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Abstract. We construct the sequence of orthogonal polynomials with re-
spect to an inner product defined in the sense of g-integration over several
intervals in the complex plane. For such introduced polynomials we prove
that all zeros lie in the smallest convex hull over the intervals in the com-
plex plane. The results are stated precisely in some special cases, as some
symmetric cases of equal lengths, angles and weights.

1. Introduction

We will start with well-known facts from g-calculus [1], [2], where ¢ is a real
number from the interval (0, 1). The basic number [z], is given by

1—4*
1—

[z]g = (x e R)

and factorial of g-natural numbers
Ol =1, [0l =[nlgn -1 =[nlgn—-1]y---[1l, nelN

We define g-shifted factorials by

(asq)o=1, (a;q)n= H(l - aqk_l,}’ (a;@)o0 = H(l - aqk_l,}
k=1 k=1
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and g-shifted factorial of a vector is

(ala Q2,...,0¢; q}n = (Gfl; q,}n(al; q,}n(aQ; q,}n ce (Gf'r’; Q}n-

Obviously,

gt = LD e,

1—qm
Generalization of gamma function I'(z) is given by

(o) = L8 g,

One of main properties of gamma function holds on, i.e.
Ty(z+ 1) = [z], Tylz).

Basic hypergeometric function is defined by

1,042, ...,0r
T<I>s( q; 2

bi,bo,..., b
=Sl D yarsnk0ren(l) 2
TR (i

We assume that the convergence of all series in further discussion is assured.
Let us define a g-integral by

b oo
/ F(2)dgz == (b—a)(1-q) > F (a + (b — a}qk) ¢ 0<g<1, abeq).
a k=0

An inner product on beam of m-intervals [as, bs] (s = 0,1,...,m — 1) is defined
by
m—1 1

FG) =Y " PRI ()l dy2 0

=0 by — ag as

where W(z) is a weight function on the interval [as, bs].
The previous inner product can be written in the form

m—1 oo

(F.G)=(1-9) > > ¢ F()GE) Wi (2)|

s=0 k=0

@

Z:as+(bs _as}qk ’

This product is positive-definite because of ||F||? = (F,F) > 0, except for
F(z)=0.

It implies existence of the sequence orthogonal polynomials { Py (z)} which satis-
fies

<PM,PN> :‘5MNHPN]]2 (M,N €N0}.
We can construct this sequence by the Gram-Schmidt orthogonalization.
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If we define moments and moment-determinants by

pik= (72", Ag=1, An=|niylll,, n>1

then these polynomials can be expressed in the form

2 10 --- fPn-10 1
1 Hot Hi1t .- Hn—11 z
Po(z) =1, Pn(z>:A— -, n=>l
" Bon—1 Him—1 - Hn—in—1 2771
Hon  Bin -ee fn—in 2"

This sequence is unique and the norms are

Especially, if all intervals start from the origin and ¢ tends to 1, we get polynomi-
als orthogonal on the radial rays in the complex plane which were introduced by
G. Milovanovié [4] and investigated in the papers of G. Milovanovié, R. Rajkovié¢
and Z. Marjanovi¢ [5, 6].

In the cases when all beams start from the real axis and make the zero or straight
angle with it, we have standard case of orthogonal polynomials on interval or on a
few segments of the real line.

2. Transformations of Beams and Polynomials

Here, we will discuss some transformations in the complex plane, such as scal-
ing and rotating, of support of orthogonality and its repercussions to orthogonal
polynomials.

Theorem 2.1. Let o be a complex number. The sequence {W‘;{;(z}};(:o orthogonal
with respect to the inner product

ml obs
D /  FETEWi(z/0)ldy2
can be expressed by

7% (2) = m(z/0),

where {wn(2)} N2y is orthogonal with respect to (1).
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Proof: Let {rn(2)}}2, be an orthogonal sequence with respect to (1) and
7n{2) = wn(2/0). Then we have

m—1 by
rir)e = . [ (T EIWala/0)] dgs
5=0

m—1 oo

=(1-q) 3 Y O DIWa(t/o)]
s=0 k=0
m—1 oo

= (=) 33 dir(t/o)an )| Ws(t/o)]|

s=0 k=0

t=vas;+(obs —oas Jg"

t=o(as+{bs—asigh)

Introducing a change u = t/o, yields

m—1 oo

(T, TN)e = (1= @) P (w)men ()W (w)] -
oo ! ;;09 AN lu:as+(bs—a5>q
= (FK,7N)-

Because of the uniqueness of orthogonal polynomial sequence, we conclude that
the statement is valid. O

Corollary 2.1. The zeros of w.(z) are obtained from the zeros of wn(z) by the
multiplying with o.

Proof: Let ¢ be a zero of the polynomial 7y (z), i.e. wx{(({) = 0. According the
previous theorem, we find

7i(0€) = 7n(() =0
i.e. oC is a zero of the polynomial #§ (z). O
Remark. We can emphasize the next transforms obtained for some spacial values
of o:
1) rotation, when o = ¢! (a € R)
2) scaling, wheno = R € R.

3. Orthogonality on the Intervals with the Start Point in the Origin

In this section, we consider intervals which go from the origin to some points in
the complex plane. Now, inner product can be written by

Fe—m_ll " R ATEIW.()d 3
(F, >—S§g/0 ()G |Wa(2)] dg2 3)

or
m—1 oo
(F,G)=(1-q) Y. 3 " FOTOIW, )

—b.gk
5=0 k=0 t=bsq
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Since by is a complex number, we can write it by
bs = Lspm (s)
where
Is €RT,  @u(s) =exp(iby), b€ (—mx], 0<s<m—1,i%=-1.

Theorem 3.1. The polynomial wx(z) (N > 0) orthogonal with respect to (3) has
all zeros in the smallest rectangle spread over the radial rays with edges parallel
with axes,

R={z:a; <Re(z) <as Ab <Im(z) <bs} )

where

ay = min< 0, min l;cosf,}, as = max<0, max [ cosf,
0<s<m 0<s<m

and

by =min<0, min [ ;sinf;;, b = max<{0, max [ ,sinf, .
0<s<m 0<s<m

Proof: Suppose that { is a zero of wx(z). Then we can write
an{z) = (z — Ory_1(2), rn_1(2) € Pn_1.

Because of the orthogonality, we obtain

m—1 oo

0= (rn,ra—1) =1 —q) > > q" (bsa"® — Q) Irne1(bsa®)? |Wi(bsg™)|.
5=0 k=0

Hence, the real and imaginary part of the sum are equal to zero. Since b; and { are
complex numbers, we can write them as

bs = I;cosf0; +il;sinfy (I; € RT, 0, € (—=,x]), ¢(=A+iB, A BcR.

Now, we have

m—1 oo

(1-q) Z Z Q’k@kgs cos fs — A,}]'T'N—il(bsqk,}]Q]wzs{bsqk}] =0
s=0 k=0

and

m—1 oo

(1-q) Z Z Q’k@kgs sinfs — B)]'T'N—ﬂbsqk,}121W’5<bsqk>] =0
s=0 k=0

It means that the functions
m—1

F(k) = Z (¢l cos 05 — A)g®|rv_1(bsg™)|? | We(bsq™)]
5=0
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and
m—1

G(k) = D (¢"lssinbs — B)g"|ry—1(bsq™)|*|We(bsq")|
s=0

change their signs for some &k € N. Hence we conclude that the zeros are in E.
Really, let us suppose that A > max, {l; cosf,,0}. Then, for every sand k € N,
we will have A > max {I, cos 0,0} > ¢"l, cos 0. But, because A—¢*l; cos 0, >
0, we will have also F'(k) < Oforall k € N, what is in contradiction with assump-
tion.

Also, if we suppose that A < ming {Is cos f,,0}, then, for every s and k € N, we
will have A < min {l; cosfs,0} < qls cos 0,. But, because A — ¢*l, cosf, < 0,
we will have F'(k) > 0 for all & € N, which again is in contradiction with our
assumption. In this way we can prove all inequalities. O

Theorem 3.2. All zeros of the polynomial wn(z) (n € N) orthogonal with respect
to (3) lie in the smallest convex region which contains intervals.

Proof: Let us consider the endpoints by, and by, of some intervals such that the
line by, by, does not have the intersection with any interval from the set [0, b;],
i=20,1,...,m— 1. If we rotate the whole beam of intervals for the angle ag such

that the line bg}mj b,g?w is parallel to the real axes, then all zeros of the polynomial
’R’;?O} (2) lie in rectangle PO(QOJ whose one edge contains bg:o) bgf‘}} . According to
Corollary 2.1, all zeros of 7y (z) lie in rectangle Py which is obtained from the
rectangle PO(%} by rotation for the opposite angle of a.

In that way, taking any two endpoints of intervals of orthogonality including the
origin 0, we can find rectangles P; spread over the intervals which contains all
zeros of 7 (z). Their intersection is the smallest convex region which contains all
zeros of wx(z). The vertex of the region are the tops of those rays which hold on
its convexity. |

Corollary 3.1. All zeros of the polynomial 7x(z) orthogonal with respect to the
inner product

bg _ by -
(9= [ 1@ g+ [ HE@aE ()] dge
are in the triangle Obgbh;.

Corollary 3.2. The monic polynomial wn(z) (N > 0) orthogonal with respect to
the inner product over real intervals

v—1 g - m—1 e _
o =X [ f@@le@ie+ X [ @il
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has all zeros in the interval (—hy, ha), where

h1 = max [ he = max I
0<s<r—1 p<a<m—1 °

4. Some Symmetric Cases

In this section, we study the case of equal angles between successive intervals
[0, bs], i.e.

2
bs = lspm(s), where ¢, (s) =exp (1ls> , s=0,1,....m—1. (6
m

Lemma 4.1. The function s — ©.,(8) has the following properties:

L om(ms) =1, pm(s) = pm(—s)

2. ¢m(s +7) = om(s) + @m(r), oo (8) = Pm(N's)
58 mn + v)s S vs) =40 v=20

3 X, emllmntv)e) = 3 omve) {0, 1<v<m-—1.

Theorem 4.1. Suppose that m = pr {p,r € N) and that the lengths and the
weights of the radial rays are repeated periodically with period p, i.e.

Isyip=ls, ]ws+jp (em(ip)2)] = lws(2)] 2z €0, b4 (N
0<s<p—1, 7=12,...,r—1

Then the polynomial wn(z) orthogonal with respect to (3) has the property
7N (pm(P)2) = om(Np)rn (2).

Proof: Let wx(z) be the member of the set of the monic polynomials orthogonal
with respect to the inner product (3) and Q n(2) = 7wn (@m(p)z). By using known
properties of ¢, (s) from Lemma 4.1, for M = 0,1,..., N, we have

(@Qn, 2M)

m—1 oo
= (1-9) X dQn(iw, (1)
s=0 k=0

m—1 oo

= 1-9) 33 " rn(om(p)bsa®) (bsg") M |ws(bsg™)|
5=0 k=0

t:bsqk

m—1 oo

= 1-9) Y. > Frnla lsom(s + PV ¢ on(— Ms)|ws (bsq™)|
5=0 k=0

= om(Mp)(1 —q)



The Zeros of Polynomials Orthogonal with Respect to g-integralon ... 185

m—1 oo
S I an(@Flsipom(s + pX 0" om(—M (s + p)) [ wssp(bsipa®)|
5=0 k=0
p+m—1 oo
= omMp)1—q) > > (@ lom(MNY M om(—Mj)w; (b;g")|
j=p k=0
m—1 oo
= omMp)(1—q) D> " an (@ liom (PN @ om(— M) w; (b;q")|
7=0 k=0
m—1 oo
= om(Mp)(1—q) D 3 ¢*an(g"b;)(b;") M |w;(b;q")].
=0 k=0

At last, we get
<QN,ZM> = pm(Mp)lry, zM>, M=01,...,N.

Since the polynomials 7y (z) are orthogonal, we conclude that (Qy, 2™} = 0 for
M =0,1,..., N —1. Because of the uniqueness of the sequence of the orthogonal
polynomials, it must be valid

Qn(z) = Krn(z),
where K is the constant. On the other hand,
@Qn, 2"y = (Kny, 2"y = K(zn, 2V,
wherefrom we get K = ¢, (Np). O

Theorem 4.2. Under the assumptions of Theorem 4.1, if £ is a zero of wn(2), then
the zeros are also £ (Jp), 1= 1,...,m/p.

Now, we will discuss the cases when the zeros stay on the rays.

Theorem 4.3. Under the assumptions of Theorem 4.1, if p = 1 or p = 2, then the
polynomial 7 (z) has all zeros contained by the intervals of support.

Proof: Let (g = pe'® be a zero of wx{z). According to a previous theorem, the
zeros are also (; = Copm(jp), 7 =1,...,7— 1 (r = m/p). Denoting by

r—1 r—1
se= (=G5 Y om(pkd)
i=0 i=0
we get s, = 0 (k < r)and s, = r{j. By Newton’s formulas, we have

r—1
H(Z—Cj) :ZT—G»:LZT_l — = Op_ 1% — Oy
3=0
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where a1 = 81, kap = sp —a18_1 —aaSp_o—---—ap_181{k = 2,...,r). Now,
since ar, = 0 (k < r) and a, = (), we have

r—1

[[e-¢) ="~

§=0

Then, the polynomial 7y {z) we can write in the form

an(2) = TN—r(2)(2" = (g)y  TN-r(2) € PNor.

Because of orthogonality, we have further

0= (v = 5 & [ = e (o)
= \TN,TN—yr; = Szog 0 z CO,TN—'I” Z)TN—r\Z2)|WsiZ)| g2,

ie.
m—1 oo
0=0-9) X Y ¢~ @ lv—r @ s _,, -

Separating the real and j;{;;;?iry part of the previous integral, we get
(1-0)' S S0 ¢+ (a1 costarsm) — o7 cos(ra)) I a2 Phs(a) =0
» 5=0 k=0
(1-0) S 3 g (¢ sin(@rs /m) — o7 sinra)) o (a0 Py (60,)| =0

s=0 k=0

We will discuss the next two cases:
D If r = m, then we have

m—1 oo

33" dF (@i — 7 cos(ma) ) - (48, Plws ()| = 0
s=0 k=0
and .
P sin(ma) Z Z @ |Tv—r (q"s) P ws (q"bs)| = 0.
s=0 k=0

From the last identity, we conclude that sin{ma) = 0. Therefore, there exists an
nonnegative integer j such that @ = jw/m. But, for j odd, the first relation yields
the form

m—1 oo

S5 dF (05 + ) v (g"0) Pl (6¥85)] = 0

5=0 k=0
that is impossible because of the positivity of the sum. So, it must be & = 275 /m,
j € Ng. Now, including statement of Theorem 4.1, the zero (g = pe'® lies on some
interval of support.
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2) In the case r = m /2, we find sin{am/2) = 0, wherefrom it exists j € Ny such
that & = 2xj /m. It guarantees that the zero ¢ is on the support. O

5. The Case of Equal Lengths, Angles and Weights

Let us suppose

2msi

=1 on) = e (), JusGapn(s)] = w)

for z € (0,1) and 0 < s < m — 1. Then the inner product (1) yields the form

] /m—1
(f) = /0 (Z f(wm(S)}—g(wm(s}}J w(z) dya. ®
5=0

About the zeros of 7x(z) we can prove:

Theorem 5.1. All zeros of the polynomial wn(z), orthogonal with respect to (6),
are simple and located on the support, with possible exception of a multiple zero
at the origin z = 0 of order v, if N = v (mod m).

Proof: In the Theorem 4.2 we proved that the zeros of wx(z) are on the support.
In the paper [4] it was proved that the polynomial 7y {(z) can be expressed in the

form wx(z) = z”q,(f’} (z™),ve{0,1,...,m— 1}, where qy(f’)(t} is orthogonal on
(0, 1) with respect to a positive weight. Tt is well known that the zeros of q,(f’} (t)
are real and distinct and are located in (0,1). Let T,ﬁ”’”j, k =1,...,n denote the
zeros of qff’} (t) in increasing order

Tfn’y} < Tén’y} < e L 7,2”=”3.

7,0
Each zero Té “) generates m zeros

z,gns’”} = m\/'fén’y}elm , s=10,....m—1

of my (2).

On every interval
2 < 25 < < 2], s =0,...,m - L.

Also, wy+1(2) and wn(2) separate their zeros in the intervals. O



188 Predrag M. Rajkovi¢, Miomir S. Stankovi¢ and Sladjana D. Marinkovié

References

[1] Andrews G. et al., g-Series: Their Development and Application in Analysis, Number
Theory, Combinatorics, Physics and Computer Algebra, 66, AMS, Providence, Rhode
Island, 1985.

[2] Hahn W, Lineare Geometrische Differenzengleichungen, 169, Berichte der Mathema-
tisch-Statistischen Section im Forschungszentrum Graz, Graz, 1981.

[3] Koekoek R. and Swarttouw R., Askey-scheme of Hypergeometric Orthogonal Polyno-
mials and its q-Analogue, Report of Delft University of Technology, No 98-17, 1998.

[4] Milovanovi¢ G., A Class of Orthogonal Polynomials on the Radial Rays in the Com-
plex Plane, . Math. Anal. and Appl. 206 (1997) 121-139.

[5] Milovanovi¢ G., Rajkovi¢ P. and Marjanovié Z., A Class of Orthogonal Polynomials
on the Radial Rays in the Complex Plane II, Facta Univ., Ser. Math. Inform. 11 (1996)
29-47.

[6] Milovanovi¢ G. , Rajkovi¢ P. and Marjanovié Z., Zero Distribution of Polynomials
Orthogonal on the Radial Rays in the Complex Plane, Facta Universitatis, Ser. Math.
Inform. 12 (1997) 127-142.

[7] Stankovié M., Rajkovi¢ P. and Marinkovié S., Selving Equations by q-Iterative Meth-

ods and g-Sendov Conjecture, Constructive Theory of Functions (B. Bojanov, Ed.),
Darba, Sofia, 2003, pp 412-418.



	THE ZEROS OF POLYNOMIALS ORTHOGONAL WITH RESPECT TO q-INTEGRAL ON SEVERAL INTERVALS IN THE COMPLEX PLANE

	1.	Introduction

	[x]q = -	 (x e R)

	^0(h,...,bs;q)k{	(q~,q)k'

	EE

	Mj ,k

	Mn-1,0	1

	Mn—1,1	Z

	2.	Transformations of Beams and Polynomials

	= (! - q)	<lkTK{t)TN(t)\Ws(t/a)


	(1 -q)Yl ^2qk(qkhcos 8S - ^4)|rjv-1 (6sgfe)|21Ws(bsqk)\ = 0

	4.	Some Symmetric Cases


	n> - fi>=s-- a-

	5.	The Case of Equal Lengths, Angles and Weights



	s = 0,..., m — 1

	References




