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CHAPTER VIII

Integration

Abstract. An m-dimensional manifold/ that is oriented admits a notion of integration
f + [y fo for any smoothm form . Here f can be any continuous real-valued
function of compact support. This notion of integration behaves in a predictable way
under diffeomorphism. When satisfies a positivity condition relative to the orientation,
the integration defines a measure n A smooth mapM — N with dimM < dimN
carriesM to a set of measure zero.

For a Lie groupG, a left Haar measure is a nonzero Borel measure invariant under left
translations. Such a measure results from integratian i6fM = G and if the formw is
positive and left invariant. A left Haar measure is unique up to a multiplicative constant.
Left and right Haar measures are related by the modular function, which is given in terms
of the adjoint representation @ on its Lie algebra. A group is unimodular if its Haar
measure is two-sided invariant. Unimodular Lie groups include those that are abelian or
compact or semisimple or reductive or nilpotent.

When a Lie grougss has the property that almost every element is a product of elements
of two closed subgroupS andT with compact intersection, then the left Haar measures
onG, S, andT are related. As a consequence, Haar measure on a reductive Lie group has
a decomposition that mirrors the lwasawa decomposition, and also Haar measure satisfies
various relationships with the Haar measures of parabolic subgroups. These integration
formulas lead to a theorem of Helgason that characterizes and parametrizes irreducible
finite-dimensional representations@fwith a nonzerd fixed vector.

The Weyl Integration Formula tells how to integrate over a compact connected Lie group
by first integrating over conjugacy classes. It is a starting point for an analytic treatment
of parts of representation theory for such groups. Harish-Chandra generalized the Weyl
Integration Formula to reductive Lie groups that are not necessarily compact. The formula
relies on properties of Cartan subgroups proved in Chapter VII.

1. Differential Forms and Measure Zero

Let M be anm-dimensional manifold, understood to be smooth and to
have a countable base for its topolody;need not be connected. We say
thatM is oriented if an atlas of compatible chartd),, ¢,) is given with
the property that then-by-m derivative matrices of all coordinate changes

(8.1) 000, 0a(Uy, NUp) — @5(U, NUp)
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524 VIIl. Integration

have everywhere positive determinant. Wh\ns oriented, a compatible
chart(U, ¢) is said to bgpositiverelative to(U,, ¢, ) if the derivative matrix
of ¢ o ¢, has everywhere positive determinant foraallWe always have
the option of adjoining to the given atlas of charts for an orieteany or
all other compatible chari@J, ¢) that are positive relative to alU,, ¢,),
andM will still be oriented.

On an orientedM as above, there is a well defined notion of integration
involving smoothm forms, which is discussed in Chapter V of Chevalley
[1946], Chapter X of Helgason [1962], and elsewhere. In this section we
shall review the definition and properties, and then we shall apply the theory
in later sections in the context of Lie groups.

We shall make extensive use ptillbacks of differential forms. If
® : M — N is smooth and ifv is a smoottk form on N, then®*w is the
smoothk form on M given by

(8.2) (@ w)p(E1, - - -, &) = Wop (APp(£), . . ., dPp(&i))

for pin M andé,, ..., & in the tangent spac&,(M); hered®, is the
differential of ® at p. In caseM andN are open subsets &" andw is
the smoothm form F(y4, ..., Ym) dy:1 A - - - A dym On N, the formula for
d*wonM is

(8.3) *w = (F o ®)(Xq, ..., Xm) det( D' (Xq, ..., Xn)) AXg A - -+ A AX,

where® hasm entriesy; (X4, ..., Xm), - -+ » Ym(Xg, . . ., Xm) and whered’
d ivati bl
enotes the derivative matr XW .

Let w be a smootim form on M The theory of integration provides a
definition offM fwforall f inthe spac€.,(M) of continuous functions
of compact support oM. Namely we first assume thdtis compactly
supported in a coordinate neighborhdgd The local expression fap in

P (Uy) is
(8.4) (@7 0 = Fy(Xq, ..y Xm) AXg A -+ A dXiy

with F, : ¢,(U,) — R smooth. Sincef o ¢! is compactly supported in
0. (Uy), it makes sense to define

(8.5a)/ fw=/ (fog,H(Xe, + oy Xm) Fu (X1, + « o, Xm) dXq - - - A
M 9o (Uq)
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If f is compactly supported in an intersectidpn Ug, then the integral is
given also by

(8-5b)/ fw=/ (fog, (Y, - os Ym) Fp(Ya, .., Ym) dya - - - dyim.
M wp(Up)

To see that the right sides of (8.5) are equal, we use the change of variables
formula for multiple integrals. The change of variables= ¢z o ¢ (x)

in (8.1) expressey,, ..., Yn as functions ok, ..., X, and (8.5b) there-
foreis

=/ (fO‘Pf?l)(YL---,ym)F,s(yl,...,ym)dyl...dym
9p(UeNUp)

-1 -1
=/ fops oggop, (Xi, ..., Xm)
@a (UgNUg)

x Fgo@p 0@, (X, ..., Xm)| detlgs o 9 1) dXy - - - AXp.

The right side here will be equal to the right side of (8.5a) if it is shown
that

(8.6) Fo = (Fyogy 00,5 detlgy 00,
Now
Fodxg A - AdXn = (9, ) o from (8.4)

= (ppoe, ) (@) e
= (pp oo, N (Fgdyr A - - - dym)

from (8.4)
= (Fsopp 0@, M) detlps o, h) dXg A -+ A dXn
by (8.3).
Thus
(8.7a) Fo = (Fgogg0 (p;1) det(pg o (pojl)’.

Since dety; o ¢, 1) is everywhere positive, (8.6) follows from (8.7a).
Therefore/,, fw is well defined if f is compactly supported id, N Ug.
For future reference we rewrite (8.7a) in terms of coordinates as

ay\
(8.7b) Fo(Yi, ..., Ym) = Fo(Xq, ..., Xm) det I .
)
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To definefM fw for generalf in C,om(M), we make use of a smooth
partition of unity{v,, } such thaty, is compactly supported id, and only
finitely manyy, are nonvanishing on each compactset. Thea > v, f
is actually a finite sum, and we can define

(8.8) /Mfw:Z/M(x//af)w.

Using the consistency result proved above by means of (8.6), one shows
that this definition is unchanged if the partition of unity is changed, and
then [, fw is well defined. (For a proof one may consult either of the
above references.)

When w is fixed, it is apparent from (8.5a) and (8.8) that the map
f— fM fwisalinear functional o€.,(M). We say thab ispositiverel-
ative to the given atlas if each local expression (8.4)hag;, . . ., X,) ev-
erywhere positive o, (U,). Inthis case the linear functionél— [, fo
is positive in the sense thdt > 0 implies [, fw > 0. By the Riesz
Representation Theorem there exists a Borel meakuyeon M such that
[y fo= [, ) du,(x)forall f € Ceom(M). The first two propositions
tell how to create and recognize positivs.

Proposition 8.9. If an m-dimensional manifoldM admits a nowhere-
vanishingm form w, thenM can be oriented so thatis positive.

PrROOF Let {(U,, ¢,)} be an atlas foM. The components of eadl,
are open and coved,. Thus there is no loss of generality in assuming
that each coordinate neighborhodg is connected. For eadh,, let F,
be the function in (8.4) in the local expression éin ¢, (U,). Sincew is
nowhere vanishing and, is connectedF, has constant sign. If the sign is
negative, we redefing, by following it with the map(xy, X2, ..., Xn) —
(—X1, X2, . . ., Xm), @and therF, is positive. In this way we can arrange that
all F, are positive on their domains. Referring to (8.7b), we see that each
function de §l> is positive on its domain. Hendd is oriented. Since

the F, are all positivew is positive relative to this orientation.

Proposition 8.10. If a connected manifold/ is oriented and ifv is a
nowhere-vanishing smooth form on M, then eitheww is positive or—w
is positive.

PROOF. Ateach pointp of M, all the functiong=, representing locally
as in (8.4) havé-, (¢, (p)) nonzero of the same sign because of (8.7b), the
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nowhere-vanishing ab, and the fact thaM is oriented. LetS be the set
where this common sign is positive. Possibly replacingy —w, we may
assume thabis nonempty. We show th&is openand closed. Letbe inS
and letU,, be a coordinate neighborhood containmgThenF, (¢, (p)) >
0 sincepis in S, and hencd~, o ¢, is positive in a neighborhood dd.
HenceSis open. Let{p,} be a sequence i converging top in M, and
let U, be a coordinate neighborhood containipgThenF, (¢, (pn)) > 0
and F, (¢, (p)) # 0. Since limF, (¢, (pn) = F.(¢.(P)), Fu(@a(p)) is
> 0. Thereforepis in S, andSis closed. SincéM is connected an& is
nonempty open close& = M.

The above theory allows us to use nowhere-vanishing smuadtrms
to define measures on manifolds. But we can define sets of measure zero
without m forms and orientations. L€{(U,, ¢,)} be an atlas for then-
dimensional manifoldM. We say that a subs&of M hasmeasure zero
if (SN U,) hasm-dimensional Lebesgue measure 0 forall

Suppose thaM is oriented andv is a positivem form. If du,, is the
associated measure andvifhas local expressions as in (8.4), then (8.5a)
shows that

(8.11) du,(SNU,) = / F,(Xg, ..., Xm) dXq - - - dXp.

%o (SNUq)

If Shas measure zero in the sense of the previous paragraph, then the right
side is 0 and hencéu, (SN U,) = 0. Since a countable collection of
U, ’s suffices to coveM, du,(S) = 0. Thus a set a measure zero as in the
previous paragraph haig.,(S) = 0.

Conversely ifw is a nowhere-vanishing positivea form, du,(S) = 0
implies thatS has measure zero as above. In fact, the left side of (8.11)
is 0, and the integrand on the right side=isO everywhere. Therefore
0. (SNU,) has Lebesgue measure 0.

Let® : M — N be a smooth map betweemdimensional manifolds.

A critical point p of ® is a point wherel®, has rank< m. In this case,
®(p) is called acritical value.

Theorem 8.12 (Sard’s Theorem). I : M — N is a smooth map
betweerm-dimensional manifolds, then the set of critical value®dfas
measure zero ilN.

PROOF. About each point oM, we can choose a compatible ch@dut ¢)
so that® (U) is contained in a coordinate neighborhood\of Countably
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many of these charts iN cover M, and it is enough to consider one of
them. We may then compose with the coordinate mappings to see that it
is enough to treat the following situatiod is a smooth map defined on a
neighborhood o = {x e R™ | 0 < x; < 1for 1 <i < m} with values
in R™, and we are to prove thdt of the critical points irC has Lebesgue
measure 0 ifR™.

For pointsx = (X, ..., Xn) andx’ = (X, ..., X;,) in R™, the Mean
Value Theorem gives

m

3P, /
(8.13) Bi(X) = D00 =Y — () =),
|

. . . . 0D,
wherez is a point on the line segment fromto x’. Since theW are
j
bounded orC, we see as a consequence that

(8.14) [®(X) — P(X)|| < allx —X||

with a independent ok andx’. Let Ly(X") = (Lyx1(X), ..., Lym(X")) be
the best first-order approximation @aboutx, namely

(8.15) Li (X) = ®;(x) + Z (x)(x X;).
Subtracting (8.15) from (8.13), we obtain

ad;
&)~ L) =Y (—( ) - —<x>> (X = %,).

. 09d; .
Slncea—x' is smooth andz — x| < |IX' — X||, we deduce that
i

(8.16) [®(X) — Ly(X)|| < bJIX' — x||?

with b independent ok andx'.

If x is a critical point, let us bound the image of the setxofwith
X" — X|| < c. The determinant of the linear part bf; is 0, and hencé .
has image in a hyperplane. By (8.18)(x’) has distances bc? from this
hyperplane. In each of thm — 1 perpendicular directions, (8.14) shows
that®(x’) and®(x) are at distance: ac from each other. Thu® (x) is
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contained in a rectangular solid ababitx) of volume 2"(ac)™ 1(bc?) =
2mam-1pcm+t,

We subdivideC into N™ smaller cubes of side/N. If one of these
smaller cubes contains a critical poitthen any poink’ in the smaller
cube hag|x’ — x| < /m/N. By the result of the previous paragraph,
® of the cube is contained in a solid of volum&a?-b(,/m/N)™,

The union of these solids, taken over all small cubes containing a critical
point, contains the critical values. Since there are at midstubes, the
outer measure of the set of critical valuesi€™a™ tom: ™Y N-1, This
estimate is valid for alN, and hence the set of critical values has Lebesgue
measure 0.

Corollary 8.17. If ® : M — N is a smooth map between manifolds
with dimM < dim N, then the image ob has measure zero N.

PrROOF. LetdimM = k < m = dim N. Without loss of generality we
may assume tha?l < R¥. Sard’s Theorem (Theorem 8.12) applies to the
composition of the projectioR™ — R followed by®. Every point of the
domain is a critical point, and hence every point of the image is a critical
value. The result follows.

We define dower-dimensional set in N to be any set contained in the
countable union of smooth images of manifoMswith dimM < dim N.
It follows from Corollary 8.17 that

(8.18) any lower-dimensional set M has measure zero

Let M andN be orientesn-dimensional manifolds, and lét: M — N
be a diffeomorphism. We say thétis orientation preservingif, for every
chart(U,, ¢,) in the atlas forM, the chart(®(U,,), ¢, o ®71) is positive
relative to the atlas foN. In this case the atlas of charts fidr can be
taken to be{(®(U,), ¢, o ®1)}. Then the change of variables formula
for multiple integrals may be expressed using pullbacks as in the following
proposition.

Proposition 8.19. Let M andN be orientedn-dimensional manifolds,
and let® : M — N be an orientation-preserving diffeomorphismwlfs
a smoothm form on N, then

/ fw:/(fo@)d)*a)
N M

forevery f € Ceom(N).
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PROOF. Let the atlas foM be {(U,, ¢.)}, and take the atlas fd{ to
be{(®U,), ¢, o ®1)}. Itis enough to prove the result fdr compactly
supported in a particulab (U,). For suchf, (8.5) gives

(8.20a)
fo= / focI>o<p;1(x1, e X Fo (X, o0 Xm) dXyq - - - A X,
N Puo®=L(D(Uy))

whereF, is the function with
(8.20Db) ((Pe 0 PH ™ 0 = Fo(Xg, ..., Xm) AXq A -+ - A AXip.

The functionf o ® is compactly supported id,,, and (8.5) gives also

(8.20c)
/(foCD)CD*a)=/ fodop, ' (Xy, ...\ Xm) Fa(Xa, + ooy Xim) dXq - - - dXpy

M ¢a(Uqg)

since
(P @0 = ((Pg 0 @™ 0= Fy(Xg, ..., Xm) AXg A -+ - A OXi

by (8.20b). The right sides of (8.20a) and (8.20c) are equal, and hence so
are the left sides.

2. Haar Measure for Lie Groups

Let G be a Lie group, and lef be its Lie algebra. Fog € G, let
Ly : G — GandR; : G — Gbetheleftandrighttranslatiohs(x) = gx
andRy(x) = xg. A smoothk form @ on G is left invariant if Liw = w
forall g € G, right invariant if Riw = w forall g € G.

Regardingg as the tangent space at 16f let Xy, ..., Xy, be a basis

of g, and Iet)?l, ..., Xm be the corresponding left-invariant vector fields
onG. We can define smooth 1 formas, ..., o, on G by the condition
that (w;)p((Xj)p,) = & for all p. Thenws, ..., vy are left invariant, and

at each point ofs they form a basis of the dual of the tangent space at
that point. The differential forrm = w1 A - - - A wy, is therefore a smooth

m form that is nowhere vanishing d&. Since pullback commutes with
A, w is left invariant. Using Proposition 8.9, we can oriéhso thatw is
positive. This proves part of the following theorem.
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Theorem 8.21. If G is a Lie group of dimensiom, then G admits
a nowhere-vanishing left-invariant smoath form . Then G can be
oriented so thab is positive, andv defines a nonzero Borel measulge,
on G that is left invariant in the sense thad, (L4E) = dw (E) for all
g € G and every Borel seE in G.

PrROOF We have seen thab exists and thatG may be oriented so
thatw is positive. Letdu, be the associated measure, so tfg:\fco =
fG f)du(x) for all f € Ceom(G). From Proposition 8.19 and the
equalityL;w = w, we have

(8.22) f f(gx) dyui (x) = / £ (0 du (%)
G G

forall f € C,om(G). If K isacompactset i, we can apply (8.22) to afi
that are> the characteristic function ¢€. Taking the infimum shows that
du(Lg2K) = dw (K). SinceG has a countable base, the measiue
is automatically regular, and hendgy (L,+E) = dw, (E) for all Borel
setsE.

A nonzero Borel measure @hinvariant under left translation is called a
left Haar measureon G. Theorem 8.21 thus says that a left Haar measure
exists.

In the construction of the left-invariam form o before Theorem 8.21,

a different basis ofG would have produced a multiple @f, hence a
multiple of the left Haar measure in Theorem 8.21. If the second basis is
Yi, ..., Yopand ifY; = Y1, a&; X, then the multiple is dé&;)~. When

the determinantis positive, we are led to ori@nih the same way, otherwise
oppositely. The new left Haar measurg éeta;)|~* times the old. The
next result strengthens this assertion of uniqueness of Haar measure.

Theorem 8.23. If G is a Lie group, then any two left Haar measures on
G are proportional.

PROOF. Letdu, anddu, be left Haar measures. Then the sdm =
duy + du, is a left Haar measure, amle(E) = 0 impliesdu;(E) = O.
By the Radon—Nikodym Theorem there exists a Borel funchipr= 0
such thatlyu; = h;du. Fix g in G. By the left invariance ofl; anddpu,
we have

/ f (0ha(g %) dpe(x) = / F(@Ohy(x) dp(x) = / f(gx) dpa(x)
G G G

= / f ) dua(x) = / f (x)h1(x) dpe(x)
G G
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for every Borel functionf > 0. Therefore the measurbs(g—1x) du(x)
andhy(x) du(x) are equal, ant,(g~1x) = h;(x) for almost everx € G

(with respect tadi). We can regardh, (g~1x) andh;(x) as functions of

(g, X) € G x G, and these are Borel functions since the group operations
are continuous. For eagfthey are equal for almost evexy By Fubini's
Theorem they are equal for almost every p@rx) (with respect to the
product measure), and then for almost everthey are equal for almost
everyg. Pick such arx, sayx,. Then it follows thath;(x) = hi(xg) for
almost everyx. Thusdu; = hi(Xo) du. Sodu, is a multiple ofdu, and

SO isdt,.

A right Haar measure on G is a nonzero Borel measure invariant
under right translations. Such a measure may be constructed similarly by
starting from right-invariant 1 forms and creating a nonzero right-invariant
m form. As is true for left Haar measures, any two right Haar measures
are proportional. To simplify the notation, we shall denote particular left
and right Haar measures @by d x andd; x, respectively.

An important property of left and right Haar measures is that

(8.24) any nonempty open set has nonzero Haar measure

Infact, in the case of a left Haar measure if any compact setis given, finitely

many left translates of the given open set together cover the compact set. If

the open set had 0 measure, so would its left translates and so would every

compact set. Then the measure would be identically O by regularity.
Another important property is that

(8.25) any lower-dimensional set & has 0 Haar measure

In fact, Theorems 8.21 and 8.23 show that left and right Haar measures
are given by nowhere-vanishing differential forms. The sets of measure 0
relative to Haar measure are therefore the same as the sets of measure zero
in the sense of Sard’s Theorem, and (8.25) is a special case of (8.18).

Since left translations o6 commute with right translations} (- t) is
a left Haar measure for artye G. Left Haar measures are proportional,
and we therefore define timeodular function A : G — R* of G hy

(8.26) d(-t)y=A® ().

Proposition 8.27. If G is a Lie group, then the modular function fGr
is given byA(t) = | det Ad(t)|.



2. Haar Measure for Lie Groups 533

PROOF. If Xising andX is the corresponding left-invariant vector field,
then we can use Proposition 1.86 to make the computation

ARy (R = Ky o Ry = < (PEXPOOT g
= d% h(pt~*exprAd(t)X)|.—o = (Ad()X) h(pt™?),
and the conclusion is that
(8.28) (dR-2)p(Xp) = (Ad®)X) v
Therefore the left-invariamh form w has

(RE10)p((XD)ps -+, (Xim)p)
= wp-1 (AR p(XDps - ., (AR (X))
= w1 (AA(D)X0) 1y -, (AD(D) Xe) ) by (8.28)
= (det Adt)wp2 (XD)prts - - - o Kin)pe),

and we obtain
(8.29) Ruo = (detAdt))w.

The assumption is thab is positive, and therefor®",w or —R"., o is
positive according as the sign of deté&gd When det Adt) is positive,
Proposition 8.19 and (8.29) give

(detAd(t))/ f(xX)dx = (detAd(t))/ fco:/ f RLw
G G G

:/(foR()wz/ f(xt) dx
G G

:/ f(x)d,(xt‘l)zA(t)/ f(x) dix,
G G

and thus det A@) = A(t). When det Adt) is negative, every step of this
computation is valid except for the first equality of the second line. Since
—R*,w is positive, Proposition 8.19 requires a minus sign in its formula
in order to apply to® = R-:. Thus—detAdt) = A(t). For allt, we
therefore have\ (t) = | det Ad(t)].
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Corollary 8.30. The modular functiom\ for G has the properties that

(@ A : G — Rt isasmooth homomorphism,

(b) A(t) = 1fortinanycompact subgroup & and in any semisimple
analytic subgroup o6,

(c) d(x~1) andA(x) d x are right Haar measures and are equal,

(d) d.(x Y andA(x)~1d, x are left Haar measures and are equal,

(e) d(t-) = A@)d () for any right Haar measure da.

PrROOF. Conclusion (a) is immediate from Proposition 8.27. The image
underA of any compact subgroup & is a compact subgroup &* and
hence is{1}. This proves the first half of (b), and the second half follows
from Lemma 4.28.

In (c) putdu(x) = AX)dx. This is a Borel measure sincg is
continuous (by (a)). SincA is a homomorphism, (8.26) gives

ff(xt)du(x):f f(xt)A(x)d|x=f fOOAXE™Y d(xt™)
G G G
:/ fOOAX)AEHA®) dx
G

:/ f(x)A(x)d.x:/ f(x) du(x).
G G

Hencedu(x) is a right Haar measure. It is clear thdtx 1) is a right

Haar measure, and thus Theorem 8.23 for right Haar measures implies that
d(x~1) = cA(x) dx for some constart > 0. Changingx to x~ in this
formula, we obtain

dx =cAXx Hdx? = A HAX) dx = c2dx.

Hencec = 1, and (c) is proved.

For (d) and (e) there is no loss of generality in assuming dhat=
d(x~1) = A(x) dx, in view of (c). Conclusion (d) is immediate from this
identity if we replacex by x—. For (e) we have

/f(x)dr(tx):/ f(t‘lx)drx:/ ft"Ix)A(X) dx
G G G
=/ f(X)A(tX) dx
G

= A(t)/ f(X)AX) dX = A(t)/ f(x)d x,
G G

and we conclude that (t-) = At) d, (-).
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The Lie groupG is said to baunimodular if every left Haar measure is
a right Haar measure (and vice versa). In this case we can spébdanf
measureon G. In view of (8.26),G is unimodular if and only iA(t) = 1
forallt € G.

Corollary 8.31. The following kinds of Lie groups are always unimod-
ular:

(a) abelian Lie groups,

(b) compact Lie groups,

(c) semisimple Lie groups,

(d) reductive Lie groups,

(e) nilpotent Lie groups.

ProOF. Conclusion (a) is trivial, and (b) and (c) follow from Corollary
8.30b. For (d) let(G, K, 6, B) be reductive. By Proposition 7.2G =
9G x Z,. A left Haar measure fo may be obtained as the product of
the left Haar measures of the factors, and (a) showsahats unimodular.
Hence it is enough to consid¥s, which is reductive by Proposition 7.27c.
The modular function fofG must be 1 orK by Corollary 8.30b, and&K
meets every component 86G. Thus it is enough to prove tha6, is
unimodular. This group is generated by its center and its semisimple part.
The center is compact by Proposition 7.27, and the modular function must
be 1 there, by Corollary 8.30b. Again by Corollary 8.30b, the modular
function must be 1 on the semisimple part. Then (d) follows.

For (e) we appeal to Proposition 8.27. It is enough to prove that
detAd(x) = 1 for all x in G. By Theorem 1.127 the exponential map
carriesthe Lie algebrgontoG. If x = expX, then det Adx) = dete®™* =
e™adX  Sinceg is nilpotent, (1.31) shows that adlis a nilpotent linear
transformation. Therefore 0 is the only generalized eigenvalue of, ad
and TradX = 0. This proves (e).

3. Decompositions of Haar Measure

In this section we leG be a Lie group, and we lelx andd, x be left
and right Haar measures for it.

Theorem 8.32. Let G be a Lie group, and le§ and T be closed
subgroups such the N T is compact, multiplicatiorS x T — G is
an open map, and the set of produsts exhaustss except possibly for a
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set of Haar measure 0. Lat; andAg denote the modular functions &f
andG. Then the left Haar measures 6 S, andT can be normalized so

that ArD)
f(X)dx = f(st)——2 disat
/G o ax /m SO e 459

for all Borel functionsf > 0 onG.

PROOF. LetQ2 C G be the set of productST, and letKk = SN T. The
groupS x T acts continuously of by (s, t)w = swt~2, and the isotropy
subgroup at 1 is diag. Thus the mags, t) — st descends to a map
(Sx T)/diagK — Q. This map is a homeomorphism since multiplication
Sx T — G isan open map.

Hence any Borel measure énhcan be reinterpreted as a Borel measure
on (S x T)/diagK. We apply this observation to the restriction of a left
Haar measure x for G from G to 2, obtaining a Borel measuig on
(Sx T)/diagK. On, we have

d (LyR:1x) = Ag(to) dix
by (8.26), and the action unwinds to
(8.33) die(Lg.10X) = Ag(lo) du(X)
on (S x T)/diagK. Define a measurdji(s,t) onSx T by

/ f(s,t)dﬁ(s,t):/ [/ f(sk,tk)dk]du((s,t)K),
SxT (SxT)/diagk & JK

wheredk is a Haar measure df normalized to have total mass 1. From
the formula (8.33) it follows that

dii(seS, tot) = Ag(to) dji(s, t).

The same proof as for Theorem 8.23 shows that any two Borel measures
on S x T with this property are proportional, aml; (t) dsdt is such a
measure. Therefore

dﬁ(s, 1) = Ag(t) dsdt

for a suitable normalization afsdt.
The resulting formula is

/f(x)d|x=/ f(st™HAg(t)dsdt
Q SxT
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forall Borel functionsf > 0ong. Ontheright side the change of variables
t — t~! makes the right side become

/ f(st)Ag(t) tdsAT(t)dt,
SxT

according to Corollary 8.30c, and we can repl&by G on the left side
since the complement @t in G has measure 0. This completes the proof.

If H is a closed subgroup d&, then we can ask wheth&/H has
a nonzeroG invariant Borel measure. Theorem 8.36 below will give a
necessary and sufficient condition for this existence, but we need some
preparation. Fix a left Haar measudié for H. If f isin C,on(G), define

(8.34a) f*(g) = / f (gh) dh.
H

This function is invariant under right translation by, and we can define
(8.34b) f#(gH) = f*(g).
The functionf* has compact support d&/H.

Lemma 8.35. The mapf — f* carriesCeom(G) onto Ceom(G/H),
and a nonnegative member ©f,,(G/H) has a nonnegative preimage in
CCOITI(G)'

PROOF. Letm : G — G/H be the quotient map. L&t € C.,(G/H)
be given, and leK be a compact set iG/H with F = 0 off K. We first
produce a compact stin G with 7 (K) = K. For each cosetiK, select
an inverse imagg and letN, be a compact neighborhoodxfn G. Since
7 is open,r of the interior ofN, is open. These open sets co¥erand a
finite number of them suffices. Then we can t#keo be the intersection
of 7 ~1(K) with the union of the finitely many,’s.

Next let Ky be a compact neighborhood of 1 k. By (8.24) the
left Haar measure ol is positive onKy. Let K’ be the compact set
K’ = KKy, so thatr (K’) = n(K) = K. Choosef; € Ceom(G) with
f; > 0 everywhere and witl; = 1 onK'. If gisin K’, thean fi(gh)dh
is > the H measure oK, and hencef#is > 0 onK. Define

F(m(9)
f 7

to=1 "9 %Fxa)
0 otherwise.

if 7(g) € K
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Then f*#is F on K and is 0 offK, so thatf *# = F everywhere.

Certainly f has compact support. To see tlias continuous, it suffices
to check that the two formulas fdr(Q) fit together continuously at points
of 771(K). Itis enough to check points whef&g) # 0. Sayg, — g. We
must havd- (7t (g)) # 0. SinceF is continuousF ((g,)) # 0 eventually.
Thus for alln sufficiently large, f (g,) is given by the first of the two
formulas. Thusf is continuous.

Theorem 8.36. Let G be a Lie group, leH be a closed subgroup, and
let Ag andAy be the respective modular functions. Then a necessary and
sufficient condition foiG/H to have a nonzerG invariant Borel measure
is that the restriction tdd of Ag equalAy. In this case such a measure
du(gH) is unigue up to a scalar, and it can be normalized so that

@3 [ f@do=[ [[ famdn]dugH)
G G/HLJH

forall f € Ceom(G).

PrOOF. Letdu(gH) be such a measure. In the notation of (8.34), we
can define a measudgi(g) on G by

/f(g)dﬁ(g)zf £#(gH) du(gH).
G

G/H

Since f — f* commutes with left translation b, dx is a left Haar
measure orG. By Theorem 8.23dJ is unique up to a scalar; hence
du(gH) is unigue up to a scalar.

Under the assumption th@&/H has a nonzero invariant Borel measure,
we have just seenin essence thatwe can normalize the measure sothat (8.37)
holds. If we replace in (8.37) by f (- hp), then the left side is multiplied
by As(ho), and the right side is multiplied b (hg). HenceAg|y = Apy
is necessary for existence.

Let us prove that this condition is sufficient for existence. Gilkidn
Ceom(G/H), we can choosé in C.on(G) by Lemma 8.35 so that™ = h.
Then we defind_(h) = fG f(g) dg. If L is well defined, then itis linear,
Lemma 8.35 shows that it is positive, ahdcertainly is the same on a
function as on it$G translates. Therefork defines aG invariant Borel
measural . (gH) on G/H such that (8.37) holds.

Thus all we need to do is see tHais well defined ifAg|y = Ay. We
are thus to prove that if € C.on(G) hasf* = 0, then[G f(g)dg=0.
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Let v be inC.om(G). Then we have

0= f (@) F*() dig
G

=/ / ¥(©@f(@gdh|dg
cltJu

- [ [ [ v@f@mdg]an
Al

= [ [ [ vt @ag]actyan by (8.26)
HlJe

- [ 1@[ [ veh s an]ag
G H

=/ f(g)[f w(gh)AG(h)*lAH(h)dm] dg by Corollary 8.30c
G H

Zf f(@y*(gdg sinceAgly = Ay.
G

By Lemma 8.35 we can choose € C.n(G) so thaty* = 1 on the
projection toG/H of the support off . Then the right side i;fG f(g)dag,
and the conclusion is that this is 0. Thuss well defined, and existence
is proved.

4. Application to Reductive Lie Groups

Let (G, K, 6, B) be a reductive Lie group. We shall use the notation of
Chapter VII, but we drop the subscripts O from real Lie algebras since we
shall have relatively few occurrences of their complexifications. Thus, for
example, the Cartan decomposition of the Lie algebi@ wiill be written
g=t@p.

In this section we use Theorem 8.32 and Proposition 8.27 to give de-
compositions of Haar measures that mirror group decompositions in Chap-
ter VII. The groupG itself is unimodular by Corollary 8.31d, and we write
dx for a two-sided Haar measure. We shall be interested in parabolic
subgroupsM AN, and we need to compute the corresponding modular
function that is given by Proposition 8.27 as

Ayan(man) = |detAd, o« (Man)|.
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Forthe elememn, | det Ad,,;.....(mM)| = 1 by Corollary 8.30b. The element
a acts as 1 om anda, and hence detAd,...(a) = detAd,(a). On ana
root spacey;, a acts bye*'°92, and thus det Ag(a) = e*»°92 where a

is the sum of all the positive roots with multiplicities counted. Finally
detAd. ... (N) = 1 for the same reasons as in the proof of Corollary
8.31e. Therefore

(838) AMAN (man) = | det Adn+a+n(man)| — eZﬂA Ioga‘
We can then apply Theorem 8.32 and Corollary 8.31 to obtain

A

(8.39a) d (man) = _An d(ma) dn = dmdadn.
Aman(N)
By (8.38) and Corollary 8.30c,
(8.39b) dr (man) = e?~°%8 dmdadn.
Similarly for the subgroufAN of M AN, we have
(840) AAN (an) - eZPAIOQa
and
d(an) = dadn

(8.41)

d.(an) = €% dadn.

Now we shall apply Theorem 8.32 ® itself. Combining Corollary
8.30c with the fact tha® is unimodular, we can write

(8.42) dx = dsdt
whenever the hypotheses in the theoremSandT are satisfied.
Proposition 8.43. If G = KA, N, is an lwasawa decomposition of the

reductive Lie groupG, then the Haar measures Gf A,N,, A,, andN,
can be normalized so that

dx = dkd, (an) = €?» 92 dk dadn.

If the lwasawa decomposition is written instead@as= A, N, K, then the
decomposition of measures is

dx = d(an) dk = dadndk.

PrOOF. If G is written asG = KA,N,, then we useS = K and
T = A,N, inTheorem8.32. The hypotheses are satisfied since Proposition
7.31 shows thaE x T — G is a diffeomorphism. The second equality
follows from (8.41). The argument wheh = A,N, K is similar.
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Proposition 8.44. If G is a reductive Lie group anéll AN is a parabolic
subgroup, so thad = KM AN, then the Haar measures®f M AN, M,
A, andN can be normalized so that

dx = dk d, (man) = e¥*'°%2dk dmdadn.

PrROOF We useS = K andT = MAN in Theorem 8.32. Here
SNT = KN M is compact, and we know th& = KMAN. Since
A,N, € MAN andK x AN, — GisopenK x MAN — G is open.
Then Theorem 8.32 gives the first equality, and the second equality follows
from (8.39b).

Proposition 8.45. If M AN is a parabolic subgroup of the reductive
Lie groupG, thenN~M AN is open inG and its complement is a lower-
dimensional set, hence a set of measure 0. The Haar meas@eSI&N,
N—, M, A, andN can be normalized so that

dx = did, (man) = e**'°%3didmdadn (e NO).

PROOF We useS = N~ andT = MAN in Theorem 8.32. Here
SNT = {1} by Lemma 7.64, and x T — G is everywhere regular
(hence open) by Lemma 6.44. We need to see that the complement of
N~M AN is lower dimensional and has measure 0. MgA,N, € M AN
be a minimal parabolic subgroup. In the Bruhat decompositida af in
Theorem 7.40, a double cosetf, A, N, is of the form

M, A, NywM, AN, = NywM, AN, = w(w *Nyw)M, A,N,,

wherew is a representative iNk (a,) of a member ofNk (a,)/M,. The
double coset is thus a translate @ *N,w)M, A,N,. To compute the
dimension of this set, we observe that

dim Ad(w) 'n, + dim(m, & a, ®n,) = dimg.

Now Ad(w) *n, has 0 intersection withn, @& a, @ n, if and only if
Ad(w)*n, = 6n,, which happens for exactly one coseM, by Propo-

sition 7.32 and Theorem 2.63. This case corresponds to the open set
N, M,A,N,. In the other cases, there is a closed positive-dimensional
subgroupR,, of w™*N,w such that the smooth map

w IN,w x MyA N, — (w 'N,w)M, AN,



542 VIIl. Integration

given by(x, y) — xy~! factors to a smooth map
(wN,w x M,A,N,)/diagR, — (w™*N,w)M, A, N,.

Hence inthese casés*N,w)M, A, N, is the smooth image of a manifold
of dimension< dim G and is lower dimensional i.

This proves foM, A, N, thatN_M, A, N, is open with complement of
lower dimension. By (8.25) the complement is of Haar measure 0. Now
let us consideN~M AN. SinceM,A,N, € M AN, we have

N, My A,N, = (M, A,NIM AN,
C (MANT)MAN = N"MAN.
Thus the open sé~M AN has complement of lower dimension and hence
of Haar measure 0.

Theorem 8.32 is therefore applicable, and we ohtiair= dn d, (man).
The equalitydi d, (man) = e*+'°92 dii dm da dn follows from (8.39b).

Proposition 8.46. Let M AN be a parabolic subgroup of the reductive
Lie groupG, and leto, be asin (8.38). Fagin G, decomposg according
toG = KMAN as

g = k(9)u(9) expH(g)n.

Then Haar measures, when suitably normalized, satisfy

/f(k)dk:/ f (k(R)e 2™ dn
K N-

for all continuous functions oK that are right invariant undé¢ N M.

REMARK. The expressions(g) andu(g) are not uniquely defined, but
H (g) is uniquely defined, as a consequence of the lwasawa decomposition,
and f («(n)) will be seen to be well defined because of the assumed right
invariance undeK N M.

PrOOF. Given f continuous orK and right invariant undeK N M,
extendf to a functionF on G by

(8.47) F (kman) = e 2°A1092 f (k).

The right invariance off under K N M makesF well defined since
K NMAN = K N M. Fix ¢ > 0in Ceom(MAN) with

/ ¢(man) d (man) = 1;
MAN
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by averaging oveK N M, we may assume that is left invariant under
K N M. Extendg to G by the definitionp(kman) = ¢(man); the left
invariance ofp underK N M makesp well defined. Then

/ p(xman) d(man) = 1 forallx € G.
MAN

The left side of the formula in the conclusion is

:/ f(k)[/ ¢ (kman) d.(man)} dk
K M AN

= f f (K)p(kman)e >#'°%2 dk d, (man) by (8.39)
KxMAN

:/ F (kman)g(kman) dk d, (man) by (8.47)
KxMAN

=/ F)e(x) dx by Proposition 8.44,
G

while the right side of the formula is

/ f (k (N))e 22" ™ dpy
N

- / F(ﬁ)[ / go(ﬁman)d|(man)]dﬁ by (8.47)
N-— M AN

= / F (h)e2°A1°92¢(Aman) di d, (man) by (8.39)
N-xMAN

:/ F (nman)e (Nman) dn d, (man) by (8.47)
N-xMAN

=/ F(X)@(x) dx by Proposition 8.45.
G

The proposition follows.

Foranillustration of the use of Proposition 8.46, we shall prove atheorem
of Helgason that has important applications in the harmonic analysis of
G/K. We suppose that the reductive groGpis semisimple and has a
complexificationG®. We fix an lwasawa decompositidd = K A, N,.
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Lett, be a maximal abelian subspacengf, so thatt, ® a, is a maximally
noncompact stable Cartan subalgebra @f Representations @ yield
representations af, hence complex-linear representationsgéf Then
the theory of Chapter V is applicable, and we use the complexification of
t, ® a, as Cartan subalgebra for that purpose. heand X be the sets
of roots and restricted roots, respectively, andlétbe the set of positive
restricted roots relative tm,.

Roots and weights are real oy @ a,,, and we introduce an ordering such
that the nonzero restriction tg of a member ofA* is a member o2 *.
By arestricted weight of a finite-dimensional representation, we mean the
restriction taa, of aweight. We introduce in an obvious fashion the notions
of restricted-weight spaces andrestricted-weight vectors. Because of
our choice of ordering, the restriction tg of the highest weight of a
finite-dimensional representation is the highest restricted weight.

Lemma 8.48. Let the reductive Lie groug be semisimple. Ifr is
an irreducible complex-linear representationgdf thenm, acts in each
restricted weight space of, and the action byn, is irreducible in the
highest restricted-weight space.

PrROOF. The first conclusion follows at once sineg commutes withu, .
Let v # 0 be a highest restricted-weight vector, say with weightet V
be the space far, and letV, be the restricted-weight space corresponding
tov. We writeg = n, ®m, & a, ®n,, express members bf(g®) in the
corresponding basis given by the PoireaBirkhoff-Witt Theorem, and
apply an elementto. Sincen, pushes restricted weights up ancacts by
scalars inv, andfn, pushes weights down, we see from the irreducibility
of 7 onV thatU (mf)v =V,. Sincev is an arbitrary nonzero member of
V,, m, acts irreducibly orV,.

Theorem 8.49 (Helgason). Letthe reductive Lie gro@be semisimple
and have a complexificatio®®. For an irreducible finite-dimensional
representationr of G, the following statements are equivalent:

(a) 7 has a nonzer& fixed vector,
(b) M, acts by the 1-dimensional trivial representation in the highest
restricted-weight space af,
(c) the highest weight of = vanishes on,, and the restrictiom of v
toa, is such thatv, 8)/|8|?is an integer for every restricted rgét
Conversely any dominant € a; such that(v, B)/|B|? is an integer for
every restricted rogf is the highest restricted weight of some irreducible
finite-dimensionatr with a nonzerdK fixed vector.
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PrROOF. For the proofs that (a) through (c) are equivalent, there is no
loss in generality in assuming th&® is simply connected, as we may
otherwise take a simply connected cove@Gbéfand replac& by the analytic
subgroup of this cover with Lie algebga With G® simply connected, the
representationr of G yields a representation @f = ¢ & p, then ofg®,
and then of the compact form= ¢ @ ip. SinceGC is simply connected,
so is the analytic subgroug with Lie algebrau (Theorem 6.31). The
representatiomr therefore lifts fromu to U. By Proposition 4.6 we can
introduce a Hermitian inner product on the representation space 49 that
acts by unitary operators. Then it follows th&tacts by unitary operators
andit, ® a, acts by Hermitian operators. In particular, distinct weight
spaces are orthogonal, and so are distinct restricted-weight spaces.

(@) = (b). Letg, be a nonzero highest restricted-weight vector, and
let g be a nonzer fixed vector. Sincen, pushes restricted weights
up and since the exponential map carmgsonto N, (Theorem 1.127),
7(N)¢, = ¢, forn e N,. Therefore

(m(kan)p,, ¢x) = (T (@,, 1K) ) = €%, Px ).

By the irreducibility ofzr and the facttha® = K A, N,, the left side cannot
be identically 0, and hend®,, ¢« ) on the right side is nonzero. The inner
product with¢k is then an everywhere-nonzero linear functional on the
highest restricted-weight space, and the highest restricted-weight space
must be 1-dimensional. i, is a nonzero vector of norm 1 in this space,
then(¢k, ¢.)¢, is the orthogonal projection @fk into this space. Since
M, commutes witha,, the action byM,, commutes with this projection.
But M, acts trivially ongx sinceM, € K, and thereforé, acts trivially
ong,.

(b) = (a). Letv # 0 be in the highest restricted-weight space, with
restricted weight. Then [, 7 (k)v dk is obviously fixed byK, and the
problem is to see that it is not 0. Sineds assumed to be fixed kyl,,,

k — m(K)v is a function onK right invariant undem,. By Proposition
8.46,

/n(k)vdk:/ n(K(ﬁ))ve‘z”APH(”’dﬁ=/ m(R)ve' "2 H® g,
K N, N,

P P

Heree~"—20» H® js everywhere positive sinaeis real, andz (M)v, v) =
|[v|? since the exponential map carrigés, onto N, 6n, lowers restricted
weights, and the different restricted-weight spaces are orthogonal. There-

fore ( f, 7(ovdk, v) is positive, and, 7 (kyv dk s ot 0.
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(b) = (c). Since(M,), acts trivially, it follows immediately tha®
vanishes on,. For each restricted ro@, definey, = exp 2ri|8|?Hy as
in (7.57). This element is iM,, by (7.58). Since5® is simply connected,
7 extends to a holomorphic representatiorG3f. Then we can compute
7 (yp) on a vectow of restricted weight as

(8.50) 7 (yp)v = w(exp(2ri |,8|‘2Hﬁ))v — BB,

Since the left side equalsby (b), (v, 8)/|8]?> must be an integer.

(c) = (b). The action of M, ), on the highest restricted-weight space is
irreducible by Lemma 8.48. Singevanishes or,, the highest weight of
this representation afM, ), is 0. Thus(M,), acts trivially, and the space
is 1-dimensional. The calculation (8.50), in the presence of (c), shows that
eachy; acts trivially. Since they,; that come from real roots generédte
(by Theorem 7.55) and sind&, = (F)(M,), (by Corollary 7.52) M, acts
trivially.

We are left with the converse statement. Supposea; is such that
(v, B)/1B1? is an integer> O for all B € *. DefineV to bev ona, and
0 ont,. We are to prove that is the highest weight of an irreducible
finite-dimensional representation & with a K fixed vector. The form
v is dominant. If it is algebraically integral, then Theorem 5.5 gives us a
complex-linear representationof g® with highest weigh¥. Some finite
covering grous of G will have a simply connected complexification, and
thenr lifts to G. By the implication (c)= (a), = has a nonzeré fixed
vector. Since the kernel @ — G is in K and since such elements must
then act trivially,7 descends to a representation®fwith a nonzeroK
fixed vector. In other words, it is enough to prove thas algebraically
integral.

Leto be aroot, and leg be its restriction tay,. Since(v, «) = (v, B),
we may assume thgt £ 0. Let|a|? = C|B/|2. Then

2(v, ) _ 2(v, B)

|2 CIBIZ’

and it is enough to show that either
(8.51a) 2C is aninteger
or

(8.51b) |2/C| =1 and (v, B)/|B|*is even

2
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Write o = B + ¢ with ¢ € it;. Thenoda is the rootta = —p + ¢. Thus
—ba = B — ¢ is aroot with the same length as

If « and—6« are multiples of one another, then= 0 andC = 1, so
that 2/C is an integer. Itx and—6« are not multiples of one another, then
the Schwarz inequality gives

(—lorOor+1) = 2a, —ba)  2(B+e p—¢)

2 | |2
8.52
(8:52) _ 208 —leP) _2@BP—laP) _ 4,
B |2 B |or|2 - c 7

If the left side of (8.52) is-1, then 2C = % Since the left side of (8.52)
is—1,a —6a = 28 is aroot, hence also a restricted root. By assumption,
(v, 2B)/|2B|? is an integer; hence, B)/|8|? is even. Thus (8.51b) holds.

If the left side of (8.52) is 0, then/Z = 1 and (8.51a) holds.

To complete the proof, we show that the left side of (8.52) cannetbe
Ifitis +1, thene — (—0«) = 2¢ is a root vanishing om,,, and hence any
root vector for it is inmf C €. However this root is also equal o+ O«
and [X,, 6 X,] must be a root vector. Sind§ X,, 0X,] = —[X., 0 X,],

[Xq, 8X,]is in p©. Thus the root vector is it N p¢ = 0, and we have a
contradiction.

5. Weyl Integration Formula

The original Weyl Integration Formula tells how to integrate over a
compact connected Lie group by first integrating over each conjugacy class
and then integrating over the set of conjugacy classesGlat a compact
connected Lie group, l€f be a maximal torus, and lgt andt, be the
respective Lie algebras. Let = dimG andl = dimT. Asin 8VIL.8, an
elementg of G isregular if the eigenspace of A@)) for eigenvalue 1 has
dimensionl. Let G’ andT’ be the sets of regular elements@andT;
these are open subsets@®@fandT, respectively.

Theorem 4.36 implies that the smooth m@px T — G given by
¥ (g,t) = gtg~tis ontoG. Fixg € G andt € T. If we identify tangent
spaces ag, t, andgtg ! with go, to, andgo by left translation, then (4.45)
computes the differential of at(g, t) as

dy (X, H) = Ad(@)((Ad(t™) — D)X + H) for X € go, H € to.
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The mapy descendst®&/T x T — G, and we call the descended map
Y also. We may identify the tangent space®fT with an orthogonal
complementty to t, in go (relative to an invariant inner product). The
spacety is invariant under Ad ) — 1, and we can write

dy (X, H) = Ad(@)((Ad(t™) — D)X+ H)  for X ety, H € t,.

Now dyr at (g, t) is essentially a map af, to itself, with matrix

b g
_ 1 0
(@) = Ad(g) (0 At 1) .

Since det Adg) = 1 by compactness and connectedness of
(8.53) detdy) g = det((Ad(t ™) — 1))

We can think of building a left-invarianim — ) form on G/ T from the
duals of theX’s in t7 and a left-invariant form on T from the duals of
theH’s in t,. We may think of a left-invariantn form on G as the wedge

of these forms. Referring to Proposition 8.19 and (8.7b) and taking (8.53)
into account, we at first expect an integral formula

(8.54a)
/ f(x)dx:?f[/ f(gtg’l)d(gT)]|del(Ad(t’1)—1)|{é|dt
G T G/T

if the measures are normalized so that

(8.54b) /f(x)dx:/ [/ f(xt)dt]d(xT).
G c/TLJT

But Proposition 8.19 fails to be applicable in two ways. One is that the
onto mapy : G/T x T — G has differential of determinant O at some
points, and the other is thdt is not one-one even if we exclude points of
the domain where the differential has determinant O.

From (8.53) we can exclude the points where the differential has deter-
minant O if we restricty to a mapy : G/T x T" — G’. To understand
T’, consider Adt ') — 1 as a linear map of the complexificatigo itself.
If A = A(g,t) is the set of roots, then Ati'!) — 1 is diagonable with
eigenvalues 0 with multiplicity and alsc, (t~) — 1 with multiplicity 1
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each. Hencedet(Ad(t™) — D]y | = [[Toep Gt — D). If we fix a
positive systemA\* and recognize that, (t~1) = £_,(t~1), then we see that

(8.55) | detAdt™ — Dly|= [] l&t™ -1

aeAt

Puttingt = expi H withi H € to, we have, (t™1) = e7*), Thus the set
in the torus where (8.55) is 0 is a countable union of lower-dimensional
sets and is a lower-dimensional set. By (8.25) the singular s&thias
dt measure 0. The singular set@is the smooth image of the product
of G/T and the singular set iii, hence is lower dimensional and is of
measure 0 fodu(gT). Therefore we may disregard the singular set and
considerny asamai/T x T — G,

The mapy : G/T x T' — G’ is not, however, one-one. b is in
Ng(T), then

(8.56) Y(QwT, wtw) = ¥ (gT, t).

SincegwT # gT whenw is notinZg(T) = T, each member o&’ has
at leasiW(G, T)| preimages.

Lemma 8.57. Each member o5’ has exacthfW(G, T)| preimages
underthemag : G/T x T' — G,

PROOF. Let us call two members @&/ T x T’ equivalent, writtern~, if
they are related by a memberof Ng(T) as in (8.56), namely

(QuwT, wtw) ~ (gT, t).

Each equivalence class has exat(G, T)| members.
Now suppose that (gT, s) = ¢ (hT, t) with s andt regular. We shall
show that

(8.58) (gT,s) ~ (hT, 1),

and then the lemma will follow. The given equalit(gT, s) = ¥ (hT, t)
means thagsg~—* = hth=. Proposition 4.53 shows thatandt are conju-
gate viaNg(T). Says = wtw. Thenhth~! = gw'twg, andwg=h
centralizes the element Sincet is regular ands has a complexification,
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Corollary 7.106 shows thatg—th is in Ng(T), saywg~th = w’. Then
h = gw~lw’, and we have
(hT,t) = (qwtw'T, 1)
= (qw tw'T, wtw)
~ (qw™'T,1)
~ (gT, w_ltw)
= (gT, ).

This proves (8.58) and the lemma.

Now we look at Proposition 8.19 again. Instead of assuming that
® : M — N is an orientation-preserving diffeomorphism, we assume
for somen that ® is an everywhere regularto-1 map ofM onto N with
dimM = dimN. Then the proof of Proposition 8.19 applies with easy
modifications to give

(8.59) n/ fo= / (f o ®)P*w.
N M
Therefore we have the following result in place of (8.54).

Theorem 8.60 (Weyl Integration Formula). LeT be a maximal torus
of the compact connected Lie gro@ and let invariant measures @
T, andG/ T be normalized so that

ff(x)dx:/ [f f(xt)dt]d(xT)
G /T LJT

for all continuousf onG. Then every Borel functiok > 0 onG satisfies

1
FOOdXx = ———— F(gtg™") d(gT)|ID()*dt,
| Fooax |W(G’T)|/T[/G/T (gtg™) d(@D)] 1D

where DO =[] n-&adi

aeAt

The integration formula in Theorem 8.60 is a starting point for an an-
alytic treatment of parts of representation theory for compact connected
Lie groups. For a given such group for whiéhs analytically integral,
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let us sketch how the theorem leads simultaneously to a construction of an
irreducible representation with given dominant analytically integral highest
weight and to a proof of the Weyl Character Formula.

Define

(8.61) Dt =&®) ] Ad—&.t),

aeAt

so that Theorem 8.60 for any Borel functidnconstant on conjugacy
classes and either nonnegative or integrable reduces to

1
8.62 fX)dx = ————— | f()|D()|?dt
(8.62) /G<x> x |W(G,T>|/T ®IDWO)]

if we takedx, dt, andd(gT) to have total mass one. Fore t* dominant
and analytically integral, define

Y sewe.T) E(S)Esrs) (1)

) = D()

Theny; is invariant undeW (G, T), and Proposition 4.53 shows thai(t)
extends to a functiory, on G constant on conjugacy classes. Applying
(8.62) with f = |x,|%, we see that

(8.63a) / Ix % dx = 1.
G

Applying (8.62) with f = x; ., we see that
(8.63b) / 1) v (X)dx =0 if A #£ M.
G

Let x be the character of an irreducible finite-dimensional representation
of G. OnT, x(t) must be of the formzu &,(t), where theu’s are

the weights repeated according to their multiplicities. Ajg®) is even
underW(G, T). ThenD(t) x (t) is odd undeW (G, T) and is of the form

>, N, (t) with eachn, in Z. Focusing on the dominan®s and seeing that
thev’s orthogonal to a root must drop out, we find that) = >, a, x;.(t)

with a, € Z. By (8.63),

[ roordx =Y laf
G A



552 VIIl. Integration

For an irreducible character Corollary 4.16 shows that the left side is 1. So
onea, is +£1 and the others are 0. Singét) is of the formzu £,(1), we
readily find thata, = +1 for somei. Hence every irreducible character is

of the formy = yx, for somei. This proves the Weyl Character Formula.
Using the Peter—-Weyl Theorem (Theorem 4.20), we readily see that no
L2 function onG that is constant on conjugacy classes can be orthogonal
to all irreducible characters. Then it follows from (8.63b) that every

is an irreducible character. This proves the existence of an irreducible
representation corresponding to a given dominant analytically integral form
as highest weight.

For reductive Lie groups that are not necessarily compact, there is a
formula analogous to Theorem 8.60. This formula is a starting point for
the analytic treatment of representation theory on such groups. We state the
resultas Theorem 8.64 but omitthe proof. The proof makes use of Theorem
7.108 and of other variants of results that we applied in the compact case.

Theorem 8.64 (Harish-Chandra). Le® be a reductive Lie group, let
(hDo, ..., (h)o be a maximal set of nonconjugaiestable Cartan subal-
gebras ofyo, and letH,, ..., H, be the corresponding Cartan subgroups.
Let the invariant measures on eadhandG/H; be normalized so that

/ f(x)dx:/ [/ f(gh)dh]d(gHj) forall f € Ceom(G).
G G/H; b JH

1

Then every Borel functior > 0 onG satisfies
! 1
F(x)dx = 7/ f F(ghg™) d(gH)) [|Dy, (h)|*dh,
/G 2w m) H,.[ o 2N A ]iPw

where
Dy (PP= ] 1L-&h™l.

acA(g.bj)

6. Problems

1. Prove that ifM is an orientedn-dimensional manifold, thet admits a
nowhere-vanishing smooth form.
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2. Prove that the zero locus of a nonzero real analytic function on a cubt in
has Lebesgue measure 0.

3. Let G be the group of all real matrice(sg 2) with a > 0. Show that
a~?dadb s a left Haar measure and traat! da db is a right Haar measure.

4. Let G be a noncompact semisimple Lie group with finite center, and let
M, A, N, be a minimal parabolic subgroup. Prove tk@tM, A, N, has no
nonzeroG invariant Borel measure.

5. Prove that the complement of the set of regular points in a reductive Lie group
G is a closed set of Haar measure 0.

Problems 6-8 concern Haar measuréxin(n, R).
6. Why is Haar measure daL (n, R) two-sided invariant?

7. Regardgl(n, R) as ann?-dimensional vector space ovB: For eachx in
GL(n, R), letLy denote left multiplication by. Prove thatdet , = (detx)".

8. LetE;j be the matrix thatis 1 in thé, j)™ place and is 0 elsewhere. Regard
{Eij} as the standard basis gf(n, R), and introduce Lebesgue measure
accordingly.

(&) Why doegx € gl(n, R) | detx = 0} have Lebesgue measure 0?
(b) Deduce from Problem 7 thedety| " dy is a Haar measure f@L (n, R).

Problems 9-12 concern the functietf’>® for a semisimple Lie groug with
a complexificationG®. Here it is assumed th& = KA,N, is an lwasawa
decomposition oz and that elements decomposexas « (g) expH, (X) n. Let
ap be the Lie algebra oh,, and letv be inaj.

9. Letx be an irreducible finite-dimensional representationGobn V, and
introduce a Hermitian inner product W as in the proof of Theorem 8.49. If
7 has highest restricted weightand if v is in the restricted-weight space for
v, prove that|z (x)v||? = e |y ||2.

10. InG = SL(3,R), let K = SO(3) and letM, A,N,, be upper-triangular.

1 00
Introduce parameters fa¥,~ by writing N, = {ﬁ = <x 1 0) } Let
z y 1
f, — f,, fo — f3, and f; — f3 be the positive restricted roots as usual, and let
pp denote half their sum (namelfy — f3).
(@) Showthae?Hr™ = 14 x2 472 ande? it 2H M = 14 y2 4 (z—xy)?
forne N, .
(b) Deduce thag?»"r®™ = (1+4x*+2%)(1+y*+ (z—xy)?) forA e N, .
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11. InG = SO(n, 1)g, letK = SO(n) x {1} anda, = R(Eyn+1+ Eng11), with

Ei; asin Problem 8. Ih(E1n41 + Ent11) > 0, say thai e a is positive,

and obtainG = K A, N, accordingly.

(@) Using the standard representatiorS@(n, 1)o, computee®H»® for a
suitablex and allx € G.

(b) Deduce a formula fog?» H» ™ from the result of (a). Herg, is half the
sum of the positive restricted roots repeated according to their multiplic-
ities.

12. InG = SU(n, 1), letK = S(U(n) x U(1)), and leta, and positivity be as
in Problem 11. Repeat the two parts of Problem 11 for this group.





