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Abstract. In the present paper we prove non-existence theorems for con-
formal mappings of compact (pseudo-)Riemannian manifolds onto Einstein
manifolds without boundary. We obtained certain conditions for which these
mappings are only trivial.
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This paper is devoted to conformal mappings of special (pseudo-)Riemannian spaces
onto Einstein spaces.

On the basis of studying the fundamental linear equations which were obtained by
Mikeš, Gavril’chenko and Gladyscheva [13] we found new results of conformal
mappings of compact n-dimensional pseudo-Riemannian manifolds onto Einstein
manifolds.

Conformal mappings of n-dimensional Riemannian spaces Vn were studied in
many papers, see for example [2,3,5,6,10–12,15,16]. We assume that the metrics g
of Vn under study are of arbitrary signature, i.e., Vn is either a proper Riemann-
ian or a pseudo-Riemannian space. Conformal mappings have applications in the
general theory of relativity (see, e.g., [1, 4, 5, 15]).

In 1920 Brinkmann [1] started researching on conformal mapping of (pseudo-
)Riemannian manifolds Vn onto Einstein spaces V̄n. He obtained the fundamental
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system of differential equations in covariant derivatives of Cauchy type with re-
spect to (n+ 1) unknown functions. This problem is stated in detail in Petrov’s
monograph [15].
As we said above, in [13] J. Mikeš, M. Gavril’chenko and E. Gladyscheva found
the mentioned fundamental system of differential equations in linear form, see [9],
[14, pp. 112–116], [12, pp. 242–246]. We studied this system precisely in [7].
The number p (≤ n + 2) of substantial parameters on which the general solu-
tions depend is called a degree of mobility of a Riemannian space with respect to
conformal mappings onto Einstein spaces.
Lacunas in the distribution of mobility degrees of Riemannian spaces with respect
to conformal mappings onto Einstein spaces were found [7–9, 13].
In the above mentioned papers, it is assumed that the geometric objects in question
are of rather high differentiability class. Our paper is devoted to the study of min-
imal conditions on the differentiability of the geometric objects under conformal
mappings of Vn onto Einstein spaces. As it is known, by means of the choice of
a coordinate system one can decrease the differentiability class to the “minimal
level”. We assume that the dimensions of the spaces under consideration is greater
than three.

1. Basic Facts on Conformal Mappings

Consider a Riemannian space Vn with metric g of arbitrary signature. If in terms
of a coordinate chart (U, x) the components gij(x) of the metric belong to the class
Cr, we will write Vn ∈ Cr. We assume that r = 2, 3, . . . ,∞, ω, where C∞ is the
class of functions possessing continuous partial derivatives of any order, Cω is the
class of real analytic functions.
In Vn ∈ C1 there are defined the Christoffel symbols of the first and the second
types

Γijk = 1/2 (∂igjk + ∂jgik − ∂kgij) and Γhij = ghαΓijα

where gij are the components of the inverse of the matrix ‖gij‖ and ∂i = ∂/∂xi.
In Vn ∈ C2, there are defined the Riemann and the Ricci tensors and the scalar
curvature

Rhijk = ghαR
α
ijk, Rhijk = ∂jΓ

h
ik − ∂kΓhij + ΓαikΓ

h
αj − ΓαijΓ

h
αk

Rij = Rαiαj , R = Rαβg
αβ.

Note that in many works (e.g., [16,17]) the Ricci tensor is defined with the opposite
sign. Further, in Vn, there are defined the Weyl tensor of conformal curvature C

Chijk = ghαCαijk, Chijk = Rhijk − ghjLik − gikLhj + ghkLij + gijLhk
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and the tensors

Lij =
1

n− 2
(Rij −

R

2(n− 1)
gij), Lhi = ghαLαi and Lijk = Lij,k − Lik,j .

Here and in what follows the comma stands for the covariant derivative with respect
to the Levi-Civita connection of Vn. If Vn ∈ Cr, then

Γhij ,Γijk ∈ Cr−1, Rhijk, Rhijk, Rij , R, Chijk, Chijk, Lij , Lhi ∈ Cr−2, Lijk ∈ Cr−3.

Two Riemannian spaces Vn and V̄n are in a conformal correspondence if, in a
coordinate system (U, x) which is common with respect to a mapping between Vn
and V̄n, their metric tensors gij and ḡij are related as follows [5, 6, 12, 14–16]

ḡij(x) = e2σ(x)gij(x) (1)

where σ is an invariant.
As it is known, for spaces Vn and V̄n which are in a conformal correspondence, the
following relations hold

Γ̄hij = Γhij + δhi σj + δhj σi − σhgij
R̄hijk =Rhijk + δhkσij − δhj σik + σhkgij − σhj gik + ∆1σ (δhkgij − δhj gik)

R̄ij =Rij − (n− 2)σij − (∆2σ + (n− 2)∆1σ)gij

C̄hijk =Chijk.

Here Γhij (Γ̄hij) are the Christoffel symbols, Rhijk (R̄hijk) the Riemann tensors, Rij
(R̄ij) the Ricci tensors, and Chijk (C̄hijk) the conformal curvature tensors of Vn
and V̄n, respectively. In addition, δhi is the Kronecker’s delta, ∆1σ = gαβσασβ
and ∆2σ = gαβσ,αβ are the first and the second Beltrami operators, respectively

σi = σ,i, σij = σi,j − σiσj , σh = σαg
αh, σhi = σαig

αh.

The above formulas hold when Vn and V̄n ∈ C2 are considered in a common
coordinate system with respect to the mapping between Vn and V̄n.

2. Conformal Mappings onto Einstein Spaces

In [13] it is proved that a Riemannian space Vn admits a conformal mapping onto
an Einstein space V̄n if and only if in Vn there exists a solution of the following
system of linear homogeneous differential equations in covariant derivatives of
Cauchy type with respect to the functions u(x) and s(x) (> 0)

s,ij = u gij − sLij . (2)

In this case, s = e−σ, and (1) takes the form

ḡij = s−2gij .
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These conditions are fulfilled for minimal requirements on the smoothness class
of the functions under consideration, i.e., when s ∈ C2 and u is a continuous
function. Then obviously Vn and V̄n ∈ C2.
In [7] we have obtained the following theorem.

Theorem 1. A Riemannian space Vn ∈ Cr, r > 2, admits a conformal mapping
onto an Einstein space V̄n ∈ C2 if and only if in Vn there exists a solution to the
closed system of linear homogeneous differential equations in covariant deriva-
tives of Cauchy type

a) s,i = si, b) si,j = u gij − sLij , c) u,i = −sαLαi (3)

with respect to the functions u(x), s(x) (> 0) and a vector si(x). In this case,
space V̄n ∈ Cr.

In [13], as a matter of fact, under the condition that Vn and V̄n ∈ C3 the above
Theorem 1 is proved.

3. Modification of a Certain Theorem by Hopf

After modification of a well known Hopf Theorem about the existence of the so-
lutions of differential equations in partial derivative on manifolds [17] (pp. 26) we
prove the new results about conformal mappings onto Einstein spaces.
In advance we modify the well known Hopf Theorem.

Theorem 2. Let ϕ ∈ C2 be a function on a connected compact manifold Mn

without boundary. Then if for every point P0 ∈ Mn there exists the coordinate
neighbourhood U(x1, x2, . . . , xn) ∈Mn and in this neighbourhood there exist the
continuous functions Aij(x) and Bi(x) of P (x) ∈ U such that on the whole U the
following inequality holds

Aab(x)
∂2ϕ

∂xa∂xb
+Ba(x)

∂ϕ

∂xa
≥ 0 respectively ≤ 0 (4)

where Aab(x)zazb is a positive form then ϕ is constant on Mn, and “≥” or “≤”
in the inequalities (4) for all coordinate neighbourhoods are the same.

Here and later we suppose that the studied manifolds are connected without bound-
ary.
Obviously, in (pseudo-)Riemannian manifolds and manifolds with affine connec-
tion the partial derivative in formula (4) may be replaced by the covariant deriva-
tive.
We point out that in Theorem 2 we do not suppose that the functions Aij(x)
and Bi(x) define in all coordinate neighborhoods geometric objects which are de-
termined “ in the whole” of Mn, in such a way as required, as for example in a
theorem by K. Yano and S. Bochner [17, p. 26].
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Proof: For a compact manifoldMn we can choose a finite set of coordinate neigh-
bourhoodsU , such that the unification of these coordinate neighbourhoods covered
Mn and in each of them the condition (4) holds (for definition take the sign “≥”).
Because ϕ is smooth and Mn is compact, the function ϕ on Mn reaches its max-
imum at a point P0 ∈ U0, where U0 is one of the neighbourhoods chosen earlier.
Then ϕ(P ) ≤ ϕ(P0) for each points P ∈ U0 and on U0 all the conditions of
Hopf’s Theorem hold, and we have ϕ(P ) = ϕ(P0) for any point P ∈ U0.
Further consider a coordinate neighbourhood U1 which has an intersection with
U0. Evidently, ϕ(P ) ≤ ϕ(P0) for any point P ∈ U1. From this ϕ(P ) = ϕ(P0)
for any point P ∈ U1. Analogically we exhausted any coordinate neighbourhood
U . Because the number of them is finite and Mn is connected, we verify that
ϕ(P ) = ϕ(P0) for any point P ∈Mn. The theorem is proved. �

4. Conformal Mappings of Pseudo-Riemannian Manifolds onto
Compact Einstein Spaces

Mikeš, Gavrilchenko and Gladysheva [13] obtained certain results, which are de-
voted to the problems of conformal mappings of pseudo-Riemannian manifolds
onto compact Einstein spaces

Theorem 3. A compact space Vn in which the tensor Sijk vanishes at not more
than one point does not admit nontrivial conformal mappings onto Einstein spaces.

Theorem 4. Compact nonconformally flat symmetric Riemannian spaces do not
admit nontrivial mappings onto Einstein spaces.

We proved the following result

Theorem 5. Let Vn be a compact pseudo-Riemannian manifold. If the Ricci ten-
sor constitutes a positive (or negative) form, then a conformal mapping Vn onto
Einstein spaces is only homothetic.

From differential prolongations of integrability conditions of the fundamental equa-
tions (3) we prove the following theorems.
Firstly we obtain integrability conditions of the fundamental equations (3). From
the Ricci identity si,jk − sik,j = sαR

α
ijk and after substitution of (3) we get

(see [13])
sαC

α
ijk + s Sijk = 0. (5)

After differentiating this integrability condition we obtain

uChijk + s (Sijk,h − LhαCαijk) + sαC
α
ijk,h + sh Sijk = 0. (6)

If Chijk 6= 0, then from the last formula we have obtained

u = s · a+ sαb
α (7)
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where a is a function and bα is a vector field on Vn. This formula is true on all of
the manifold Vn if the condition Chijk 6= 0 is true on all Vn with the exception of
a set of measure zero.
After exclusion of u from the formula (6) we obtain

s (aChijk + Sijk,h − LhαCαijk) + sα (bαChijk + Cαijk,h) + sh Sijk = 0. (8)

From formula (8) the following theorem holds.

Theorem 6. A compact space Vn in which the tensor

aChijk + Sijk,h − LhαCαijk (9)

vanishes at not more than one point does not admit nontrivial conformal mappings
onto Einstein spaces.

Proof: The proof follows from the fact that, if a conformal mapping is nontrivial,
there must exist a maximum and a minimum for the function s. But at these points
si = 0. Since s > 0, from (8) we find that the tensor (9) vanishes at least at two
points in the space Vn. �

Finally, the following theorem holds.

Theorem 7. Let Vn be a compact (pseudo-)Riemannian manifold for which Chijk
6= 0 is true on all Vn with the exception of a set of measure zero.
If for the tensor L∗ij ≡ Lij + a · gij in any point x0 ∈ Vn exists a vector vi for
whichL∗ijv

ivj > 0 (< 0, respectively), then a conformal mapping Vn onto Einstein
spaces is only homothetic.

Proof: Let Vn be a compact (pseudo-)Riemannian manifold for which Chijk is
non vanishing on all Vn with the exception of a set of measure zero, and Vn admits
a conformal mapping onto the Einstein space V̄n. Then formula (7) will be true
and we can rewrite equation (2) in the form

s,ij − s,αbα gij = s · L∗ij . (10)

We note that the functions α and bi determine on Vn.
We suppose that a vector vi that L∗ijv

ivj > 0 (< 0, respectively) exists at all points
x0 ∈ Vn.
For any point x0 of Vn there exists a coordinate neighbourhood U∗(x) such that
vi = δi1 and also L∗11(x0) > 0 (< 0).
We assume a positive constant A for which

A > −(L∗22(x0)− L∗33(x0)− · · · − L∗nn(x0))/L
∗
11(x0).

Therefore
Aij(x)

def
= diag(A, 1, 1, 1, . . . , 1)
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gives rise to a positive form Aij(x)zαzβ on the neighbourhood U∗.
In the point x0 holds

L∗ij(x0) ·Aij(x0) > 0, respectively < 0.

From (10) it follows that

(s,ij − s,αbα gij)(x0) ·Aij(x0) > 0, respectively < 0.

This implies the existence of the coordinate neighbourhood U(x) ⊂ U∗ in which
for any point x ∈ U

(s,ij − s,αbα gij)(x) ·Aij(x) > 0, respectively < 0 (11)

holds.
Finally, because s,ij = ∂ijs − ∂αsΓαij we have that from Theorem 2 follows that
the function s is constant, i.e. the conformal mapping is homothetic. �
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