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Abstract. Two reduced standard k-symplectic Poisson manifolds with re-
spect to the action of a Lie group G are considered, and the relation between
the corresponding Poisson structures is established.

1. Introduction

Starting with a Poisson manifold, one can construct by reduction other Poisson
manifolds. This procedure is well known and important in the symplectic mechan-
ics having applications in fluids [5], electromagnetism and plasma physics [4], etc.
Let us mention also that Juan-Pablo Ortega and Tudor Ratiu [7] described the Pois-
son reduction specifying the assumptions under that a Poisson manifold could be
reduced to a Poisson manifold, too.

In what follows we shall present the Poisson reduction in the case of the stan-
dard k-symplectic manifold (7}})*R" with the canonical k-symplectic structure
induced from (R",wp) [1]. Then, using a diffeomorphism, we can endow 7}\R"
with a k-symplectic structure that will be reduced, too (the two manifolds TklR” =
TR*® - @TR™ and respectively (T})*R® = T*R"® -*- &T*R™ will be iden-
tified with the Whitney sum of k-copies of TR" and respectively of T*R" [6]).
Finally, we shall discuss the relation between the two induced Poisson structures
on the reduced manifolds.

In order to do this, we consider an appropriate action of a Lie group G on the
two manifolds. Such canonical actions can be obtained, for instance, by lifting an
arbitrary action of G on R" to (1}1)*R"™ and 7} R" respectively.

*Reprinted from JGSP 13 (2009) 1-7.

127



128 Adara M. Blaga

2. Poisson Reduction

Recall that a k-symplectic manifold (M,w;,V)1<i<i [1] is an (n 4+ nk)-dimen-
sional smooth manifold M together with k£ two-forms w;, 1 < 7 < k, and an
nk-dimensional distribution V' that satisfy the conditions

1. w;isclosed, forevery 1 <i <k

k
2. N kerw; = {0}
=1

3. w =0, forevery 1 <1 < k.

ilvxv
The canonical model for this structure is the standard k-symplectic manifold
(TH*R™, wi, V)1<i<k [3], where w;, 1 < i < k are the differentials of the
Liouville one-forms and V is the vertical distribution. In Darboux coordinates
(4%, P&)1<i<k, 1<a<n, We have
n .
lwi= > dg*Adpl, 1 <i<k

a=1

0
ot 1<i<k, 1<a<n

Consider an action @ : G x R" — R" of a Lie group G on R" and define the lifted
action ®Tx : G x (T})*R™ — (T})*R" to the standard k-symplectic manifold
(Ti) R
Tk 1 G x (TH*R" — (T}H)*R"™ @
@T’: (g, Algy -+ - ,Q{kq) = (Oflq o ((bg—l)*q)g(q)a ceey Qg © ((Dg_l)*q)g(q))
where g € G, (a1, ...,a1) € (TL)*R", ¢ € R™
This action is k-symplectic [6], that is, it preserves the standard k-symplectic struc-

ture wy, .. .,wg on (T1)*R™. Moreover, the Liouville one-forms 6;, 1 < i < k
(w; := db;,1 <1 < k) are G-invariant, that is
(@F)0;=0;, geG,  1<i<k. )

Similarly one can lift the action ® to Tkl]R”
Tk : G x TIR™ — TLR"
q)Tk (gvvlqa ey ’qu) = (((I)g)*q'”lq’ M (ég)*qvkq)

forg € G, (v1,...,uL) € T,CIR”, g € R™
Using a diffeomorphism F : T} R™ — (T}})*R", equivariant with respect to these

3)

actions, that is <D9Tk ol = Fo (ng, for any g € (G, we can take the pull-back

on TER" of the k-symplectic structure (w;, V)1 <i<k on the standard k-symplectic
manifold (7} )*R"™ [3], and define ((wp);, VF)1<i<k by
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1. (wp)z = F*wi

2. Vi = ker(np).
for any 1 < i < k, where wp : TklR” — R”, wp(vig,...,Vkq) = ¢q. Then
(TklR”, (wr)i, VF)1<i<k 1s a k-symplectic manifold and F' becomes a symplecto-
morphism between (T/%R”, (wr)i)1<i<k and ((Tg)*R”, wi)1<i<k- Let us remark
that the projection 7 that defines the distribution V is the pull-back by F’ of the
projection 7 that defines the distribution V' [3]. Therefore, the two distributions V'
and Vp are connected by the relation V = F,Vp.

Note that a diffeomorphism between 7} R" and (7} )*R™ can be the Legendre
transformation T'L associated to a regular Lagrangian L € C(TiR", R), that
is
TL:T{R" — (T})*R"
defined by
. d .
(T'L(vigs - - - s Vkq)) (wyq) := P L(vig, ..., VigHswy, ..., Vgq), 1<i<k.
s=0

4

Let H € C°°((T}})*R", R).

Definition 1 ([8]). X% = (Xi,, ..., Xiy), 1 <4 <k, are called the Hamilton-
ian vector fields on (T, kl)*R” associated to the Hamiltonian H if they are solutions
of the Hamilton’s equations

k
Zin_ij = dH, 1<I<k. (5)
i=t 7
In Darboux coordinates (g, pﬁx)lgagn,lﬁigk’ the Hamiltonian vector fields are

given by

. " (0H 0 OH 0
i o 9 g8 9 ) i<k (6)
JH Z (6}721 aqa Jaqa 3p21) J

a=1

Proposition 1.1 ([8]). A Poisson structure on (T}})*R™ is given by

k
{£,h} = wi(Xs, X2) (7)
=1

where f,h € C°((T)*R™, R) and X4 =(X1;, ..., Xip), Xj, = (X1, Xip),
1 <12 <k, are the corresponding Hamiltonian vector fields.

In [2] we have shown that
{f,h}r = F{F*7 f,F*""h} ®)
f,h € C(T{R™ R), is a Poisson structure on TR,
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In order to get Poisson structures on T R™ /G and (T}})*R"/G, we need some
additional assumptions concerning the actions of G on these spaces. If the Lie
group G acts freely and properly on 7} R™ and (7} )*R™, then the quotient spaces
are smooth manifolds. Moreover, assume that G acts canonically on 7. R™ and

. . Tk . .
(Tkl)*R” respectively via the maps ,* and fI)gk respectively, that is

(@) S hye = {(@) (), () (M)}r,  g€G
f,h € C*®(T{R", R) and

() {11} = (2" (D (B4 ()}, ge@

fih € C®((TE)*R™,R).

Denote by 7 : (T})*R™ — R”, (g, . . ., agy) := g, the canonical projection and
assume that w o F' = 7wp. As F' is compatible with the equivalence relations that
define the quotient manifolds 7;'R"™ /G and (T} )*R™ /G (that means, F' maps each
orbit of the action of G on T} R" onto an orbit of the action of G on (T}})*R™), it
induces a diffeomorphism [F] : TiR" /G — (T} )*R"/G such that the following
diagram commutes

LR L (@R

*
7TTk J/ lﬂ'Tk:

iR/ L, (1R /G
where 77 : (TH)*R" — (T})*R"/G and ="+ : TIR" — T!R"/G are the
canonical projections.

Under the hypotheses above and following [7], the reduced spaces (7}})*R"/G and
Tk1 R™/G are Poisson manifolds, too, with the Poisson structures given by

(YT RYG T (0 ag)) = {fonTi  hon i Yan,...,ar)  (9)
fih € C®((TH*R"/G,R), (a1, ...,a;) € (T1)*R™ and respectively by

(Y ERC 0T, o)) o= {fonT hoa Y p(on, ... o) (10)

f,h € C®(T{R"/G,R), (v1,...,v;) € TLR™

Then we have

Proposition 1.2. For any f,h € C®((T})*R"/G,R), the two reduced Poisson
structures are connected by the relation

TiR" /G

[FI{ £, YT =G = {1 (), [F)* (W)} ¢ (11)

that is, [F] is a Poisson diffeomorphism.
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Proof: Since F'is a diffeomorphism compatible with the equivalence relations that
define the quotient manifolds (7})*R™/G and TLR"/G, for any (vy,...,v) €
TLR™ and for any f,h € C°((T}})*R" /G, R), we obtain successively
AR U CTRN)
= (£, TEC o [F) (T (v, vy))
= {1 EIE((Flom ) (or, . o)
= {£. PTG (2T o F)(uvy,. .. )
= {forTr, hor s WF(vi,...,u3))
= (F*{for"s,hox s })(v1,...,vp)
= {F*(for'k),F*(hom!s)}v,...,vp)
={fo(xlk o F),ho (¥ o F)}(vy,...,v)
={fo([Flox'),ho ([Flox")}(u1,....vp)

= {[FI*(f) o %%, [FI*(h) o 7% }(vn, . .., 03
= {1 (), [FF (W)Y (T (o, o). O

Remark 1.1. The reason for which we have chosen the Poisson brackets to be
defined by the relations (9) and (10) is that they are suitable for the reduction
of the Hamiltonian dynamics in the following sense: if m : M — M/G is the
canonical projection, H € C°°(M,R) a G-invariant Hamiltonian on M, and

{f. 0}/ (r(2)) := {f o m, h o w}(2) (12)

fih € C*(M/G,R), z € M, the Poisson bracket on M |G, then the Hamiltonian
flow F; of the Hamiltonian vector field X iy commutes with the G-action. Thus it

induces the flow FtM/ “onG /M associated to the reduced Hamiltonian [H| €
C*(M/G,R), where [H|om = H.

Acknowledgements

I wish to express my thanks to the referees for the useful remarks.

References

[1] Awane A., k-symplectic Structures, JIMP 33 (1992) 4046-4052.

[2] Blaga A., The Prequantization of T,%]R”, In: Proc. 10th Int. Conf. Differential Geom-
etry and Its Applications, Olomouc, Czech Republic, 2007, World Scientific 2008,
pp- 217222,



132

Adara M. Blaga

[3]

[4]

[5]

[6]

[7]

[8]

De Leon M., Merino E., Qubiiia J., Rodrigues P. and Salgado M., Hamiltonian Sys-
tems on k-cosymplectic Manifolds, IMP 39 (1998) 876—893.

Marsden J. and Weinstein A., The Hamiltonian Structure of the Maxwell-Vlasov
Equations, Physica D 4 (1982) 394-406.

Marsden J. and Weinstein A., Coadjoint Orbits, Vortices and Clebsch Variables for
Incompressible Fluids, Physica D 4 (1983) 305-323.

Munteanu F., Rey A. and Salgado M., The Giinther’s Formalism in Classical Field
Theory: Momentum Map and Reduction, IMP 45 (2004) 1730-1751.

Ortega J. and Ratiu T., Poisson Reduction, arXiv:math./0508635v1 [math.
SG]31Aug2005.

Puta M., Chirici S. and Merino E., On the Prequantization of (T,%)*]R”, Bull. Math.
Soc. Sc. Math. Roumanie 44 (2001) 277-284.



