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Abstract. The quantization of the chaotic geodesic motion on Rie- 
mann surfaces of constant negative curvature with genus g and a 
finite number of points k infinitely far away (cusps) describing scatter­
ing channels is investigated. It is shown that terms in Selberg’s trace 
formula describing scattering states can be expressed in terms of a reg­
ularized time delay. Poles in these quantities give rise to resonances 
reflecting the chaos of the underlying classical dynamics. Illustrative 
examples for a class of £ ^ 2  surfaces are given.

1. Introduction

Let us consider the two dimensional sphere S 2 with three points removed. This 
is a two dimensional surface with three holes. A classical charged particle con­
fined to move on the inner part of this “box” can enter and leave the box on 
any one of the holes. Taking these exceptional points infinitely far away with 
respect to some metric on S 2 we obtain a pants-like leaky surface £ 0,3- This 
surface is called by mathematicians a noncompact Riemann-surface with three 
cusps and genus zero. It can serve as a model of a three channel scattering 
problem, where the channels are realized topologically. Taking instead of the 
sphere (g =  0), a toms (g =  1) or any higher genus multiply connected surface 
and moving n points infinitely far away we obtain a wide variety of multi­
channel scattering systems. These systems describe the classical motion of a 
charged particle inside a noncompact box, modelled by a Riemann surface of 
type
How can we obtain a unified description of such surfaces? According to 
Riemann uniformization, except for the sphere £ 0,o, and the toms E ij0 all
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of our surfaces Eg>fC can be obtained by the following method. Take the 
Poincaré upper half plane H  = {z  = x  +  iy  € C; y > 0}, with the met­
ric ds2 =  y~2( ( d x ) 2 +  (d y )2) of Gaussian curvature K  =  —1, and form the 
right coset T \ H  where T  is a Fuchsian group of the first kind acting on TL dis­
continuous^. Uniformization means that we represent our Riemann surface as 
this right coset viewed as a fundamental domain in H  with its boundary points 
identified by elements of I . i. e. we have EgjK ~  I' \H .  The copies of the fun­
damental domain give a tessellation of the upper half plane. T is a discrete sub­
group of P S L ( 2 , R) the group of fractional linear transformations 7  =  (ab\cd),

7 z =  aZ , with the properties a , b, c, d, 7 M and ad — b c =  1. Such discrete
cz +  a

subgroups have a finite number of generators and the non-euclidean area V  
of Eg>fC is finite. Recall that using the Gauss-Bonnet theorem the area can be 
expressed as V  = 2ir(2g 2 ■ /;). The generators of T form the letters of 
an alphabet, and the elements of T are the possible words that can be com­
bined from such letters. There are, however some defining relations that can 
be used to simplify all possible combinations. Moreover, the couple (g, n) is 
determined by the structure of the group. Physically this means that our leaky 
boxes for scattering can be made, by “cutting” some fundamental domain out of 
H , and gluing the sides of this domain appropriately. The glueing prescription 
is given by the structure of T, wich determines the topology of the box.
From the classical point of view such surfaces provide simple examples of 
systems with hard chaos [1]. Indeed, it is well-known by now that the classical 
(geodesic) motion on Eg>(t is ergodic, and strongly chaotic. Moreover, according 
to the general philosophy of quantum chaos, in order to learn more about such 
systems it is instructive to investigate how this irregular behavior manifests 
itself in the corresponding quantum system.
In this contribution, we quantize the geodesic motion on Eg K, and calculate the 
scattering matrix of the k channel quantum scattering problem. A physically 
important quantity is the Wigner-Smith time delay. For usual scattering systems 
where the interaction is defined by a potential, this time delay is defined to be 
the difference between the time spent by the scattered particle within the region 
of the potential, and the time that it would have spent in the same region had 
it moved without the influence of the potential. Here the scattering problem is 
purely geometrical, (we have no potential) hence this notion has to be clarified. 
Our basic tool will be Selberg’s trace formula. This formula as we show relates 
the quantum data (energy eigenvalues, positions of scattering resonances) to 
the corresponding classical data (length spectrum of classical periodic orbits). 
Illustrating our results we also give examples for a special class of two channel 
scattering systems. For reasons of space, we shall merely outline the basic 
methods. Detailed proofs shall be presented elsewhere [2],
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2. Chaotic Scattering on Riemann Surfaces

The description of scattering states and the corresponding S  matrices for scat­
tering on noncompact surfaces was initiated by Faddeev [3], and developed in 
the book by Lax and Phillips [4]. The physical interpretation of these results 
in the context of quantum chaos was given by Gutzwiller [5 ,6], the systematic 
adaptation of these ideas to surfaces with a multitude of cusps (i. e. points 
infinitely far away) regarding them as multichannel scattering systems is due 
to Pnueli [7].
The quantum systems arising from the quantization of the geodesic motion on 

are governed by Schrödinger’s equation Hip =  Eip , with the Hamiltonian 
H  =  —A , where A  =  y 2{d2 + d 2) is the Laplacian on H  corresponding to the 
Poincaré metric, with ip{z) subject to the boundary condition ip( jz )  =  ip{z) 
for all 7  G T and z e H .  We set h =  2m  =  1 for convenience. The spectrum 
of H  is known to be both discrete and continuous [8]. Scattering solutions 
corresponding to the continuous spectrum with E  =  1 /4  +  fc2, are described 
by the Eisenstein series which we now briefly review.
The transformations 7  G T are called parabolic (hiperbolic, and elliptic) if 
I trace 7 1 =  2, (>  2 and <  2, respectively). Such transformations can be shown 
to be conjugate to a translation z ^  z  + a, a G M (dilatation 2: —» bz, b >  0, 
rotation respectively). Among the generators of T there are n parabolic ones 
Pi, P2, • • • 5 PK- The fixed points of these generators are the cusps. They will be 
denoted by z 1, z2, . . . ,  zK and taken to be the elements of R U 00 (the boundary 
of H)  since they are infinitely far away with respect to the Poincaré metric. 
Under the identification of T \ H  and T,9iKi the cusps correspond to punctures 
(leaks) of our surface describing scattering channels. For each a  =  1, 2 , . . .  k 
the Pa generate an infinite cyclic subgroup T a of T, the stability subgroup of 
cusp a. Since parabolic elements are conjugate to a translation we can choose 
an element of a a G S L ( 2, R) such that a a00 =  27* and a “1Paa 0! =  (1 ±  1|01). 
We denote by T^ the infinite cyclic group generated by (11101) with its fixed 
point beeing 00 the standard cusp. This is the group consisting of elements of 
the form ± (lb |01), b G Z. The Eisenstein series £a (z, s ) corresponding to the 
cusp of T is defined for Re s > 1 by the absolutely convergent series

The Eisenstein series defined in this way satisfies the Schrödinger equation, i. e. 
H £ a (z , s) =  s ( l  — s)£a for each a  =  1, 2 , . . . ,  k , and the boundary condition 
£ot{lA s ) =  £a(z, s) for all 7  G T. Of course we are interested in the choice

( 1 )
7^r«\r
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of £a (z, s) over the whole s-plane. This continuation exists and the poles of 

£a( z , s ) are all simple and are in the segment -  <  s <  1. One can derive a 

Fourier expansion of £a{z, s) at the cusp ß  which is of the form

where

£a (°ßZ , s) = Saßy s +  (faß(s)y1 s +  Y  ‘Paßin, s ) W s{nz)
n^O

Paß(s) =  7T1/2 Y  C 2Ŝ ( 0 ,  0; C)
c> 0

Paßin,  s) =
7T

r ( f
n XY C 2sS aß iO ,n ;c ) .

c>  0

(2)

(3)

(4)

Here S aß( m , n; c) are the so called Kloosterman-Gauss-Ramanujan sums de­
fined by

S a ß ( m , n ; c ) =  e 2 * i ( m a + n d ) / c  ? ( 5)

7= (a *  I cd) GToo\ a ~ 1 T a ß / Y ^

and W s{z) is Whittaker’s function on z G R\C. Due to the asymptotic behavior 
W s{z) ~  e~27ry, as y  —» oo the nonzero Fourier coefficients in Eq. (2) are dying 
out exponentially when we approach any of our cusps. Hence only the term 
Saßy s +  t p a ß ^ y ^ 8 from Eq. (2) survives near the cusps. Since y s and y x~s 
correspond to the incoming and outgoing plane waves in hyperbolic geometry 
we are left with the correct asymptotic behavior for scattering states. Moreover, 
from this it is clear that ipaß( l / 2  +  ik) has to be proportional to the scattering 
matrix S ^ß i {k) of our surface T \H .  Indeed according to [4]

k) = ~ q~ 2lkPßa Q  +  i k j  , (6)

where 0 <  q £ R is arbitrary. The minus sign in Eq. (6) results in the nice 
property of S^ß i {k) proved in Proposition 8.14 of [4]

=  (7)

moreover, S ^ fß i k )  is unitary and symmetric.
In order to know the scattering matrix of a particular surface the quantity r'(( J 
of Eq. (3) has to be calculated. For this purpose after fixing T uniformizing our 
surface, we have to describe the double cosets appearing in (5), and characterize 
our cusps which is generally an arduous task. However, in spite of this we are 
provided with a variety of matrices <paß for different groups F having been
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calculated for different purposes by number theorists see in particular Hejhal’s 
book [8],

We have seen that the space uniformizing our Riemann surfaces is the upper half 
plane H.  Hence for later use it will be useful to describe the scattering matrix 
associated with the Poincaré upper half plane H  too. On TL we have to solve

the equation y 2(d2 +  d 2) ^ ( x ,  y) = s(s  — l)\I/(x, y). Putting s =  -  +  ik gives

then the scattering states. We seek solutions in the form ^ ( x , y )  = F (x )G (y ) ,  
this yields after the separation of variables two ordinary differential equations. 
Solving the equation for F (x )  gives F (x )  =  exp(iAx) with A2 beeing the 
separation constant. Moreover, we get for A =  0, G(y) = y s, for A /  0, 
G(y) = y 1/ 2K s- 1/2{\\\y).  Using the functional equation K s(z ) =  K _ s(z) 
for R ez >  0 and the asymptotics K s(z) ~  2S-Ir ( s ) z -S for R es >  0 and 
Re v >  0 as v — 0 of K -Bessel functions we obtain the following formula for 
the asymptotic behavior of G(y)

G(y) ~ 2 ikr ( i k ) \ \ \ - iky 2 ~ i k + 2 - ikT ( - i k ) \ \ \ iky 2 +ik , as y  -»■ 0+. (8)

From this we can read off the S  matrix

— 2i k r(ifc)
T ( - i k )

|A|\ ~2ifc r ( i  +  ik)
2 )  r ( i  -  ik) ’

AÿéO. (9)

3. Selberg’s Trace Formula and the Renormalized Time Delay

Let h(k)  be a function satisfying the following conditions

{is even ,
holomorphic in the strip | 1111 k < L2 + F

<C (|fc| +  1)_2_£ in this strip.

( 10)

Let moreover g(u)
1

2-7T

+ oo

J  e~lukh ( k ) dk be the Fourier transform of h{k).
— oo

Then Selberg’s trace formula for noncompact surfaces is [8]
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+oo

£  /  kh(k)  t a lh (r f )  d* +  ?  g  2 r in h f f (p ) /2 )
g(nl(p))

ppo n-

+  ^ / i ( 0) trace -  k# (0) log 2

oo

7̂  [  h{k)ip(l + ik) dk  
2ir J

(H)
— OO 

OO

+
Alt / trace <&' (  ̂ + i/A <& 1 f  ̂ d k .

Here V  =  2tt(2g — 2 + k ) is the area of the surface, $  is the k, x k, matrix with
T'

entries (paß as given by (3), ÿ{z )  =  — (z ) ^ e  digamma function, I  is the

k x  k identity matrix. Ej = 1 /4  +  k 2- are the energy values belonging to the 
discrete part of the spectrum. The first two terms on the rhs. of the formula are 
well-known from studies concerning the compact case [6]. The first is the so 
called Weyl term, and the second contains the sum over the primitive periodic 
orbits (ppo) of primitive length l(p). The repetitions of the orbits are indexed 
by n. The remaining four terms, our main concern here, correspond to the 
modification of the trace formula due to the presence of scattering states. In 
the following we shall refer to these terms as the parabolic contribution to the 
trace formula.
Our aim is now to rewrite the parabolic contribution in a physically more 
transparent form. Indeed in the mathematical literature during the algebraic 
manipulations the physical origin and meaning of these terms is by no means 
clear. As a first step using the fact that h(k)  is even we rewrite the second and 
third term of this contribution in the form

OO

— - j -  [  h(k)  (2 log 2 +  ip(l +  ik) +  ip(l — ik)) dk  = 
Air J

— OO

OO

J  h (k)dk log
— OO

,2ifc r (!  +  zk)
r ( i - * f c )

d k .  (12)

Similarly in the fourth term using the identity trace log M  = log det M  we get

OO

2 -  J  h(k)tr&ce ( V ( 4  + if c ) $ - 1( l
— OO

+  ik) dk  =
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=  —i J h{k)dk logdet dfc . (13)
— oo

Let us now define the k  x k  matrix using Eq. (9)

S « ( \ \ \ , k )  = S H( \ \ \ , k )0 a 0 . (14)

Recall moreover Eq. (6). Then we have two matrices S^(|A |,fc) and 
S^ßn (q,k).  They are depending also on the positive quantities q and |A|. 
In order to clarify the meaning of q we proceed as follows [6]. We can put a 
ring (in hyperbolic geometry this is called a horocycle) on each cusp, regulariz­
ing the infinite length of the geodesic corresponding to the scattering trajectory 
coming from and then going to infinity through the leak. By the transforma­
tions a a the neighbourhood of each cusp (cuspidal zone) can be mapped to the 
semi strip Fq = {z  G 7Y; y > q,0 < x  < 1}. Hence the value of q defines the 
horocycle which plays the role of a monitoring station, this is the place where 
the particle is registered after beeing scattered. This choice tells us where the 
“free dynamics” starts. Hence, with the help of the arbitrariness of q we can 
refer our dynamics on T \ H  to the dynamics on Tt by giving q and |A| the same 
values. With this convention the quantity

h{k)dk log det S{k)  dfc, S ik )  = S ryH(k){SH( k ) ) - 1 (15)

is independent of q = |A| and equals the last three terms of our parabolic 
contribution. Moreover, by virtue of Eq. (7) the first term from the parabolic
contribution is —h{0). Since scattering matrices always occur in the combina-

£
tion as shown in (15), in the following we shall refer to them as S r^n (k) and 
S H{k), i. e as the ones independent of q and |A|. Moreover, we call S(k)  the 
renormalized S  matrix.
Introducing the Wigner-Smith time delay [9] for the corresponding S  matrices 
by

T T\H{k) = ^  dk log det S T\H ( k ) , (16)

(and similarly for S n (k)) we can write finally the parabolic contribution in the 
nice form

oo

I  h ^ T ^E )d E  ̂ ( 17>
0

where T ( E )  = T r \n (E) -  T n {E).
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We shall refer to T ( E )  as the renormalized time delay. This quantity is the time 
delay associated with the surface in question minus the time delay correspond­
ing to the scattering problem on the Poincaré upper half plane uniformizing 
our surface. This procedure can also be justified by the fact that the role of 
interaction is not played by a potential. Now interaction is just restriction of the 
motion from H  to the fundamental domain T \ H  in H  via the special boundary 
condition ip(gz) = ip (z) g £ T we impose on the wave function. Identifying 
the free and interacting dynamics in this way, beeing a time difference we can 
alternatively regard the renormalized time delay of Eq. (17) as the time delay 
for a scattering problem on E g^ .

4. Resonances

The renormalized time delay introduced in the previous section is a function 
of the scattering energy. It is a measure of the time spent by the particle in the 
leaky box. It can happen that for special values of the energy the particle is 
captured for much longer time. For such values we are having a resonance. 
The T H(k) part of the renormalized time delay is

where 7  =  0 .57721 ... is Euler’s constant. It is easy to show that —k T H(k) is 
a slowly varying function of k increasing monotonically from «(log 2 - 7 ) >  0 
with an asymptotic behavior k log 2k. Hence T H(k) gives merely a slowly 
varying smooth contribution to T(k )  = T r 'H(k) — T H{k).
In order to find resonances we have to investigate the pole structure of the 
T T\H(s) part of T(s)  as a function of the complex variable. From the formula

(see Eqs. (6) and (16)) it is clear that T r\H(s) ~  ds logdet<&(s). It is
Zo -L

known [8] that for R es >  1/ 2, det 3>(s) has a finite number of poles sa = ga 
a =  0,1,  2 . . .  M  all in the interval 1/2 <  sa <  1. These poles give rise to the 
eigenvalues 0 <  E a =  sa( l — sa) <  1 /4  in the so called residual spectrum. 
The value E 0 =  0 with the value s0 =  1 corresponds to the constant normalized 
solution 4̂ 0 =  V ~ 1̂ 2 of the Hamiltonian H  =  —A. For R es <  1/2 the poles 
are denoted by sM =  gß +  p  =  1 , 2 , ___Then we have the formula [8]

T { k )H = ~ 1  (log 2 +  Re ^(1 +  ik))
rv

(18)

5 - 1  +  5*

1
+  21o g 3 i (19)
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where the sum for j  is over a =  1, 2 . . .  M  and /jl =  1 , 2 , . . . ,  and g1 is a 
constant. Hence on the critical line s =  1/2 +  ik  for T r^n (k) we have

T r\«(A;) 1 f  _______
2 k { ^  ( 1 / 2 - gßy  + ( k - r , ßy

M

+ E l ~ 2gg
(1/2  -  ga)2 +  A;2

+  21og#i

(20)

Notice that the first sum on the right hand side of this formula is positive and the 
second (corresponding to the possible presence of the residual spectrum) is neg­
ative . It is known that for a large and important class of groups T (congruence 
groups) we have no residual spectrum besides the obvious point s0 — 1 [10].

Hence in this case the second sum gives merely the term---------- :------— . Terms
2k 1 /4  +  k 2

coming from the first sum with Re sß <  1/2  give rise to poles corresponding 
to resonances. The distribution of these poles shows the irregular behavior 
of the quantum scattering problem, hence reflecting the chaotic nature of the 
associated classical dynamics.
Since T n (k) gives merely a slowly varying smooth contribution to T{k)  =  
T v\n (k) — T n (k ), the expression for T(k )  is dominated by the terms of the 
form

T{k)  - 2. _______r ^ /2_______
k V  (fe -  M 2 +  ( r , / 2)2

(21)

which is a collection of Lorentzians centered at kß =  rjß with a half width 
T ß/2  = 1/2 — gß. The quantity ((1 /2  — Q ^ r ] ^ 1 can be thought as a lifetime 
of the resonance. The allowed values for the quantities kß and T ß are deter­
mined by the number theoretic properties of the Dirichlet series appearing in 
the determinant of the S  matrix. These properties in turn can be traced back 
to the behavior of the Kloosterman sum in (4).
In order to use the trace formula of Eq. (11) to relate the quantal data to the 
classical, we chose a special function h{k)  and exploit the pole structure of the 
renormalized time delay. Let us chose h and g as follows

hs,cr (^)

9 s , a  ( ^ 0

e - \ u \ ( 8 - 1 /2 ) e - M ( < 7 - 1 / 2 )

2s -  1 2c  — 1

(22)

Here a  >  R es >  1, and a  is the regulator. This constraint is sufficient for 
ensuring the (10) conditions for h{k). The final formula in this case can be
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written in the form

E
where

(s -  1/ 2)2 +  k] ( a -  1/ 2)2 +  k]

V  9 °°f(s) = - — + ——7 E E

= E ( s ) - E ( a ) ,  (23)

Kp )
2iT

2k

(2s -  iy

2s -  1 ^  ^-1 e (s+mWp) -  1ppo m = 0
oo

E J hs( E )T ( E )  dE ,

(24)

where hs (E) = (s(s — 1) +  E )_1, and T ( E )  is given by Eq. (17). The second 
term on the right hand side of Eq. (24) represents the sum over classical pe­
riodic orbits well-known from studies of quantum chaos on compact surfaces. 
Introducing Selberg’s zeta function

z w = n n < i -  e-(«+n.)i(p)^ R e(s ) >  1 (25)
ppo m = 0

this sum over the periodic orbits can be written with the help of the logarithmic 
derivative of Z(s)  as

1
2 s -  1

1
2s -  1 EE

ppo m = 0

Kp )
e (s+m)Z(p) _  ]_ (26)

Z '
We expect that the trace formula will give us the analytic continuation of —

Zj
to the whole complex plane. This quantity can be calculated using purely 
classical data, the length spectra of classical periodic orbits. On the other hand 
we expect its zeros to be related to the exact locations of quantum data namely 
the energy eigenvalues and scattering resonances. It can be proved that it is 
really the case. Using the results presented in the book by Venkov [11] one can 
show that the nontrivial zeros of Z(s)  are as follows.
a They are on the line R es =  1/2 localized symmetrically with respect to 

the real axis, or Sj G [0,1] symmetrically with respect to s =  1/2. They 
correspond to the eigenvalues of H , Ej  = s:i ( 1 — s:l ) of the form s:i = 
1/2 +  ikj corresponding to the discrete part of the spectrum. The multiplicity 
of the zeros equals the multiplicity of Ej.  

b They are at the points s ;( =  zß which correspond to the poles of det<b(s), 
i. e. the poles of the determinant of the scattering matrix on T \ H  with the 
property R es <  1/2 . The multiplicity is not larger than k  i. e. the number

(s)
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of scattering channels. These zeros correspond to the scattering resonances 
our main concern here.

c There are zeros in Z(s)  coming from the poles of — ds log det <f>(«s), sa =  1 — 
za, and sa =  za a =  0 , 1, 2 . . .  M  corresponding to the residual spectrum. 
If we have no residual spectrum (e. g. for congruence groups) we have 
merely the obvious point z0 =  1.

5. Examples

In this section we study a class of two channel scattering problems on leaky 
boxes of the type E^2- In order to do this we have to find suitable groups 
T uniformizing the surfaces E^j2. For this purpose let S L ( 2 , Z) be the matrix 
group of 2 x 2 unimodular matrices with integer entries, i. e. a , & , c , d e Z  and 
ad — be =  1. Then let T be T0(p), i. e. the Hecke congruence group with p  
prime. Note that T0(p) is a subgroup of S L ( 2,Z) defined as

It can be shown [12] that for p  prime, the number of scattering channels is 
two (k =  2). However, we cannot chose the prime number p  arbitrarily, since 
generally the resulting surface T \ H  will not be a manifold, only an orbifold. 
The reason for this is the presence of a finite number of fixed points of some 
elliptic transformations. Luckily, it can be shown [2] that for certain values of 
p  these points are missing. These primes are the ones that can be found in the
arithmetic progression 11 +  12n, n = 0 ,1 ,___Moreover, in this case for the
genus we have the formula gn =  n  +  1. Hence our surfaces E^ 2 uniformized
by T0(p) can have only genus g =  1, 2,4, 5, 6 , 7, 9 ,1 1 ,___The genus one case
corresponds to the choice of the prime p  =  11.

Using the results of [8], for such surfaces the scattering matrix S ^ n  can be 
explicitly calculated. The result is

(27)

SlßH(q,P,k)  = -
2ife r ( l/2  — ik) C(1 — 2ik) 

r ( l/2  +  ifc) C(1 +  2ik)

a, ß  =  1, 2

k laß(p,k) ,  (28)

where

(29)
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and £(s) is Riemann’s zêta function. For the renormalized time delay straight­
forward calculation yields the result

T(k )  =  7  ( log 27t — Re -^(2i&))
k V  C  '  ( 30)

2 /  p — cos(2fclogp) \
+  ogp { 1 _ 2 p c o s ( 2 k l o g p ) + p 2 )  '

Parametrizing instead of the primes p n, by the genus gn by writing pn = 
11 +  12(gn — 1) in Eq. (30) the last part of the time delay besides the energy, 
depends on the genus of the surface.
Now we use the formula

- ? w = ^ ï - Ç
+  EQ(s ~  e) 2n (s + 2n) C

-  t (°) (3!)

C

k 2 1/2

with (0) =  log 27r to write T ( k ) in terms of the Riemann zeros q =  1 /2 —2ifê  

of C(s).

k T ( k ) =  log 2 — 7  +  ^

+  2p logp   ̂i  _  2pcos(2k\ogp) + p 2

+  V f ---------^ ---------+ ---------- ^ 1b o V  ( V 4)2 +  (A : +  keY  ̂ ( 1/ 4)2 + {k_ kß)2 J

n {n 2 +  k 2) (1/ 2)2 +  k 2

p — cos(2fclogp)
(32)

The first three terms correspond to the time delay of — T n , only the fourth 
term is depending on the genus via p, the fifth term corresponds to the obvious 
point s0 =  1, E 0 = 0 in the residual spectrum. The sixth term produces 
the resonances we are interested in. We see that the special form of T{k)  
fits into the general scheme suggested by equations (20, 21). Moreover we 
see that T ß = 1/ 2, and kß =  rß/ 2, where rß p  =  1, 2 , . . .  ranges over the 
zeroes of Riemann’s zeta function. Hence the energy values for which the 
particle is captured for a long time, are related to the famous Riemann zeroes. 
The irregular distribution of these zeros reflects the chaos of the associated 
scattering problem.

6. Conclusions

In this paper we considered the problem of quantizing the geodesic motion 
on noncompact surfaces of constant negative curvature. This problem can be
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regarded as a model of multichannel quantum scattering. Knowing that the 
geodesic motion on such surfaces is chaotic, we examined how the chaos of 
the underlying classical dynamics manifests itself in the corresponding quantum 
system. We calculated the scattering matrix, and introduced the associated time 
delays. With the help of Selberg’s trace formula we established a connection 
between the classical periodic orbits, and the quantum resonances, and energy 
eigenvalues. Illustrative examples for a class of E^ 2 surfaces were given.
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