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EXACTLY SOLVABLE PERIODIC DARBOUX ¢g-CHAINS
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Vorobévy Gory, 119992, Moscow, Russia

Abstract. A difference g-analogue of the dressing chain is considered
in this paper. The relation between the discrete and continuous models
is also discussed.

1. Introduction

Let Ly, Lo, ... be self-adjoint differential operators acting on R. They form a
Darboux chain if they satisfy the relation

Ly =A;A] —a;=A] | A, (1)

where 4; = — ;—I + f;(z) are first order differential operators. A Darboux
chain is called periodic if L,,, = L; for some r and for all j = 1,2,....
The number 7 is called period of a Darboux chain. In the particular case r =1
the operator L, + 3 appears to be the harmonic oscillator and it is known that

. . . . 2k +1
it has a discrete spectrum consisting of the geometric sequence A\, = 3 a,
where £k = 1,2.... Eigenfunctions of the harmonic oscillator are expressed in

terms of the Hermite polynomials and therefore they form a complete family
in the Hilbert space L5(R).

Periodic Darboux chain leads to the following integrable system of differential
equations:

(fj+fjfl)/:fj27fj271*aja .721,2, (2)

where f;;, = f;. Sometimes this system is referred to as dressing chain
which has been thoroughly examined in [8]. The cases @ = 0 and a # 0,

T

where a = >7;_, «;, are cardinally different. The operators of a periodic
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Darboux chain are finite-gap if & = 0. If o # 0, then the equations for f;
lead to the Painlevé equations or their higher analogues and exactly as in the
case of the harmonic oscillator, relations (1) also define the discrete spectrum
of the chain operators L;. The spectrum of each of these operators consists of
r arithmetic sequences and can be found using the Darboux scheme:

Ajo =0, Ajt1 k41 = Ajg + Ajrk = A\jk

(see [8] for the details). Hence, for any r the chain operators are unbounded.
Eigenfunctions of the chain operators can also be obtained using the Darboux
scheme:

Yjt1 k1 = A;wj,ka Vjrk = Yk €)

where the ground states v, are defined by A,_411;, = 0.
The main difference between the cases r = 1,2 and r > 3 is that in the case

r = 1, 2 the dressing chain can be integrated explicitly and there are still many
unanswered questions concerning the dressing chain for r > 3:

1. Do the chain operators L; exist for arbitrary «;,...,,? If they do, are
they non-singular?

2. Do the Darboux eigenfunctions (3) belong to the Hilbert space L,(R)? If
they do, do they form a complete family in £,(R)?

At the time being it is only known that the answer to all these questions is “yes,
they do”, if r is odd and (a4, ..., «,) is a small perturbation of a; = --- = «..

2. Periodic g-chains with Shift

Consider the following g-analogue of a Darboux chain:
Ly =A;AT —a; =qA] 1 Aj “4)

where A; = a,; +b,T are difference operators on one-dimensional lattice Z and
T is the shift operator: (A;f)(n) = a;(n)f(n)+b;(n)f(n+1), a;(n),b;(n) €
R\{0}. Without loss of generality we may assume that b;(n) > 0 for all
j7,mn. One of the important features of difference operators in comparison to
differential ones is the possibility to define a periodic chain in various ways.
According to [2], we will say that a chain (4) is periodic with period r and
shift s if the relation

Ljsy =T °L;T* )

holds for all 5 > 1. Only the case s = 0 has been studied thoroughly. However,
the possibility of factorization in “the reverse order” was mentioned in [3,
4], i.e. operators A; = a; + b;T can be replaced by operators of the form
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A; = ajTJr + b;. Such factorization with s = 0 is, in fact, equivalent to the
factorization “in the right order” for s = r (the operator L; is replaced by
T7IL;17). Apparently, the general formulation with an arbitrary s has been
considered only recently in [2, 6], while the following special cases had been
studied in the literature before.

1. @« =0, ¢ =1, r is arbitrary [4]. Operators L; are finite-gap.
2. a>0,qg =1, r =1 (difference analogue of the harmonic oscillator) [4].

In this case, the operator relation (4) is equivalent to the following system
of difference equations:

a(n) = const
b’(n) —b*(n —1) =a.

Thus, symmetric operator L acting on the space of functions on the lattice
Z, does not exist. Nevertheless, there exists a solution on the “half-line”
Zo. The spectrum of the operator L + & is exactly the same as that of
the harmonic oscillator A\, = a(k + %), the eigenfunctions are expressed in
terms of the Charlier polynomials and therefore, form a complete family in
L5(Z>0).

3r=1, a >0, 0 < g<1(ra<?0,1 < q)l[4,7] (g-oscillator).
In this case, the operator relation (4) is equivalent to the following system
of difference equations:

a’(n) +b*(n) = q(a*(n) + b*(n — 1)) + &
a(n) =qa(n —1).

The discrete spectrum of the operator L lies in the interval [0, %) (or in
(0, Eq_‘”—l) if ¢ > 1) and it forms a “g-arithmetic sequence”. Note that, in this

case, the operator L is unbounded (since its coefficients a(n) tend to 00),
though its discrete spectrum is bounded. In [4] it is conjectured that L has

continuous spectrum in the interval (1‘1—_"‘(1, oo).

4. Another version of the g-oscillator is considered in [1]. It is presented by
a difference operator on the whole “line” Z. In our settings, this version
of the g-oscillator can be interpreted as the case s = 1, r = 2, a1 = o,
(a and ¢ are the same as in 3). A particular solution that is symmetric about
the origin was found in [1]. This case is specific because here the operator
L is bounded and has no continuous spectrum.

We claim here that the same property holds for a g-chain of an arbitrary even
period r with the shift s = r/2 (the idea to consider g-chains with the shift
twice smaller than the period belongs to I. Dynnikov). The chain operators
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are bounded and have no continuous spectrum. We also provide explicitly the
general solution of the problem in the case s =1, r = 2.

3. Main Results

Theorem 1. Suppose r is even, «y,...,q, are positive, q satisfies the in-
equality 0 < q < 1, and we have s = r/2. Then the system (4), (5) has an
r-parametric family of solutions. The operator L; is bounded for each j and its
spectrum {0, \j1,... } is discrete and is contained in the interval [0, ||L;||).
It can be found by using the Darboux scheme:

Ajo =0, Njrtprr = ¢(Ajr + ay), Ajtrk = Ajik -

For each j, the eigenfunctions of the operator L; can also be obtained by using
the Darboux scheme:

Ajfle,o =0, 77/)y'+1,k+1 = Aj'@/)j,k

and these eigenfunctions form a complete family in L,(7Z).

A similar assertion holds for aq,...,a, <0, 1 < g (in this case, the point 0
is not included in the spectrum of L;).

Now we present an explicit form of the operators A;, A, for r = 2.

Proposition 1. For r = 2 = 2s, ay,a, > 0, 0 < ¢ < 1, the general solution
of the problem (4), (5) has the form a,(n) = e\/&a,, bi(n) = /Moni1, a2(n) =
€v€an_1, ba(n) = \/Man, where € = %1,

B 1ec, 2qun—<pf% T Cn+1q72n72<p71

n = 9 (1 — g—2n+))(1 — g 2(vte+1))

1 ¢pq — 26 qn+ap+§ T qu2n+2ga+1 ©)
" = =

2 (L= @O = goe)

o1 1+ Qo Q1 — Qo
¢, = ———— + (1) —

1-¢ (1) 1+4+¢

@ € R is arbitrary, the parameter k satisfies the restrictions c[w]q’g +Cip—1 ¢’ <
2k < min(ep ™ + epp1q O e g P if ¢ ¢ Z oand 2k =
Cwq% + cw,lq_% if ¢ € Z. In this case, in fractions (6), one has to cancel
the factor (1 — ¢*"*9)) for n = ¢ mod 2 and the factor (1 — ¢>™+¢+1)) for
n = (¢ + 1) mod 2. Here, we set 0 = ¢ — [p] — L and [y] stands for the

2
integral part of .

See [6] for the detailed proofs. The explicit formulae (6) were obtained by
I. Dynnikov.
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4. Discussion

4.1. Observation

In the case r = 2, oy = ay, operators L; + %” constructed from the above

solutions converge to the harmonic oscillator as ¢ — 1 in the following sense:
take ¢ =0, e = —1, ¢ = exp(—2-h?), z = nh, T = exp(h-) and assume
that n is real in formulae (6) and that the operator L; is a difference operator
on R. Then for any f € C*(R) we have

Qq

(1ot V5@ = (2 1 2La?) £(0) + olh).

If a; # ao, then the operator L; converges in the same sense to

d n (5 tagn)® o o (4 ayn)(ey +3054)

dZCQ 16 2 4(()5] + Ozj+1)2£c2

where a2 = a;.
In the cases 2 and 3 mentioned above there is no link of that kind between the

discrete and the continuous models. Thus, the considered case s = r/2 gives,
in a certain sense, a proper discretization of a Darboux chain.

We hope to prove that a g-chain converges in the same way to an ordinary
Darboux chain for an arbitrary even r. The numerical experiment confirms
that a g-chain of the period 6 converges to an ordinary Darboux chain of the
period 3 if a; = ajy3.

Another interesting question is integrability of the discrete g-chain: since cor-
responding continuous system is integrable, it would have been rather natural to
think about integrability (in a certain sense) of the discrete model. The periodic
g-chain (4), (5) is equivalent to the following system of difference equations:

&i(n— 1)+ n;(n) = q(§-1(n) +m;_1(n — 1)) +a;

(7)
§i(n)n;(n — 1) = ¢*& a1 (n — D)y 1 (n)
where j =1,...,r is a cyclic index, &;(n) are defined only if j +n is odd and
n;(n) are defined only if j + n is even:
€ai11(2k) = ag; 4y (K + 1) a1 (2k + 1) = 3,41 (k +4) @®)

Thus, the core of the problem is to find sufficient number of independent
integrals of the system (7). So, one has to seek for some values which do not
change as n changes.
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According to the above theorem the problem (4), (5) has an r-parametric family
of solutions and therefore the system (7) also has an r-parametric family of
solutions (here &;(n), n;(n) are non-negative for all possible j,n). It follows
from the proof of the theorem (see [6]) that for each of these solutions the
coordinates have the following asymptotic:

£2:(2k — 1) — 0, €2:41(2k) — 0

12 (2k) — a4y Moit1(2k + 1) — caip
Noi1(2k +1) — 0, m,;(2k) — 0
§2011(2K) — caipr,  &u(2k +1) — ey

as n — 400 9)

as n — —oo (10)

for all .

Our idea is to extract dynamic values which do not change as n changes out of
this limiting procedure, that is, to examine the rate of convergence of dynamic
variables &;, 17;. Actually we have

Lemma 1. Foreach j =1,...,r

(it 1492 - ni(7+ 2
GUTLE ) _ gy G mU T2 _ asn — oo

q™ q-"

(j+2 — &1+ 2

i +2n) :r n) = 0(1), o gj(jj +2n) =0(1) as n — —oo.
q q="

We will say that a sequence z(n) tends to an s-cycle (p1,...,ps) as n — +00
if the subsequence z(j + sn) tends to p; as n — +oo for each j =1,...,s.
The numerical experiment shows that, for example, the sequence (¢; — 7; (1 +
2n))/¢*" tends to a certain s-cycle (py,...,p,), where s = r/2. The other

sequences (¢; — 1;(j + 2n))/¢*" also tend to some s-cycles; moreover, the
experiment shows that the sequences (¢; — &;(j + 1+ 2n))/¢*" tend to some
s-cycles similarly. These results encourage us to make the following conjecture.

Conjecture 1. Suppose r is even, a,...,q, are positive, q satisfies the in-
equality 0 < ¢ < 1 and we have s =r /2. Then r different sequences

c1 —m(l+2n) ¢y — 122+ 2n) ¢ — n.(r + 2n)
q2n ’ q2n rrrt q2n
tend to the same s-cycle (p1,pa,...,ps) as n — +oo. Similarly, v different
sequences
e —&(2n) ¢ —&(1+ 2n) ¢, —&.(r—142n)
q2n ) q2n rrrto q2n
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also tend to the same s-cycle (vi,va,...,vs). Moreover, the parameters
P1y---yPs V1,-..,Vs uniquely define the solution of the system (7).

It is not yet clear how to obtain explicit formulae for the parameters pq, ..., ps,
vy,...,Vs In the general case. Nevertheless, the formulae (6) allow us to do
this in the most simple case r = 2s = 2. Besides this, the parameters p and
v are independent in this case in the sense that they define the solution of the
system (7) uniquely.
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