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Abstract. By using the Grassmannian invariant-angle coherents states ap­
proach, the classical analogue of the Aharonov-Anandan nonadiabatic geo­
metrical phase is found for a spin one-half in Nuclear Magnetic Resonance 
(NMR). In the adiabatic limit, the semi-classical relation between the adia­
batic Berry’s phase and Hannay’s angle gives exactly the experimental result 
observed by Suter et al [12],

1. Introduction

The adiabatic Berry’s phase and its classical counterpart (adiabatic Hannay’s an­
gle) are one of the most finding in the quantum and classical dynamics these recent 
years. Their extension to the nonadiabatic case has attracted great interest. Indeed, 
removing the nonadiabatic hypothesis, Aharonov and Anandan [11 have general­
ized Berry’s result. They have considered a cyclic evolution of states which return 
to itself after some time up to a phase. A way to get such a basis of cyclic states is 
to consider the eigenvectors of a Hermetian periodic invariant 1(f) defined by

d l
( 1 )

Indeed, any eigenstate | n, 0) (relative to the time-independent eigenvalue An) of the 
invariant operator I (0) at time zero evolves into the corresponding eigenstate |n, t) 
of the invariant operators I(t)  at time t exactly as an eigenstate of the Hamiltonian 
does when the evolution is adiabatic [81.
Since the invariant action due to Lewis and Riesenfield exists, a geometrical an­
gle can be defined on constant-action surface for a cyclic evolution [2, 41 and the 
angle thus obtained is the classical counterpart of the geometrical phase due to 
Aharonov and Anandan.
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In the literature, the nonadiabatic geometric phase is studied in various ways. A 
special cyclic state of the Gaussian wave packet’s form were found for a general­
ized harmonic oscillator. The nonadiabatic geometric phase is explicitly calculated 
and found to be one-half of the classical nonadiabatic Hannay’s angle. It was also 
discussed for the case of the cyclic states of a generalized Harmonic oscillator with 
nonadiabatic time-periodic parameters in the framework of squeezed states [91. 
The nonadiabatic implementation of the conditional geometric phase shift with 
NMR were also explored [131. Also a non perturbative method which is differ­
ent from that of Aharonov and Anandan, was presented in order to determine the 
nonadiabatic corrections to Berry’s phase [61.
In our recent papers [51 we have determined the nonadiabatic Hannay’s angle of 
a spin one-half in a varying magnetic field in the framework of the Grassmannian 
invariant-angle coherent states approach.
Our aim is to develop the ideas of references [41 and [51 in more detail, for the well 
known example of spin one-half particle in the presence of an external magnetic 
field in Nuclear Magnetic Resonance experiment.

2. Spin One-Half Model in the NMR

We consider a spin 1/2 coupled to a time-dependent magnetic field which precess 
around the z-axis, at a fixed angle 9 with constant angular velocity <p =  uj and 
with constant modulus |H(f)| =  B  (9 and <p are the polar and azimuthal angle, 
respectively)

where B  is the modulus of the magnetic field.
According to the reference [41, the classical Hamiltonian in Grassmannian version 
of our system is given by

where the components i =  1.2.3, of the vectors £ are real Grassmann vari­
ables which satisfy the Grassmann algebra relations =  0.
When we quantize the variables ^  with the rules given in the Appendix, we get the 
quantum Hamiltonian as

(3)

or
f f ( f )  — — (4)

H(t) = \S(t).S. (5)
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Substituting the components B i , i = 1,2,3, of the magnetic field into the Hamil­
tonian, we get

r j - f . x  _  B  (  cos 9 s in 9e~lult 
' 2 \s in0eiwt — cos 9

Here we have taken h = 1, gfin =  1, g is the Lande’s factor and /ir is the Bohr 
magneton.
The eigenstates |'I'±(f)) of H(t)  are given by

$ + (i)) =  cos ^ |t )  + sin | |)

$_(*)) =  sin ^|T} -  cos | e “ U>

where | |)  and |J,) are the eigenstates of the ,--component of the spin.
As we have mentioned in the introduction, the eigenvectors of the invariant in the 
nonadiabatic case, play the same basic role as the eigenvectors of the Hamiltonian 
in the adiabatic case, for this reason we introduce a time dependent invariant I(t.) 
associated to the Hamiltonian (4)

I ( t )  =  —i ( ^ i ^ 3  +  ^ 2 s 3 s \  +  ^sls'-O (7)

which satisfies the relation

^ ^  = - { H . I } p . B = - i Y , H * d i . l ) J  ( S )
m

where R i , i  =  1.2.3, are 3 time-dependent parameters space and d 1 and d 1 are 
right and left derivatives with respect to
According to (8) the parameters R\,  Ro and R.% satisfy the system of coupled 
differential equations

(9)
By setting B±  =  B\ ±  ii?2, R±  =  Ri  ±  1R 2 equations (9) are equivalent to

R+ =  i (R+B 3 — R 3R+)

R -  = i(i?.3H_ -  R - B 3) (10)

R-3 = ~ ( R - B + -  R + B -) .

Note that equations (9) may be regarded as the classical equations of motion in the 
parameter space R.  By solving them, we obtain a curve in the parameter space and 
hence the nonadiabatic geometrical angle. When this curve is closed the evolution 
is cyclic. For this reason we will determine the solutions of the equations (9) which 
are cyclic.
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The equations (10) can be simplified by making a change of the variable R +

r 2(t)
R■+

With the new variable r(t), this system of coupled differential equations reduces 
to the following differential equation

d2r  d r (B 2 — 2u)B cos 9) B 2 sin2 9 exp(2kcf) 
—5- -  ku —  +  ----------- ;---------- -r = -------------=r-^-------
df2 d t  4 r 3 ( ID

The cyclic solution of this equation is given by

r(t)
V  2 sin 9 (  loB  

1 exp [ i—
(1 — 2x cos 9 +  x 2) 4

with x  =  lo/B .
From this expression for r(t), we deduce the solutions of equations (10)

R+(t) =  T(;r) sin 9 exp(iLcf)

[r*(t)]2

(12)

R - ( t ) T(a;) sin 9 exp(—iujt)

where r*(t) denotes the complex conjugate of r(t) and

i?3 =  (cos 9 — nc)T(an).

Here T(a;) is equal to

T(x)
1

(13)

(14)

(15)

(16)
V l — 2.x cos 9 +  x 2

and one can see that R + and i?._ precess around the z-axis with the same angular 
velocity to, and make with this axis an angle a  given by

cos a  =  (cos 9 — nc)r(nc). (17)

The invariant (7) can be written explicitly in the form

I(t)  =  —~ { (R + +  i?_)£ 2^3 — K-R+ — R - ) t 3^1 +  2i?,3^i^2}- 

The quantum invariant I(t)  cotxesponding to the classical one is

(18)

<J (19)

or in matrix form

T(t\ = l (  R 3
W  2 \ R+{ t )  - R 3 ,

(20)
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The instantaneous eigenstates |1, 7) and |0.7) of 7(7) are

1 , t )
s / 1  +  i?,3 . ,L d t  \ / l

■ exp(—i— ) | | )  +
V2 V2

e x p ( i ^ ) | 4 )

0.7) V l — R 3 fexp(—1— )| | )
y/2

V l +  Rs
— — exP ( i y ) l l )

|t)  and |t)  are the eigenstates the ,--component of the spin. 
This eigenstates of 7(7) are related to those of 77(7) by

1.7) = f i i ( t ) | t f  + (t)) +  fi2( t ) I M t ) )  
0.7) =  - f i 2(*)IM *)> + fii(7 )|tf_ (7 ))

(21)

(22)

(23)
(24)

with

and

9 9 , lc7.
Qi(7) =  ( v/l +  77,3 cos— h \/l —  77$ sin - )  exp(—i— )

9 9 , lc7.
^ 2 ( )̂ =  ( \ A  +  -R3 s i n -----\ / 1 — i ?3 cos - )  exp(—i— )

Explicited the instantaneous eigenstates of 1(7), we can embark on the calculation 
of the nonadiabatic geometric angle which is the subject of the next section.

3. The Nonadiabatic Geometric Angle

A simple way to provide a quantum description of the evolution of a classical 
system and to derive the geometrical angle from the geometrical phase, is to study 
the evolution of the Grassmannian invariant-angle coherent states [5 ].
According to the reference [4], the Grassmannian invariant-angle coherent states 
in the (NMR) are given by

£(7). 7) =  exp (|0.7) -  £(7)|1,7)) (25)

where
m  = ?(O)e-i0' i' (26)

is Grassmannian complex variable and |1 ,7) and |0 .7) are the instantaneous eigen­
states of 1(7) given in equation (20).
Let us show how this angle appears in evolution of the Grassmannian invariant- 
angle coherent states.
Indeed, the evolution of the phase of the eigenstates of the quantum invariant 7(7)

|0.0) -» e^°|0.7) |1.0) ^ e ^ l l . 7 )  (27)

induces the evolution of the Grassmannian invariant-angle coherent states

|£(0).0) ^ (28)
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where the angle
Q(t) = (pi(t) -  (p0{t)

is the difference of the to global phases <pn, n  =  0,1. 
As it is well known [2] 9(t) contains a dynamical part

eD(t) =  < ( t )  -  ^ ( t )

and a geometrical part
eG(t) = cp?(t)-cpC(t)

where

(29)

(*) 0
dt' {n, t '\H(t)\n. t') n  =  0.1

and

'n
nt o

i / dt' (n . t ' \—  \n,t') 
o ot.

n  =  0.1.

(30)

(31)

(32)

(33)

This geometrical part 9G(t) is nothing but (minus) the nonadiabatic geometric an­
gle in acyclic evolution [ 10],
Let us embark on the calculation of this angle.
From equations (31) and (33) above and for a cyclic evolution of duration T  in the 
parameter space R ,  where R { T  + t) = R(t )

9G = i £ d t  ( < ( U | 2 | o , t > - ( L t | 2 | l , t ) ) .  (34)

Finally, substituting | l , t )  and |0,t) from equations (21) and (22) we get explicitly 
the nonadiabatic geometric angle

(  cos 9 — x \
2tt f 1 ----- . ----- ) . (35)9G

V l — 2x cos 9 +  x 1

4.  Adiabatic and Weak Nonadiabatic Approximations

We have explicitly calculated the nonadiabatic geometric angle in NMR and we 
are now interesting on the adiabatic and the weak nonadiabatic approximations.
As it is well known [31 in the model of the spin 1/2, the Berry’s phase is one-half 
of the Hannay’s angle. In the adiabatic limits: x  =  uj/ B  —> 0 T  oo.
The Taylor development up to the second order in x  of equation (35) gives

9g =  2ir ( l  — cos 9 +  x  sin2 9 +  0 ( x 2)j . (36)

The first two terms of 9G in this last equation correspond exactly to the experi­
mental result observed by Suter et al [12] for the adiabatic Berry’s phase and the 
third term in this equation is the first order correction in the weak nonadiabatic 
approximation.
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5. Concluding Remarks

In this paper, the nonadiabatic geometrical angle is calculated for a spin one-half in 
Nuclear Magnetic Resonance experiment by using the invariant theory and in the 
framework of the Grassmannian invariant-angle coherent states. In the adiabatic 
approximation we have found the experimental result observed by Suter et al r 12],
Finally it will be interesting to investigate experimentally the weak Nonadiabatic 
correction found in this paper.

Appendix

We recall in this Appendix the quantization rules for Grassmannian system. For 
this, the quantization rules say that we should replace the Poisson brackets by the 
anticommutator (instead of the commutator)

{xii.Xj}pB h =  1.

The operators ^  are shown to generate the structure of Clifford algebra

5ij

(37)

(38)

and therefore they can be represented irreducibly by the Pauli matrices as —
Oi/V2-
When we quantize the variables ^  with the rules just given above, we get for the 
classical Hamiltonian the quantum one

H  =  (39)

and using the Pauli matrix representation for we obtain

y

H  =  - y SkijBka-ia-j = (40)

This is the quantum mechanical Hamiltonian for a one-half spin in the magnetic 
field B .

Acknowledgments

One of the authors (O. C.) wishes to thank M. Djebli for his help.



182 Omar Cherbal, Mustapha Maamache and Mahrez Drir

References
[1] Aharonov Y. and Anandan L, Phase Change during a Cyclic Quantum Evolution, 

Phys. Rev. Lett. 52 (1987) 1593-1598.
[2] Bhattacharjee A. and Sen T., Geometric Angle in Cyclic Evolution o f a Classical 

System, Phys. Rev. A 38 (1988) 4389^4395.
[3] Berry M., Quantal Phase Factor Acompanying Adiabatic Change, Proc. R. Soc. 

Lond. A 392 (1984) 45-51.
[4] Berry M. and Hannay J., Classical Nonadiabatic Angles, J. Phys. A 21 (1988) 325­

333.
[5] Cherbal O., Maamache M. and Drir M., Nonadiabatic Hannay’s Angle o f Spin One- 

Half in Grassmannian Version and Invariant Angle Coherents States, In: Geometry, 
Integrability and Quantization IV, I. Mladenov and G. Naber (Eds), Coral Press, Sofia 
2003, pp 153-160.

[6] Gaitan R ,  Berry’s Phase in the Presence o f a Nonadiabatic Environment, e-print 
Archive: quant-ph/9809008 (1998).

[7] Hannay J., Angle Variable Holonomy in Adiabatic Excurtion of an Integrable Hamil­
tonian, J. Phys. A 18 (1985) 221-229.

[8] Lewis H. and Riesenfeld W., An Exact Quantum Theory o f the Time-Dependant Har­
monic Oscillator and of a Charged Particle in a Time Dependant Electromagnetic 
Field, J. Math. Phys. 10 (1969) 1458-1467.

[9] Liu J., Hu B. and Li B., Nonadiabatic Geometric Phase for the Cyclic Evolution o f a 
Time Dependent Hamiltonian System, Phys. Rev. A 58 (1998) 3448-3456.

[10] Maamache M. and Cherbal O., Evolution o f Grassmanian Invariant-Angle Coherent 
States and Nonadiabatic Hannay’s Angle, Eur. Phys. J. D 6 (1999) 145-148.

[11] Oshima K. and Azuma .K., Proper Magnetic Field for Nonadiabatic Geometric 
Quantum Gates in NMR, e-print Archive: quant-ph/0305109 (2003).

[12] Suter D., Chingas G., Haris R. and Pines A., Berry’s Phase in Magnetic Resonance, 
Mol. Phys. 61 (1987) 1327-1340.

[13] Wang X. and Keiji M., Nonadiabatic Conditional Geometric Phase Shift with NMR, 
e-print Archive: quant-ph/0101038 (2001).


	NONADIABATIC GEOMETRIC ANGLE IN NUCLEAR MAGNETIC RESONANCE CONNECTION

	1.	Introduction

	(1)


	2.	Spin One-Half Model in the NMR

	(3)


	(ID

	[r*(t)]2

	(12)


	W 2 \R+{t) -R3,

	1 ,t)

	s/1 + i?,3	. ,Ldt	\/l

	V2

	V2

	Vl — R3 f

	Vl + Rs

	(21)

	(22)

	3.	The Nonadiabatic Geometric Angle



	Q(t) = (pi(t) - (p0{t)

	4.	Adiabatic and Weak Nonadiabatic Approximations

	5.	Concluding Remarks

	Appendix

	Oi/V2-


	Acknowledgments

	References




