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Abstract. It is known that Seiberg-Witten equations are defined on smooth
four dimensional manifolds. In the present work we write down a six di-
mensional analogue of these equations on R6. To express the first equa-
tion, the Dirac equation, we use a unitary representation of complex Clif-
ford algebra CEn- For the second equation, a kind of self-duality concept
of a two-form is needed, we make use of the decomposition A2(R6) =
A2(R6)G Ag (R6)G A| (R6). We consider the eight-dimensional part A| (R6)
as the space of self-dual two-forms.

1. Introduction

The Seiberg-Witten equations defined on four-dimensional manifolds yield some
invariants for the underlying manifold. There are some generalizations of these
equation to higher dimensionsinal manifolds. In [2, 7] some eight-dimensional
analogies were given and a seven-dimensional analog was presented in [5], In this
work we write down similar equations to Seiberg-Witten equations on K6.

2. spinc-structure and Dirac Operator on R2n

Definition 1. A spinc-structure on the Euclidian space Mu is apair (S, T) where
S is a 2n—dimensional complex Hermitian vector space andT : K2n — End(S)
is a linear map which satisfies

Tw*-1» =0, I» *1» = u2l
for every v 6 K2n.

The 2n-dimensional complex vector space S is called spinor space over M2u.

From the universal property of the complex Clifford algebra Cb« the maP T can
be extended to an algebra isomorphism T: Cl2n -> End(S) which satisfies T(x) =
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I'(z)* , where Z is conjugate of x in Cly,, and I'(z)* denotes the Hermitian conju-
gate of T'(x).
If (S, T) is a spin®-structure on R?", then there is a natural splitting of the spinor

space S. Let ey, eq, ..., €2, be the standard basis of R?", define a special element
of Cly,, by

E = €24,...€2€1.
Note that 2 = (—1)", so we can decompose S as follows

S=8"® S
where ST are the eigenspaces of T'(g) by

S=={¢p € 8;T(e)p ==i"¢}.
The space S is called positive spinor space and the space S~ is called negative
spinor space. The map I'(v) interchanges these subspaces that is, T'(v)S™ C §~
and T'(v)S~ C ST for each v € R?". The restrictions of T'(v) to ST for v € R*"
determine a linear map + : R?" — Hom(S™, S~) which satisfies
¥(0)*y(v) = 1

for every v € R?". On the other hand the map T': R?* — End(S) can be recovered
from v via S = ST @ S~ and

I'(v) = ( —7(()’0)* 7(0’0) ) ’

If (S, T) is a spin® structure on R?", we can define an action of the space of two-
forms A%2(R?"*) on S as follows

First let us identify A%(R?") with the spaces of second order elements of Clifford
algebra C2(R?") via the map

A2(R?) — Cy(R?™), n= Z nije; N e; — ijeiej.
< j <j
Then we compose this map with T" to obtain a map p : A?2(R?*"*) — End(S)
p(D e ned) = nyT(e)T(e;).
1<j 1<j
The map p(n) respects the decomposition ST @ S~ for each n € A%(R?") so we
can define new maps by restriction

P () = p(n)]s=-
The map p extends to a map
p: A*(R?") @ C — End(S)

on the space of complex valued two-forms.
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By using an iR—valued one-form A € Q(R?",iR) and the Levi-Civita connection
V on R?" we can obtain a connection V4 on S which is called spinor covariant
derivative operator that satisfies the relation

VHT(W)T) = T(W)VaT - T(Vy W)

in which ¥ is spinor, (a section of S) and V', W are vector fields on R?". The
spinor covariant derivative V4 respects the decomposition S = ST @ S~. At this
point we can define Dirac operator D 4: C®(R?" §7) — C>(R?", S7) by the
formula

21
DA(¥) = T(e)VA(T).
i=1

3. Seiberg-Witten Equations on R*

The Seiberg-Witten equations constitute of two equations. The first equation is the
harmonicity of the spinor with respect to the Dirac operator, that is

Da(¥) = 0. )

The second equation couples the self-dual part of the curvature two-form FX of
the connection one-form A with the traceless endomorphism (¥ ¥*), associated to
the spinor field ¥. And it is expressed as

pT(FF) = (TT*)g. )

Let us write these equations on R*. The following form of these equations can be
found in many books and papers [8, 10]. The spin® connection V = V4 on R* is
given by
ov
V¥ = M + AW
where A; : R*—iR and ¥ : R* — C2. Then the associated connection on the
line bundle L1 = R* x C is the connection one-form

4
A=) "A;dx; € Q'(RYiR)
i=1

and its curvature two-form is given by

Fy=dA =) F;dz; A dz; € O (RYIR)

1<j
04; DA
5'331' 5'33j

where F;; = fori, 5 =1,...,4.
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Let T : R* — End(C%) be the classical spin® structure which is given by the

- 0w
=] 0y 5]

where v: R* — End(C?) is defined on the generators ey, es, e3, e4 by the fol-

lowing rule
10 (i 0 01 0 i
7(61)_]:0 1jJa 7(62)__0_~jJa 7(63)_]:_1 OjJa 7(64)_]:1 OjJ

1

Note that in the definition of -, the 2 x 2 identity matrix and i multiplies the well-
known Pauli matrices o1 = ! 0} Loy = [_(3 6} and o5 = [0 1} The

0 -1 10
classical spin®-structure has been used, in many works (see for instance [§—10]).
-1 000
0-100 .
Note that T" (eqeszeser) = 0 010 and the eigenspaces of T" (egeseqgeq)
0 001

are
S+ - {(‘wla‘wQa 0) 0) 3 ‘w131w2 - (C}
ST = {(Oa Oa ‘1/33,‘1/%1) ; ‘1/33,‘1/&1 = (C} .
The corresponding vector bundles which are called half spinor bundles on the man-
ifold R* are ST = R* x ST and S~ = R* x §~. The sections of these bundles
are called spinor fields on R* and we will denote them by
P(S+) = {(‘1/313 ‘1/323 Oa 0) ; ‘wla ‘1/22 € COO (R4a C)}
P(S_) = {(03 Oa‘w?)a 1/34) ; ‘1?3, ‘wél € COO (R4a C)} .

According to the above data Seiberg-Witten equations on R?, i.e., equations (1)
and (2), are as follows (see [9,10])

The first of these equations, D 4 ¥ = 0, can be expressed as
—V1V¥ + i1 VoW + 109Vl + 103V =0

or more explicitly

) + A =i (% + Az‘l/n) + (% + A?ﬂ/fz) +1 (_5%2 + A4‘1/ﬁ2>
Ox Oxo Oxs Oxy
3)
% + Aﬂ/@ = —i (% + AQ‘d@) - (% + Ag‘l/)1> +1i (% + A4‘I/21>
I 5.’}32 5'.’}33 5334

where U = (i1, 1,0, 0). The second one is
pT(Fp) = (W),
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which can be expressed explicitly as

Fig+ F3q = —5 (11 — vatly)
Fis—Fy = 3 (1/»11/»2 Yol ) €y
P+ Fy = —5 (Y1fq + ¢o))

where 'y = dA.

4. Seiberg-Witten Equations on R°®

The first one in Seiberg-Witten equations can be written on any 2n— dimensional
spin® manifold. But the second one is meaningful in four-dimensional cases.
Because the self duality of a two-form in Hodge sense is meaningful in four-
dimension. On the other hand there are some various generalizations of self-duality
concept of a two-form to higher dimensions (see [3,4]).

4.1. The First Equation: Dirac Equation

The main objective of the present work is to write down Seiberg-Witten like equa-
tions on R®. In order to achieve this we consider the following spin®-structure T
on R® which is coming from the representation of the complex Clifford algebra
Clg. LetT' : R® — End(C?) be the spin® structure which is given by

Fw)= [ —v(gw)* ! (Gw) J

where v : R® — End(C?) is defined on generators e, 2, e3, e4, €5, eg as follow

1000 i 00 0 0i00
v(e1) = 0100 , v{e2) = 0-100 , v{e3) = LOOD
0010 0 0i 0 000 i
0001 0 00 —i 001io0
010 0] [00 01 0 0 0 i
100 0 00 —-10 0 0 -0
| | — | | — |
7(64)_ 000 —1 37(65)_ 01 00 37(66)_ 0 —i 00
001 0 -10 00 i 0 00
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Then the special element £ = eg...ege1 in Clg satisfies g2 = —1 and its image
under I' is

-
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The decomposition S = C® = ST @ S~ with respect to T'(¢) is given by

S+ - {(‘wla ‘1/32, ‘1/333 ‘1/343 Oa Oa Oa 0) ; ‘wla‘wQa ‘1/333 ‘1/34 € (C}
and
57 = {(Oa Oa Oa Oa ‘1/353 ‘1/363 ‘1/373 1/38) ; ‘1/35, ‘1/363 ‘1/37, ‘1/)8 € (C}

These spaces give the following vector bundles on the manifold R°
ST=Rx ST and ST =R°xS$".
The sections of these bundles can be interpreted as follows
T(S™) = {(¥1, 2,93, ¥4,0,0,0,0)|¢h1, 42, ¥3, 14 € C (R, C)}
and
T(S7) = {(0,0,0,0,45, ¥, Y7, ¥s) 15, Y6, Y7, ¥z € C (R®,C) .

The spin® connection V4 on R® is given by

A
‘= AT
Viv= g A

where A; : R6—iR and ¥ : R® — C* are smooth maps. Then the associated
connection on the line bundle Lr = RS x C is the connection one-form

4
A=) A;dz; € Q' (RS,iR)
i=1
and its curvature two-form is given by

Fy=dA =) F;dz A dz; € Q° (RS, iR)
1<j
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where I, = %%gf - gﬁ; fori,7 =1,...,6 . Now we can write the Dirac operator

D4 : T(ST) = T'(S7) on R® with respect to given spin®-structure I' and spin®-
connection V4 as follows

: o 6 % + Azwz
Da¥ =) ¢ -VAU=3T(e;)(VAT) =3 T(e;) | ™
i=1 i=1 i=1 :

Introducing the notation V; = 9; + A;, 1 = 1, ..., 6 the equation D 4¥ = 0 can be
expressed as

Vi = Vo + iV + Vb + Visihy + iVetly
Vie = iVay —iVathy — Vb — Visihs — iVeis
Vs = iVas +1Vsthy — Vaihy + Vb — iViig
Vipy = iVat)s — iVoyhy + Vs — Vil + iVei)1.

4.2. The Second Equation: Curvature Equation

Now we want to define the second Seiberg-Witten equation on R®. To achieve this
we need a kind of self-duality notion for two-forms on R®. Let us consider the fol-
lowing decompositions of two-forms on R®. We denote by {eq, e2, e3, e4, €5, eg}
the standard basis of R and by {dz1, dz, dzs, dzy, dzs, dzg) the dual one. Fix
the standard symplectic form

wg =dzy Adzy +deg Adey + dzs A dzg
and the standard complex volume form
o = (dzy +idzg) A (dzg + idzy) A (dzs + idzs)
the complex structure .J, give by
Joler) = eq,  Jolez) =eq, Joles) = eg
on RS, The space of two-forms A2(IR®) decomposes as follows
R2(R®) = AX(R®) & AR(R) & AR(R®)
where
MR = {rwg;reR),  AXRY) = (F e A2R®; Jy(F) = —F}
AZR®) = {F e A*(R®%) ; Jo(F) = Fand F A wg Awy = 0},
For more details see [1]. Then any two-form F' = >, j Fijdz; A dzj € A2%(RY)
can be decomposed into three parts, we call the one belonging to AZ(R") is the
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self-dual part of F' and we denote it by F'™. Such a self-duality definition of two-
forms in six-dimension is consistent with the widely accepted self-duality notion
given in [4]. In their work Corrigan et al. consider the eight-dimensional subspace
of A?(R®), given by the following set of equations, as the space of self-dual two-
forms on R®

Fio+Fiy+Fi5=0, Fi3—Fu=0 Ia+Fx=0
5 — Fy =0, Fig+ Fos7 =0, I35—Fs =0, F3+ Fs5=0.

This eight-dimensional subspace exactly corresponds to A§ (RS), because follow-
ing linearly independent set of vectors belong to both of them

fi=e1 Neg+ex A ey, fs=esNes+esNeg
fo=e1 ANeg —ep A eg, fe =esNeg—eq N es
fzs=e1 ANes +ex A eg, fr=e1Ney—e3 ey
fa=e1 Neg —ea Aes, fa=egNes—e5Aeg.

Now let us consider the complexified space A§ (R%) @ C and F4 be the curvature
form of the imaginary valued connection one-form A and FX be the self-dual part
of 4. Then

8
Fy = %Z< Fa, fi > fi= %[(Fw + Foq) f1 + (P14 — Fo3) f2 + (F15 + F2g) f3
=1
+(Fi6 — F2s) fa + (Fs5 + Fus) 5 + (F36 — Fus) f6
+(F12 — F34) fr + (F3a — F36) fs].

The image of F'; under p™ is
1
PHFR) = 5l(Fis + Foa)p™ (/1) + (Fia = Fas)p™ (f2) + (Fis + Fas)p™ (f3)

+(Fi6 — Fas)p™ (f1) + (P35 + Fus)p™ (f5) + (Fs6 — Fusp™ (fo)
+(F12 — Fs4)p™ (f7) + (Fs4 — F56)p™ (f3)]

where
0200 0200
2i 000 ~2000
+ — + —
=1 0000 PUI=[ 9000
0000 0000
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00 00 0 0 0 0O
00 -20 0 0 =210
+ +
00 00 0 0 0 O
0 0-21 0 0020
0 0 0 O 0000
p+(f5 ~9i0 0 0 3 p+(f6) - —2000
0 0 0 O 0000
(21000\ (—210 00\
0-21 00 0 0 00
+ _ -+ _
U=190000] Us)=1 0 0 a0
0 0 00 0 0 00
Then the second equation on R® is
pTFY) = (BT¥),. (5)

The last equation is rather different from the second Seiberg-Witten equation on
R* and we state it as a theorem:

Theorem 1. If the pair (A, V) is a solution to (5) then ¥ = 0.

Proof: The left hand side of (5) is

i(Fia — F34) — i{F34 — Fsg) i(Fig + Foa) + (F1a — Fa3) —i(Fss + Fug) + (Fag — Fas) 0

i(Fi3 + Foy) — (F14 — Fag) —i(F1p — F34) —{(F15 + Fag} —i(F1g — Fos) 0
—1(F35 + Fag) — (F36 — Fas) (Fis5 + Fog) — i(F1s — Fas) i(F34 — Fe) 0
0 0 0 0

and the endomorphism U¥* of C* is given by
o ( ‘1/31@1 ‘1?1@2 ‘1?1@3 ‘1/31@4}
P — — — —
, _ Pathy Yoathy otPs ot
v = | V(T Wy ) = | R
| 1/23 Ysthy sihy Y33 sty
! Pathy Pathy Patdy Yaily

The trace free part of U™ is
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(‘%@ Yripy Y1 ‘%@1\ (1 00 0\
(‘I"If*)g — ‘1?2%1 ‘1?2%2 ‘1?2%3 ‘1/22%4 . 1]1/3]2 0100
\wggl Usthy sty Vst ) 4 kﬂ 010 )
Yatpy Yahy Yarby Yary 0001
iy — 3 [UP ity Y1ty Y1y
Yathy Uathy — 1017 Uiy Yoty
Y3ty Uathy sty — glUIP sty
Pain (VAU Paths Yarhs — [Y)?

Then the equation (5) turns to the following set of equations

(Fip — F34) = i( liha|? = [1]? — | 3| — [404]?)

(F34 — F56) = ( 1| = [¢1]? — [p2]* — [ebal?)
(F13 + Fag) = =5 (Y130 + t2ty)
(Fia — Fo3) = % (Y11 — Yotfy)
(P35 + Fug) = 5 (Yr1hs + 1/&%%1)
(F36 — Fy5) = % (1ibs — P3¢y )
(Fis — Fas) = 5 (Y203 + 13thy)
(F15+F26 5 (—oths + 31hy)
2lepal?® = [91]* — [pal® — 3] = 0
‘1/24 = 0.
From these equations it is clear that ¥ = 0. O

Due to the above theorem the equation (5) needs some modification. To do this we
follow the method given in [2]. Firstly we consider the space of self-dual complex
valued two-forms A2 (R6) ® C. The image of this space under the map p™ is a
subspace of End(5'+) and denote it by Wie.,

W = pT(AZ(R®) ® C).

The set of endomorphisms {p™(f1), p™ (f2),...,p {(fs)} is a basis for the sub-
space W. Project the endomorphism ¥ ¥* onto the subspace W and denote it by
(TT*) ™. Then we can explain the second equation

pT(Fy) = (WT)7.

Let us obtain the explicit form of last equation. The projection of the endomor-
phism ¥'¥* onto the subspace W is given by

P+(fz')

* -+ * .
e =S <>

=1
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Then the equation p™ (F}) = (U T*) turns to the following set of equations

Fip—Fy =14 (14 - 1?2@2_)
F34 — Fs6 = —5 (Y1 — 3ty )
Fig + Foy = — % (o1 + Y1)
Fiy—Ts =% (1/)11/12 l/le/f_)
Fys + Fag = — % (af) + 1¢y)
Fa6 — Fys = 5 (1/111/?3 U3thy)
Fig — Fos = —5 (¢3hy + t2tl3)

Fi5 + Fys = (1/131/?2 Yoils)
and they are very similar to the set of equations in (4).

Remark 1. We have written down Seiberg-Witten like equations on R® and we
observed that these equations are similar to the Seiberg-Witten equations on R*.
For the expression of the first equation on RS we used the spin®-structure on R®
and for the second equation we used the decomposition of the space of two-forms
A2%(RS). Such equations can be also defined on six-dimensional manifolds with

SU(3) structure and it is a subject of a subsequence work [6].
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