a+b
@8 & 87 8 = Ham AT BT A+
—a+d b4V -b+4ad —a+b

(66) a,’ ﬁ” ’Y,’ & =

A—NI™ [20-nT"" [2a-n]"’ [20-n]"

7 In connection with the same project, tables have been computed in the Statistical Lab-
oratory, University of California, by Leo A. Aroian, E. Fix, and Madeline Johnsen. It is
hoped that they will be published in the near future.
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It is understood that in (6.5) and (6.6) the first quantity on the left-hand side
is equal to the first one on the right-hand side, the second on the left to the
second on the right, and so on. With these abbreviations, we have the approxi-
mate formula:

(6.7) L(a,a’;0,0";)~[G(B) — G(a)][G(&') — G(v)]
+0g(a)[9(v') —29(a’) +9(8') +o'{G(v") —2G(a) +G(5) }]
+og(B)[9(v)—29(8") +9(8)+B'{G(v) —2G(8)+G()}] .

This approximation must be used with caution, but it turned out to be espe-
cially useful in the particular case in which

and (6.7) takes the much simpler form

(6.8) L(a,a;b,b;7) ~2[G(B) — G(a)1G(¥)
— 2p[g(a) +9(8)1[9(0) — g(&")].

c) An enveloping series.—If an infinite series
(6.9) Gw—ata—a+---
and a number 4 are so related that
(6.10) A <a, A>a—a, A<a—a+a,:- -,
then we say that the series (6.9) envelopes A, and we write
(6.11) Acay—a+a—az+ - - .

Thus the specific use of the symbol « in (6.11) expresses an infinite system of
inequalities, the inequalities (6.10), which we could also express by saying
that A is contained between any two consecutive partial sums of the series
(6.9). An enveloping series may be divergent; if it is convergent the enveloped
number is its sum.®

There is a well-known divergent enveloping series connected with the proba-
bility integral in one dimension:

619 [ ooa=g@|l-LelB B0,

x5 x?

z is assumed to be positive. It may be deserving of some interest that there is
a series of similar nature connected with the probability integral in two dimen-

8 For terminology and examples, see G. P6lya and G. Szegé, op. cit., vol. 1, pp. 26-29.
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sions. We consider, following C. Nicholson,® V(h,k), the volume under the
normal bivariate surface with » = 0 and over a right triangle with vertices
(0,0), (h,0), (h;k):

h kx/h
6.13) V(hk) = f f 0@g(y)dy de .
We assume that
(6.14) 0<h<k

and define R(h,k) and ! by the equations
(6.15) Vb = é G(h) — 2% arctanl’: + R E),
(6.16) BR4+Ek =0, 1>0,

and obtain a divergent enveloping series for R(h,k):

h 1 _,,,2[ (1 2) ( 14 24)
6.17) R(hk) « - — 1—(=+2 2
(6.17) E(h,k) ol ats)t tat

135 136 146 246
(k“ +k4l2+k2l4+ zﬂ)+ ]

The general term of the series in brackets is of the dimension —2n in k and !
(or in h and k) and is itself a sum of n 4 1 terms:

.13 2—-12v42 2n— 2 2n
6.18 —1)n s, . .- @
( ) =D e O il k? r I I

7. Proof of the double inequality

In order to evaluate the double integrals L or M, defined by formulas (3)
and (4) of the introduction, we transform the quadratic in z and z’ into a
sum of two squares by an appropriate substitution. There are various ways of
doing so, and we first choose

' —rx dy = dx’

@D ol -

which leads to

@2 ki = 00 1o g@tvas=f o0 [} - 6(E) o
ool ot

9 Biometrika, vol. 33 (1943), pp. 59-72.
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where

o oofwfi-o(EZt)e

We used
G(—z) = —G(2)

which follows immediately from definition (2).

The integrand in (7.3) is visibly positive. Hence, and from (7.2), we deduce
(6.2). In order to prove (6.3) also, we now seek an upper bound for Q.

We take into account the fact that the first term of the asymptotic series
(6.12) is greater than the enveloped quantity on the left-hand side, and use
conditions (6.1). We thus obtain from (7.3)

et ke
<%§—T~‘f @0 ((1m r”;c"’)dx

=(lm_—-ﬁ)::ﬂﬁ“g((1 )"”)g()
il oG,

8. The expansion underlying the approximate formula

We now transform the quadratic in z and 2’ into a sum of two squares by a
substitution different from the one used at the beginning of the foregoing
section 7. For z and z’ we write u and v respectively, and then we put

which proves (6.3).

+v —u+v
8.1 =277 | =Ty
&1 TRa+ar YT Ra-Hre
which implies

a_(a’ly_).=[1_,.2]—1/2.

d(u,w)

The integral (3), extended over a rectangle, is changed into one extended over
a parallelogram P with vertices (a,a’), (8,8"), (v,¥"), and (5,6'); compare
figure 1, drawn in the uv-plane, with figure 2, in the z,y-plane, and observe
that the four angles marked there are all equal. See also (6.5) and (6.6). Thus

8.2) L=/ (f o@ ot dady.
P
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\%

A

(AX)

(7

Figure 2

B.p)

In order to evaluate the integral over the parallelogram P, we calculate the
integral over the rectangle which contains P, as shown in figure 2, and sub-
tract from it four integrals, denoted by A;, Az, A; and A4, extended over the
four triangles 1, 2, 3, and 4 shown in figure 2. That is,

B o
63 L= [ [ i@owayae—s-n-s-a,
a v
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where

8 ply—a) & p(y—8")
= / ) g(y)_[ g(a+t)dtdy, A= j; } g(y)[: g(8 — 1) dtdy,
a’ pla’ —y) 8 (8’ =)
[T e roady,  a=f 0w [ -0 aa.
Y

We have disposed here the four integrals A as the corresponding four triangles
are disposed in figure 2. We put

r=a-}1¢ z=p3—-1
in Az and As, in Ajand A,

We obtain finally, expanding the integrands of the four integrals A into powers
of p (which is a small quantity when r is nearly one),

(84) L(aa';bb';7) = [G(B) — G(a)][G () — G(¥)]

o (n) n+1
9" (a) o~ (y — o) g(y) dy

=t (1!

=™ (=)@ et [Tk
,,;o Y /;,(y B+ g(y) dy
<. ad™(a) p»H

- Zg(n(l‘;; f (« —y)™1g() dy

= (—1)ng™ n+t1 -4
B r;‘»( )(: + Y?!p , - dy.

Retaining just the initial term, which corresponds to n = 0, of each of the four
series, we obtain the approximate formula (6.7).

It is possible to estimate the remainders of the four series arising in (8.4) and,
especially, the error of the approximate formula (6.7). The simplest estimate,
however, is much too high for the purpose of computing. Roughly speaking,
the approximate formula has not much chance to be good unless ¢ differs but
little from o’ and b from b’, but the simple (6.8) is particularly good. In
practice, it is preferable to judge the goodness of approximation for a certain
range of the parameters a,a’, b,b’ and r by comparing values given by (6.7) or
(6.8) with values easily obtainable from the tables.

It may be mentioned that an expansion analogous to (8.4) and approximate
formulas analogous to (6.7) and (6.8) can be obtained for M.

9. A lemma on enveloping series

In deriving the enveloping series (6.17) we meet with a certain situation
which is much better understood when it is considered in full generality.
Therefore we begin by explaining a general result.
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Lemma. If
9.1) axb —bytbg—---
and,fork‘= 1,23, -,
9.2 b < Co1—Croat-Cas— *+ * *
then
9.3 axcn— (2t cn)+ (Catcontem) — - - .

The conclusion of our lemma asserts that a is enveloped by a series whose
nth term is represented by

(=1)" (c1n + C2pn1+ Coynz+ * * -+ Cm).

The result can be restated without symbols: If a number is enveloped by a series
each term of which is enveloped by a series, then the resulting double series can be
rearranged into another enveloping series for the same number by grouping terms
in lines perpendicular to the main diagonal.

In order to prove this lemma we have to make use of all the inequalities
involved by the hypotheses (9.1) and (9.2), and the only difficulty is to group
these inequalities suitably. There are two kinds of inequalities to prove: a must
be shown to be less than certain partial sums of the series on the right-hand
side of (9.3), and to be greater than certain other partial sums. It will suffice
to consider the first kind of inequalities. Therefore we assume that n is odd,
and derive from hypothesis (9.2) the following inequalities:

h<en—ceteos—---+onm

by > Caa—Cazt « + ° — Cayn
by < Ca1— * * * + Cayn2
bn < Cnl .

Multiply the second, fourth, sixth, - - - line by —1, add all these lines, and
take into account the hypothesis (9.1). We obtain

a<b —bs+bsg—:--+0bs
< ey — (c12 + ca)
+ (€13 + c22 + ca1)

+ (c1n + CaynaF Caynz+ - -+ +Ca1),
and this proves our point. The case of even n can be treated similarly.

CoRoOLLARY 1. If

94) Axcag—a+as—as+ - - -
(9.5) Beab —by+bg—bi+ -
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and, moreover, 8; > 0 and B > 0, then
(9.6) AB « albl - (albz + agbl) + (alb; + a2b2 + aabl) + L N
It should be observed that the hypothesis (9.4) implies that a,, as, a4, * - *

are positive; but we must postulate separately the positivity of a;. The corol-
lary is immediate. In fact, it follows directly from the hypothesis that

9.7 AB « ¢\B—a,B+asB— - - -
and that
©.9) 0B Gy — aba - aabs — - - + |

and so the hypotheses of the lemma are satisfied; (9.7) and (9.8) must be
compared to (9.1) and (9.2), respectively.

CoRroLLARY 2. If each of the positive guantities A, B, - - - K, and L is enveloped
by a series, the product AB - - - KL 18 enveloped by the Cauchy product of these
series.

This proposition is slightly more general than a proposition recently ob-
tained by J. V. Uspensky® and is derived by repeated application of corollary
1. We mention these corollaries because of their independent interest, but we
shall not use them. We shall, however, use essentially the lemma in investigat-
ing the volume V' (h,k) defined by (6.13).

We dissect the first quadrant of the z,y-plane by producing the sides of the
triangle over which the integral defining V'(h,k) is extended. We obtain

09 vop=(f yARA T Yo dvas

Gh) — %rarcta.n% F RO ;

D1

in computing the middle integral we used transformation to polar cosrdinates
in a well-known fashion. Thus

(9.10) RoH =g [ o) dyds.

Now, by (6.12),

nw=0

010 [ o) dy « gt/ 3 (~1*135 - - - (2 — 1) Ge/By .

1 See Mathematicae Notae, vol. 4 (1944), pp. 1-10, especially pp. 2-4.
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Observe that, with the abbreviation (6.16),
(9.12) g(x) gkz/R) = (2m)~le =2/ (2R

By (9.10), (9.11), and (9.12),

(9.13) R(hk)=(@n)1 3 (= )"135- - - (2n—1) (h/k)2"+f " 1=/ gy

n=0

or

(9.14) R(h,k)c<h/(2xl) Zm;(— 1)"1.3.5 - - + (21 — 1) @/k)* Lgna(D) .

n=0

We introduce the abbreviation

(9.15) I.(2) = / tTme 2y,

Integrating by parts, we easily obtain

(9.16) In() =™ e ™2 —(m+ 1) Iny2 (2),

and repeating this we obtain the (divergent) enveloping series

(9.17) I.(z) xe™ [z — (m+1)z™™ 2 + (m+1) (m+3)z™™ 5 — . . .].
Therefore

(9.18) 1.3.5. - - - (2n — 1) (I/k) " Isnpa (D)

13---(2n—1) 13:.-(2n—1)(2n+2)
J2n k2nl2

13---@-1D@2n+2)@n+4) ]
k?nl'l '

« (e

+

Thus R (h,k) is enveloped by the series (9.14), each term of which is enveloped,
as (9.18) shows, by a series. Applying our lemma, we obtain (6.17).1*

11 {Added November 19, 1945.] After this paper was written, a discussion with Miss
Madeline Johnsen led to recognizing that the series (6.17) coincides essentially with one
considered by W. F. Sheppard, “On the calculation of the double integral expressing normal
correlation,” Trans. Cambridge Philos. Soc., vol. 19 (1904), pp. 23-68; see p. 37, formula
(68). It can be observed, however, that: (a) the series aEF ears here in a simpler form; and
(b) Sheppard does not even mention the property proved here, that the series is enveloping.
Miss Jo n proves this property in a quite different way in her dissertation ‘‘ Approximate
evaluation of double probability integrals” deposited in the Library of Stanford Univer-
sity. See Abstract of Dissertations, Stanford University, vol. 21 (1945-46), pp. 113-116.



