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Abstract, We construct the sequence of orthogonal polynomials with re­
spect to an inner product defined in the sense of g-integration over several 
intervals in the complex plane. For such introduced polynomials we prove 
that all zeros lie in the smallest convex hull over the intervals in the com­
plex plane. The results are stated precisely in some special cases, as some 
symmetric cases of equal lengths, angles and weights.

1. Introduction

We will start with well-known facts from g-calculus [1], [2], where q is a real 
number from the interval (0,1). The basic number [x}q is given by

[x]q = - ------- (x e  R)
1 — q

and factorial of g-natural numbers

[0]9! =  1, [n}ql = [n]q[n -  l]ql = [n}q[n -  l}q ■ ■ ■ [l}q

We define g-shifted factorials by

n  e  N.

n

(a; q)0 =  1, (a; q)n =  J J  C1 -  aqfe_1), (a; q ) ^
k=1

n a - ^ - 1)
k= 1
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and g-shifted factorial of a vector is

( f l l ,  £12) • • • ) Or) Q)n —  ( o i )  q)n(al, q')n(p2> ? ) r

Obviously,

W  = ( {9,_ n  e N.

Generalization of gamma function T(:c) is given by

W  =  7 T % - U  -  5)1"*-(qx -,q)oo
One of main properties of gamma function holds on, i.e.

T g ( x  +  1) =  [X}g T g ( x ) .

Basic hypergeometric function is defined by

(<2r ; q)r

r$ s
a i, 02, . . . ,  ar 
&i,&2,-- - ,bs

QG / \ k
_  V ' '  Va l ,  . . . , a r ‘i q ) k  , ( l + s - r ) ( * )  z

^ 0 (h, . . . , bs;q)k { ( q~,q)k'

We assume that the convergence of all series in further discussion is assured.
Let us define a q-integral by

rb 00
/  F (z )  dgZ := (b—a)(l  — q) Y ,  F  (a  +  (b — a)qk) qk (0 <  q <  1, a, b £  C).

k=o

An inner product on beam of m-intervals [as, 6S] (s =  0 , 1 , . . . ,  m  — 1) is defined 
by

m ~ 1 1 fb s ______

(F,G) = Y  r —  /  F{z)G{z) \Ws {z)\dgZ (1)
s= Q as Jas

where W s(z) is a weight function on the interval [as , 6S],
The previous inner product can be written in the form

(F, G) = (1 -  q)
m—1 oo

E E
s=0 k=0

qkF ( z )G (z ) \W s (z)\
z= a s+(bs - a s )gk

(2)

This product is positive-definite because of | |F ||2 =  (F , F ) >  0, except for 
F (x )  = 0.
It implies existence of the sequence orthogonal polynomials {Pn (z )} which satis­
fies

(Pm , P n ) = $m n \\Pn \\2 (M , N  e  N0) .
We can construct this sequence by the Gram-Schmidt orthogonalization.
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If we define moments and m om ent-determ inants by

Mj ,k A 0 =  1, A n = , n >  1

then these polynomials can be expressed in the form

Pq(z ) = 1, Pn(z) =
Zi,

MOO MlO

M01 Mil
Mn-1,0 1
Mn—1,1 Z

n >  1.

This sequence is unique and the norms are

Especially, if all intervals start from the origin and q tends to 1, we get polynomi­
als orthogonal on the radial rays in the complex plane which were introduced by 
G. Milovanovic [4] and investigated in the papers of G. Milovanovic, R. Rajkovic 
and Z. Maijanovic [5, 6],
In the cases when all beams start from the real axis and make the zero or straight 
angle with it, we have standard case of orthogonal polynomials on interval or on a 
few segments of the real line.

2. Transformations of Beams and Polynomials

Here, we will discuss some transformations in the complex plane, such as scal­
ing and rotating, of support of orthogonality and its repercussions to orthogonal 
polynomials.

Theorem 2.1. Let a  be a complex number. The sequence {71̂ ( 2;)}^“^  orthogonal 
with respect to the inner product

can be expressed by

■wff(z) = irN (z /a ) ,

where { ^ n (z )}~}^q is orthogonal with respect to (1),
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Proof: Let {k n (z )}~^°2q be an orthogonal sequence with respect to (1) and 
t m (z ) = Trpf(z/a). Then we have

( r K  5 T V ) a =  /  TK ( z ) T N ( z) \ W s( z / a ) \ d gz
s= 0

m —1 oo

= (! -  q) <lkTK{t)TN(t)\Ws(t/a)
s= 0  k = 0 

m —1 oo

t= o a s + (ahs —cras )qk

= i1 -Q) Y ,  Z) <lk^K(t/a)TiN(t/a)\Ws(t/a)\\
k Z 0 1 t=cr(as +(bs —a s )qk )

Introducing a change u = t f o ,  yields
m —1 qg

{t k , tn)o- = (1 -  q) <lk^K(u)TiN(u)\Ws(u)
s= 0  k = 0

u = a s +(bs - a s )qk

Because of the uniqueness of orthogonal polynomial sequence, we conclude that 
the statement is valid. □

Corollary 2.1. The zeros o f ir f ( z )  are obtained from the zeros o f  ttm(z ) by the 
multiplying with o.

Proof: Let C be a zero of the polynomial ttn(z ), ie . ttn(C) =  0. According the 
previous theorem, we find

^ n (p Q) = 7Tiv(C) = 0
i.e. o f  is a zero of the polynomial tt%(z ). □
Rem ark. We can emphasize the next transforms obtained for some spacial values 
of o:

1) rotation, when a  =  e1Q (a  e  R.)
2) scaling, when a  =  R  e  R.

3. Orthogonality on the Intervals with the Start Point in the Origin

In this section, we consider intervals which go from the origin to some points in 
the complex plane. Now, inner product can be written by

m ~ 1 1 r bs ______

( F , G ) = Y , r  F ( z )G (z ) \W s(z ) \dqz  (3)
s= 0  J 0

or
m —1 oo

(F,G)  =  (1 -  9) E E qkF ( t ) m t ) \ W s(t)
s= 0  k = 0

(4)
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Since bs is a complex number, we can write it by

bs — Is

where

h  e R +, ipm(s) = exp (lds) , 0S e  (-7T, 7r], 0 <  s < m  — 1, i2 =  —1.

Theorem 3.1. The polynomial itn(z ) ( N  > 0) orthogonal with respect to (3) has 
all zeros in the smallest rectangle spread over the radial rays with edges parallel 
with axes,

R  = {z  : ax <  Re(z) <  02 A b\ <  Im (z) <  62} (5)

where

ax =  min < 0, min ls cos 6S > , 02 =  m ax < 0, max ls cos 6S >
[  0 < s< m  J [  0 < s< m  J

and

b\ =  min < 0, m in ls sin 6S > , 62 =  m ax < 0, max ls sin 6S > .
[  0 < s< m  J [  0 < s< m  J

Proof: Suppose that (  is a zero of t tn ( z ). Then we can write

ttjv(z) = ( z -  C)rN-i(z), t'n —i (z) £ VN-i-

Because of the orthogonality, we obtain
m —1 00

0 =  <7rjy,rjy-i) =  (1 -  q) 9* (M *  ~  0  \rN-i(bsqk)\2 \Ws(bsqk)\.
s= 0  k=0

Hence, the real and imaginary part of the sum are equal to zero. Since bs and C are 
complex numbers, we can write them as

bs =  ls cos 8S +  ils sin 8S (ls £ R.+ , 8S £ (—7r,7r]), £ = A + iB,  .4. B  £ E..

Now, we have
m —1 qg

(1 - q ) Y l  ^ 2 q k(qkh c o s  8S -  ^4)|r jv -1 (6sgfe) |21W s(bsqk)\ =  0
s= 0  k=0

and
m —1 qg

( i  -  q) E  -  £ )lnv -i(& sgfc) |2|Ws(&sgfc)| =  0.
s= 0  k=0

It means that the functions
m —1

F(k)  = ] T ( g feis COS0S -  A)qk \rN_ 1(bsqk)\2\Ws(bsqk)\
s= 0
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and
m—1

G(k)  = ^ ( < l kl ss in0s -  B ) q k \rN_ 1(bsqk)\2\Ws(bsqk)\
s= 0

change their signs for some k  e N. Hence we conclude that the zeros are in R. 
Really, let us suppose that A  >  m axs {ls cos 0S,O}- Then, for every s and k  e N, 
we will have A  >  max {ls cos 0S, 0} >  qkls cos 0S. But, because A  — qkls cos 0S >  
0, we will have also F(k)  < 0 for all k  e N, what is in contradiction with assump­
tion.
Also, if we suppose that A  <  m ins {ls cos 0S,O}, then, for every s and k  e N, we 
will have A  <  min {ls cos 0S, 0} <  qkls cos 0S. But, because A  — qkls cos 0S <  0, 
we will have F(k)  >  0 for all k  e N, which again is in contradiction with our 
assumption. In this way we can prove all inequalities. □

Theorem 3.2. All zeros o f  the polynomial ttm(z ) (n  e N) orthogonal with respect 
to (3) lie in the smallest convex region which contains intervals.

Proof: Let us consider the endpoints bk0 and b^  of some intervals such that the 
line 6fe06fej does not have the intersection with any interval from the set [0, bj], 
j  =  0 , 1 , . . .  , m  — 1. If we rotate the whole beam of intervals for the angle ag such 
that the line b ^ b ^ ' ^  is parallel to the real axes, then all zeros of the polynomial

ttG ° \ z ) lie in rectangle Pq 10-1 whose one edge contains b ^ b ^ K  According to 
Corollary 2.1, all zeros of 7̂ ( 2:) lie in rectangle Pq which is obtained from the 
rectangle Pq 10-1 by rotation for the opposite angle of a.
In that way, taking any two endpoints of intervals of orthogonality including the 
origin 0, we can find rectangles Pj spread over the intervals which contains all 
zeros of ttn(z ). Their intersection is the smallest convex region which contains all 
zeros of ttn(z ). The vertex of the region are the tops of those rays which hold on 
its convexity. □

Corollary 3.1. All zeros o f  the polynomial ttm(z ) orthogonal with respect to the 
inner product

rbo ____ rh  ____
(.f , g ) =  f ( z ) g ( z ) \ v j 0( z ) \ d g z +  f ( z ) g ( z ) \ v j 1( z) \ dgz

Jo Jo
are in the triangle Obgb\.

Corollary 3.2. The monic polynomial ttm(z ) ( N  > 0) orthogonal with respect to 
the inner product over real intervals

v~^ rO   m~ 1 rh ____
( J , g )  =  X )  /  f ( x ) g ( x ) \ w ( x ) \ d q x +  /  f ( x ) g ( x ) \ w ( x ) \ d g x

s= 0 ^ s = v  “'0
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has all zeros in the interval (—h \, hf), where

h i =  max L, h>
0<s<v—l

m ax ls .
v<s<m—l

4. Some Symmetric Cases

In this section, we study the case of equal angles between successive intervals 
[0, 6S ] ,  i-e.

f  2 '7r s  \
bs = hpm(s ) ,  where <pm (s) = exp f i — -  J , s =  0 , 1 , . . . ,  m  -  1. 

Lem m a 4.1. The function s 1—> p m (s) has the following properties:

1. <pm(?ns) =  1, Pm(s)  =  T m i - S )

2. p m (s +  r) =  Pm(s)  +  lpm(r), <p^(s) = <pm(Ns)
m—1 m—1 {m ,  V =  0

3. E  <pm((rnn + v)s)  = E  'pm(i's) = < ’ . . .
s = 0  s= o  1 0 ,  1 < v <  m — 1.

(6)

Theorem 4.1. Suppose that m  =  pr (p, r  6 Nj and that the lengths and the 
weights o f  the radial rays are repeated periodically with period p, i.e.

^ s + j p  =  I s ,  | w s + j p  ( j p m ( . j p ) z )  | =  |w^s(-z)| Z  G [ 0 ,6 s ]  ("7)

0 < 8 < p — 1, j  = l , 2, . . . , r - l .

Then the polynomial ttm(z ) orthogonal with respect to (3) has the property

7TJV (<pm (p)z) = p m (Np)7rN (z).

Proof: Let t t n (z ) be the member of the set of the monic polynomials orthogonal 
with respect to the inner product (3) and Q n (z ) =  ttn (<pm(p)z). By using known 
properties of <pm (s) from Lemma 4.1, for M  =  0 , 1 , . . . ,  N ,  we have

( Qn , z m )
m —1 00

,-0 k—0
m —1 cxd

=  (1 - q )  ^2<lk7rN(Tm(p)bsqk)(bsqk)M \ws(bsqk)\ 
s=0 k=0 

m —1 cxd

=  (1 ~ q )  qkKN(qkh f m ( s  + p) ) l ! fqkMp m ( - M s ) \ w s (bsqk)\
s=0 k=0

=  p m (M p ) ( l  -  q)
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m —1 q g

Y  qkKN(qkh+p<pm(s +  p))l f+pqkM <pm(-M(s +  p))\ws+p(bs+pqk)\
s= 0  k=0

p+m—1 oo
= <pm (M p ) ( l  -  q) Y  ^2<Ik7rN(qkl]<pm(j))lj1qkM<pm(-Mj)\w:j(b:jqk)\

j=p k=0
m —1 cxd

=  ipm(Mp)(l  -  q) Y  Y  qk M j ) \ Wj {bj qk)\
j =0 k=0 

m —1 cxd

=  <pm (Mp)(  1 - q ) Y  ^ 2 q k7rN(qkbJ)(b:jqk)M \w:j(b:jqk)\. 
j =0 k=0

At last, we get

(Qn , z m ) = p m(Mp)(7TN , z M ), M  = 0 , 1 , . . . ,  N.

Since the polynomials ttn(z ) are orthogonal, we conclude that (Qn , zm ) =  0 for 
M  =  0 ,1 , . . .  , N  — 1. Because of the uniqueness of the sequence of the orthogonal 
polynomials, it must be valid

Q n (z ) =  K ttn (z ),

where K  is the constant. On the other hand,

(Qn , zN ) = ( K itn , z n ) = K ( itn , z n ),

wherefrom we get K  =  <pm (Np).  □

Theorem 4.2. Under the assumptions o f  Theorem 4.1, if  £ is a zero o f  ttn(z ), then 
the zeros are also j  = 1, . . .  ,m fp .

Now, we will discuss the cases when the zeros stay on the rays.

Theorem 4.3. Under the assumptions o f Theorem 4.1, i f  p  =  1 or p  =  2, then the 
polynomial ttm (z ) has all zeros contained by the intervals o f support.

Proof: Let Co =  Peia be a zero of ttn(z ). According to a previous theorem, the 
zeros are also Q =  CoTmijp) ,  j  =  1, • • •, r  — 1 (r  =  m/p) .  Denoting by

8k = Y  C? = C o Y  Tm(pk j)
j=0 j=o

we get s k =  0 (k < r)  and sr =  rQ .  By Newton’s formulas, we have

r — 1

J J  (z —  C j )  =  zr —  a i z r _ 1  —  • • • —  ar_ i z  — ar 
3=0
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where a\  =  s i, ka^ =  Sf~ — a i s ^ - i  — 0 2 ^ -2 ---------o,k-is i (k = 2 , . . . ,  r). Now,
since =  0 (k <  r) and ar = Cq, we have

n >  -  f i > = s - -  a -

Then, the polynomial ttn(z ) we can write in the form

7TN (z ) = TN- r ( z ) ( z r -  Co), TM-r(z) € TV-r-
Because of orthogonality, we have further

m ~ 1 1 rbs _________

0 = (irN ,TN-r)  = J-  /  i f  -  Co)TN-r(z )TN- r (z)\ws( z ) \dqZ,
s=0 bs

i.e.
m —1 00

0 =  (1 -  9) E  E  <1" f  ~  C o) \TN -r(z)? \w s(z)\ .

Separating the real and imaginary part of the previous integral, we get
m —1 00

(1 - q )  eos(27rr s / m )  -  pr cos(rafj  \TN-r(qkbs)\2\ws(qkbs)\=Q
s=0 k=0

and
m —1 qg

(1 —9) E 9 fc(? i r | I ™ ( 2 W m )  -  pr sm(ra)'j \TN-r(qkbs)\2\ws(qkbs)\=0-
s= 0  k=0

We will discuss the next two cases:
1) If r  =  m,  then we have

m —1 qg

E E ? "  ( V mC  -  Pm c o s (m a )) | r iV- r (gfc6s)|2N s(g fc&s)| =  0 
s= 0  fe=0

and
m —1 00

pm sin(m o') ^  ^  9fck iV -r(g fc&s)|2N s (gfc6s )| = 0 .  
s = 0  k=0

From the last identity, we conclude that sin (m a) =  0. Therefore, there exists an 
nonnegative integer j  such that a  = j w / m .  But, for j  odd, the first relation yields 
the form

m —1 00

E E ? "  ( V mC  +  Pm) \TN-r(qkbs)\2\ws (qkbs)\ = 0
s = 0  k=0

that is impossible because of the positivity of the sum. So, it must be a  =  2irj j m ,  
j  e No- Now, including statement of Theorem 4.1, the zero Co =  pe1Q lies on some 
interval of support.
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2) In the case r  =  m j 2, we find s in (am /2 ) =  0, wherefrom it exists j  e  No such 
that a  =  2trj f m .  It guarantees that the zero C is on the support. □

5. The Case of Equal Lengths, Angles and Weights

Let us suppose

<pm(s) = exp
2 ttsi

m WsO^mOO)! =  w(x)

for x  e  (0 ,1) and 0 <  s < m  — 1. Then the inner product (1) yields the form 

a  /™ -i _________ \
(f,g) = JQ ^  f ( x p m (s))g(xpm ( s ) ) j  w ( x ) d gx.  (8)

About the zeros of ttn(z ) we can prove:

Theorem 5.1. All zeros o f  the polynomial t t n ( z ), orthogonal with respect to (6), 
are simple and located on the support, with possible exception o f  a multiple zero 
at the origin z  =  0 o f order v, i f  N  =  u (mod m).

Proof: In the Theorem 4.2 we proved that the zeros of ttm (z ) are on the support. 
In the paper [4] it was proved that the polynomial ttn (z ) can be expressed in the 
form 7Tjv(z) =  z v4 k ] (zm), v  e  {0, 1, . . . ,  m  — 1}, where qnHt)  is orthogonal on 
(0 ,1) with respect to a positive weight. It is well known that the zeros of qnHt)  
are real and distinct and are located in (0 ,1). Let t^ ' v\  k  =  1 , . . . ,  n  denote the 
zeros of qn'* (t) in increasing order

Each zero r | n’̂  generates m  zeros

(n ,v ) _  m (n ,v ) s =  0 , . . . ,  m  — 1

Of TTjY (-Z).
On every interval

I 1
l z l,s  I < I 1

\z 2,s I <  • • • < I 7{n,v)|I^n,s h s =  0 , . . . ,  m  — 1.

Also, itn+i (z ) and ttn(z ) separate their zeros in the intervals.
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