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CHAPTER VIII

Integration

Abstract. An m-dimensional manifoldM that is oriented admits a notion of integration
f �→ ∫

M f ω for any smoothm form ω. Here f can be any continuous real-valued
function of compact support. This notion of integration behaves in a predictable way
under diffeomorphism. Whenω satisfies a positivity condition relative to the orientation,
the integration defines a measure onM . A smooth mapM → N with dim M < dim N
carriesM to a set of measure zero.

For a Lie groupG, a left Haar measure is a nonzero Borel measure invariant under left
translations. Such a measure results from integration ofω if M = G and if the formω is
positive and left invariant. A left Haar measure is unique up to a multiplicative constant.
Left and right Haar measures are related by the modular function, which is given in terms
of the adjoint representation ofG on its Lie algebra. A group is unimodular if its Haar
measure is two-sided invariant. Unimodular Lie groups include those that are abelian or
compact or semisimple or reductive or nilpotent.

When a Lie groupG has the property that almost every element is a product of elements
of two closed subgroupsS andT with compact intersection, then the left Haar measures
on G, S, andT are related. As a consequence, Haar measure on a reductive Lie group has
a decomposition that mirrors the Iwasawa decomposition, and also Haar measure satisfies
various relationships with the Haar measures of parabolic subgroups. These integration
formulas lead to a theorem of Helgason that characterizes and parametrizes irreducible
finite-dimensional representations ofG with a nonzeroK fixed vector.

The Weyl Integration Formula tells how to integrate over a compact connected Lie group
by first integrating over conjugacy classes. It is a starting point for an analytic treatment
of parts of representation theory for such groups. Harish-Chandra generalized the Weyl
Integration Formula to reductive Lie groups that are not necessarily compact. The formula
relies on properties of Cartan subgroups proved in Chapter VII.

1. Differential Forms and Measure Zero

Let M be anm-dimensional manifold, understood to be smooth and to
have a countable base for its topology;M need not be connected. We say
that M is oriented if an atlas of compatible charts(Uα, ϕα) is given with
the property that them-by-m derivative matrices of all coordinate changes

(8.1) ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)
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524 VIII. Integration

have everywhere positive determinant. WhenM is oriented, a compatible
chart(U, ϕ) is said to bepositive relative to(Uα, ϕα) if the derivative matrix
of ϕ ◦ ϕ−1

α has everywhere positive determinant for allα. We always have
the option of adjoining to the given atlas of charts for an orientedM any or
all other compatible charts(U, ϕ) that are positive relative to all(Uα, ϕα),
andM will still be oriented.

On an orientedM as above, there is a well defined notion of integration
involving smoothm forms, which is discussed in Chapter V of Chevalley
[1946], Chapter X of Helgason [1962], and elsewhere. In this section we
shall review the definition and properties, and then we shall apply the theory
in later sections in the context of Lie groups.

We shall make extensive use ofpullbacks of differential forms. If
� : M → N is smooth and ifω is a smoothk form on N , then�∗ω is the
smoothk form on M given by

(8.2) (�∗ω)p(ξ1, . . . , ξk) = ω�(p)(d�p(ξ1), . . . , d�p(ξk))

for p in M and ξ1, . . . , ξk in the tangent spaceTp(M); hered�p is the
differential of� at p. In caseM andN are open subsets ofRm andω is
the smoothm form F(y1, . . . , ym) dy1 ∧ · · · ∧ dym on N , the formula for
�∗ω on M is

(8.3) �∗ω = (F ◦ �)(x1, . . . , xm) det(�′(x1, . . . , xm)) dx1 ∧ · · · ∧ dxm,

where� hasm entriesy1(x1, . . . , xm), . . . , ym(x1, . . . , xm) and where�′

denotes the derivative matrix

(
∂yi

∂xj

)
.

Let ω be a smoothm form on M . The theory of integration provides a
definition of

∫
M f ω for all f in the spaceCcom(M) of continuous functions

of compact support onM . Namely we first assume thatf is compactly
supported in a coordinate neighborhoodUα. The local expression forω in
ϕα(Uα) is

(8.4) (ϕ−1
α )∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm

with Fα : ϕα(Uα) → R smooth. Sincef ◦ ϕ−1
α is compactly supported in

ϕα(Uα), it makes sense to define

(8.5a)
∫

M

f ω =
∫

ϕα(Uα)

( f ◦ϕ−1
α )(x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm .
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If f is compactly supported in an intersectionUα ∩ Uβ , then the integral is
given also by

(8.5b)
∫

M

f ω =
∫

ϕβ(Uβ )

( f ◦ϕ−1
β )(y1, . . . , ym)Fβ(y1, . . . , ym) dy1 · · · dym .

To see that the right sides of (8.5) are equal, we use the change of variables
formula for multiple integrals. The change of variablesy = ϕβ ◦ ϕ−1

α (x)

in (8.1) expressesy1, . . . , ym as functions ofx1, . . . , xm, and (8.5b) there-
fore is

=
∫

ϕβ(Uα∩Uβ )

( f ◦ ϕ−1
β )(y1, . . . , ym)Fβ(y1, . . . , ym) dy1 · · · dym

=
∫

ϕα(Uα∩Uβ )

f ◦ ϕ−1
β ◦ ϕβ ◦ ϕ−1

α (x1, . . . , xm)

× Fβ ◦ ϕβ ◦ ϕ−1
α (x1, . . . , xm)| det(ϕβ ◦ ϕ−1

α )′| dx1 · · · dxm .

The right side here will be equal to the right side of (8.5a) if it is shown
that

(8.6) Fα

?= (Fβ ◦ ϕβ ◦ ϕ−1
α )| det(ϕβ ◦ ϕ−1

α )′|.
Now

Fα dx1 ∧ · · · ∧ dxm = (ϕ−1
α )∗ω from (8.4)

= (ϕβ ◦ ϕ−1
α )∗(ϕ−1

β )∗ω

= (ϕβ ◦ ϕ−1
α )∗(Fβ dy1 ∧ · · · dym)

from (8.4)

= (Fβ ◦ ϕβ ◦ ϕ−1
α ) det(ϕβ ◦ ϕ−1

α )′ dx1 ∧ · · · ∧ dxm

by (8.3).

Thus

(8.7a) Fα = (Fβ ◦ ϕβ ◦ ϕ−1
α ) det(ϕβ ◦ ϕ−1

α )′.

Since det(ϕβ ◦ ϕ−1
α )′ is everywhere positive, (8.6) follows from (8.7a).

Therefore
∫

M f ω is well defined if f is compactly supported inUα ∩ Uβ .
For future reference we rewrite (8.7a) in terms of coordinates as

(8.7b) Fβ(y1, . . . , ym) = Fα(x1, . . . , xm) det

(
∂yi

∂xj

)−1

.
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To define
∫

M f ω for general f in Ccom(M), we make use of a smooth
partition of unity{ψα} such thatψα is compactly supported inUα and only
finitely manyψα are nonvanishing on each compact set. Thenf = ∑

ψα f
is actually a finite sum, and we can define

(8.8)
∫

M

f ω =
∑ ∫

M

(ψα f )ω.

Using the consistency result proved above by means of (8.6), one shows
that this definition is unchanged if the partition of unity is changed, and
then

∫
M f ω is well defined. (For a proof one may consult either of the

above references.)
When ω is fixed, it is apparent from (8.5a) and (8.8) that the map

f �→ ∫
M f ω is a linear functional onCcom(M). We say thatω ispositive rel-

ative to the given atlas if each local expression (8.4) hasFα(x1, . . . , xm) ev-
erywhere positive onϕα(Uα). In this case the linear functionalf �→ ∫

M f ω

is positive in the sense thatf ≥ 0 implies
∫

M f ω ≥ 0. By the Riesz
Representation Theorem there exists a Borel measuredµω on M such that∫

M f ω = ∫
M f (x) duω(x) for all f ∈ Ccom(M). The first two propositions

tell how to create and recognize positiveω’s.

Proposition 8.9. If an m-dimensional manifoldM admits a nowhere-
vanishingm form ω, thenM can be oriented so thatω is positive.

PROOF. Let {(Uα, ϕα)} be an atlas forM . The components of eachUα

are open and coverUα. Thus there is no loss of generality in assuming
that each coordinate neighborhoodUα is connected. For eachUα, let Fα

be the function in (8.4) in the local expression forω in ϕα(Uα). Sinceω is
nowhere vanishing andUα is connected,Fα has constant sign. If the sign is
negative, we redefineϕα by following it with the map(x1, x2, . . . , xm) �→
(−x1, x2, . . . , xm), and thenFα is positive. In this way we can arrange that
all Fα are positive on their domains. Referring to (8.7b), we see that each

function det

(
∂yi

∂xj

)
is positive on its domain. HenceM is oriented. Since

the Fα are all positive,ω is positive relative to this orientation.

Proposition 8.10. If a connected manifoldM is oriented and ifω is a
nowhere-vanishing smoothm form on M , then eitherω is positive or−ω

is positive.

PROOF. At each pointp of M , all the functionsFα representingω locally
as in (8.4) haveFα(ϕα(p)) nonzero of the same sign because of (8.7b), the
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nowhere-vanishing ofω, and the fact thatM is oriented. LetS be the set
where this common sign is positive. Possibly replacingω by −ω, we may
assume thatS is nonempty. We show thatS is open and closed. Letp be inS
and letUα be a coordinate neighborhood containingp. ThenFα(ϕα(p)) >

0 sincep is in S, and henceFα ◦ ϕα is positive in a neighborhood ofp.
HenceS is open. Let{pn} be a sequence inS converging top in M , and
let Uα be a coordinate neighborhood containingp. ThenFα(ϕα(pn)) > 0
and Fα(ϕα(p)) 
= 0. Since limFα(ϕα(pn)) = Fα(ϕα(p)), Fα(ϕα(p)) is
> 0. Thereforep is in S, andS is closed. SinceM is connected andS is
nonempty open closed,S = M .

The above theory allows us to use nowhere-vanishing smoothm forms
to define measures on manifolds. But we can define sets of measure zero
without m forms and orientations. Let{(Uα, ϕα)} be an atlas for them-
dimensional manifoldM . We say that a subsetS of M hasmeasure zero
if ϕα(S ∩ Uα) hasm-dimensional Lebesgue measure 0 for allα.

Suppose thatM is oriented andω is a positivem form. If dµω is the
associated measure and ifω has local expressions as in (8.4), then (8.5a)
shows that

(8.11) dµω(S ∩ Uα) =
∫

ϕα(S∩Uα)

Fα(x1, . . . , xm) dx1 · · · dxm .

If S has measure zero in the sense of the previous paragraph, then the right
side is 0 and hencedµω(S ∩ Uα) = 0. Since a countable collection of
Uα ’s suffices to coverM , dµω(S) = 0. Thus a set a measure zero as in the
previous paragraph hasdµω(S) = 0.

Conversely ifω is a nowhere-vanishing positivem form, dµω(S) = 0
implies thatS has measure zero as above. In fact, the left side of (8.11)
is 0, and the integrand on the right side is> 0 everywhere. Therefore
ϕα(S ∩ Uα) has Lebesgue measure 0.

Let � : M → N be a smooth map betweenm-dimensional manifolds.
A critical point p of � is a point whered�p has rank< m. In this case,
�(p) is called acritical value.

Theorem 8.12 (Sard’s Theorem). If� : M → N is a smooth map
betweenm-dimensional manifolds, then the set of critical values of� has
measure zero inN .

PROOF. About each point ofM , we can choose a compatible chart(U, ϕ)

so that�(U ) is contained in a coordinate neighborhood ofN . Countably
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many of these charts inM cover M , and it is enough to consider one of
them. We may then compose with the coordinate mappings to see that it
is enough to treat the following situation:� is a smooth map defined on a
neighborhood ofC = {x ∈ Rm | 0 ≤ xi ≤ 1 for 1 ≤ i ≤ m} with values
in Rm, and we are to prove that� of the critical points inC has Lebesgue
measure 0 inRm.

For pointsx = (x1, . . . , xm) and x ′ = (x ′
1, . . . , x ′

m) in Rm, the Mean
Value Theorem gives

(8.13) �i(x ′) − �i(x) =
m∑

j=1

∂�i

∂xj
(zi)(x ′

j − xj),

wherezi is a point on the line segment fromx to x ′. Since the
∂�i

∂xj
are

bounded onC , we see as a consequence that

(8.14) ‖�(x ′) − �(x)‖ ≤ a‖x ′ − x‖

with a independent ofx andx ′. Let Lx(x ′) = (Lx,1(x ′), . . . , Lx,m(x ′)) be
the best first-order approximation to� aboutx , namely

(8.15) Lx,i(x ′) = �i(x) +
m∑

j=1

∂�i

∂xj
(x)(x ′

j − xj).

Subtracting (8.15) from (8.13), we obtain

�i(x ′) − Lx,i(x ′) =
m∑

j=1

(
∂�i

∂xj
(zi) − ∂�i

∂xj
(x)

)
(x ′

j − xj).

Since
∂�i

∂xj
is smooth and‖zi − x‖ ≤ ‖x ′ − x‖, we deduce that

(8.16) ‖�(x ′) − Lx(x ′)‖ ≤ b‖x ′ − x‖2

with b independent ofx andx ′.
If x is a critical point, let us bound the image of the set ofx ′ with

‖x ′ − x‖ ≤ c. The determinant of the linear part ofLx is 0, and henceLx

has image in a hyperplane. By (8.16),�(x ′) has distance≤ bc2 from this
hyperplane. In each of them − 1 perpendicular directions, (8.14) shows
that�(x ′) and�(x) are at distance≤ ac from each other. Thus�(x ′) is
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contained in a rectangular solid about�(x) of volume 2m(ac)m−1(bc2) =
2mam−1bcm+1.

We subdivideC into N m smaller cubes of side 1/N . If one of these
smaller cubes contains a critical pointx , then any pointx ′ in the smaller
cube has‖x ′ − x‖ ≤ √

m/N . By the result of the previous paragraph,
� of the cube is contained in a solid of volume 2mam−1b(

√
m/N )m+1.

The union of these solids, taken over all small cubes containing a critical
point, contains the critical values. Since there are at mostN m cubes, the
outer measure of the set of critical values is≤ 2mam−1bm

1
2 (m+1)N −1. This

estimate is valid for allN , and hence the set of critical values has Lebesgue
measure 0.

Corollary 8.17. If � : M → N is a smooth map between manifolds
with dim M < dim N , then the image of� has measure zero inN .

PROOF. Let dimM = k < m = dim N . Without loss of generality we
may assume thatM ⊆ Rk . Sard’s Theorem (Theorem 8.12) applies to the
composition of the projectionRm → Rk followed by�. Every point of the
domain is a critical point, and hence every point of the image is a critical
value. The result follows.

We define alower-dimensional set in N to be any set contained in the
countable union of smooth images of manifoldsM with dim M < dim N .
It follows from Corollary 8.17 that

(8.18) any lower-dimensional set inN has measure zero.

Let M andN be orientedm-dimensional manifolds, and let� : M → N
be a diffeomorphism. We say that� isorientation preserving if, for every
chart(Uα, ϕα) in the atlas forM , the chart(�(Uα), ϕα ◦ �−1) is positive
relative to the atlas forN . In this case the atlas of charts forN can be
taken to be{(�(Uα), ϕα ◦ �−1)}. Then the change of variables formula
for multiple integrals may be expressed using pullbacks as in the following
proposition.

Proposition 8.19. Let M andN be orientedm-dimensional manifolds,
and let� : M → N be an orientation-preserving diffeomorphism. Ifω is
a smoothm form on N , then∫

N

f ω =
∫

M

( f ◦ �)�∗ω

for every f ∈ Ccom(N ).
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PROOF. Let the atlas forM be {(Uα, ϕα)}, and take the atlas forN to
be{(�(Uα), ϕα ◦ �−1)}. It is enough to prove the result forf compactly
supported in a particular�(Uα). For suchf , (8.5) gives

(8.20a)∫
N

f ω =
∫

ϕα◦�−1(�(Uα))

f ◦�◦ϕ−1
α (x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm,

whereFα is the function with

(8.20b) ((ϕα ◦ �−1)−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm .

The function f ◦ � is compactly supported inUα, and (8.5) gives also

(8.20c)∫
M

( f ◦�)�∗ω =
∫

ϕα(Uα)

f ◦�◦ϕ−1
α (x1, . . . , xm)Fα(x1, . . . , xm) dx1 · · · dxm

since

(ϕ−1
α )∗�∗ω = ((ϕα ◦ �−1)−1)∗ω = Fα(x1, . . . , xm) dx1 ∧ · · · ∧ dxm

by (8.20b). The right sides of (8.20a) and (8.20c) are equal, and hence so
are the left sides.

2. Haar Measure for Lie Groups

Let G be a Lie group, and letg be its Lie algebra. Forg ∈ G, let
Lg : G → G andRg : G → G be the left and right translationsLg(x) = gx
and Rg(x) = xg. A smoothk form ω on G is left invariant if L∗

gω = ω

for all g ∈ G, right invariant if R∗
gω = ω for all g ∈ G.

Regardingg as the tangent space at 1 ofG, let X1, . . . , Xm be a basis
of g, and letX̃1, . . . , X̃m be the corresponding left-invariant vector fields
on G. We can define smooth 1 formsω1, . . . , ωm on G by the condition
that (ωi)p((X̃ j)p) = δi j for all p. Thenω1, . . . , ωm are left invariant, and
at each point ofG they form a basis of the dual of the tangent space at
that point. The differential formω = ω1 ∧ · · · ∧ ωm is therefore a smooth
m form that is nowhere vanishing onG. Since pullback commutes with
∧, ω is left invariant. Using Proposition 8.9, we can orientG so thatω is
positive. This proves part of the following theorem.
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Theorem 8.21. If G is a Lie group of dimensionm, thenG admits
a nowhere-vanishing left-invariant smoothm form ω. Then G can be
oriented so thatω is positive, andω defines a nonzero Borel measuredµl

on G that is left invariant in the sense thatdµl(Lg E) = dµl(E) for all
g ∈ G and every Borel setE in G.

PROOF. We have seen thatω exists and thatG may be oriented so
that ω is positive. Letdµl be the associated measure, so that

∫
G f ω =∫

G f (x) dµl(x) for all f ∈ Ccom(G). From Proposition 8.19 and the
equalityL∗

gω = ω, we have

(8.22)
∫

G

f (gx) dµl(x) =
∫

G

f (x) dµl(x)

for all f ∈ Ccom(G). If K is a compact set inG, we can apply (8.22) to allf
that are≥ the characteristic function ofK . Taking the infimum shows that
dµl(Lg−1 K ) = dµl(K ). SinceG has a countable base, the measuredµl

is automatically regular, and hencedµl(Lg−1 E) = dµl(E) for all Borel
setsE .

A nonzero Borel measure onG invariant under left translation is called a
left Haar measure onG. Theorem 8.21 thus says that a left Haar measure
exists.

In the construction of the left-invariantm form ω before Theorem 8.21,
a different basis ofG would have produced a multiple ofω, hence a
multiple of the left Haar measure in Theorem 8.21. If the second basis is
Y1, . . . , Ym and if Yj = ∑m

i=1 ai j Xi , then the multiple is det(ai j)
−1. When

the determinant is positive, we are led to orientG in the same way, otherwise
oppositely. The new left Haar measure is| det(ai j)|−1 times the old. The
next result strengthens this assertion of uniqueness of Haar measure.

Theorem 8.23. If G is a Lie group, then any two left Haar measures on
G are proportional.

PROOF. Let dµ1 anddµ2 be left Haar measures. Then the sumdµ =
dµ1 + dµ2 is a left Haar measure, anddµ(E) = 0 impliesdµ1(E) = 0.
By the Radon–Nikodym Theorem there exists a Borel functionh1 ≥ 0
such thatdµ1 = h1 dµ. Fix g in G. By the left invariance ofdµ1 anddµ,
we have∫

G

f (x)h1(g
−1x) dµ(x) =

∫
G

f (gx)h1(x) dµ(x) =
∫

G

f (gx) dµ1(x)

=
∫

G

f (x) dµ1(x) =
∫

G

f (x)h1(x) dµ(x)
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for every Borel functionf ≥ 0. Therefore the measuresh1(g−1x) dµ(x)

andh1(x) dµ(x) are equal, andh1(g−1x) = h1(x) for almost everyx ∈ G
(with respect todµ). We can regardh1(g−1x) andh1(x) as functions of
(g, x) ∈ G × G, and these are Borel functions since the group operations
are continuous. For eachg, they are equal for almost everyx . By Fubini’s
Theorem they are equal for almost every pair(g, x) (with respect to the
product measure), and then for almost everyx they are equal for almost
everyg. Pick such anx , sayx0. Then it follows thath1(x) = h1(x0) for
almost everyx . Thusdµ1 = h1(x0) dµ. Sodµ1 is a multiple ofdµ, and
so isdµ2.

A right Haar measure on G is a nonzero Borel measure invariant
under right translations. Such a measure may be constructed similarly by
starting from right-invariant 1 forms and creating a nonzero right-invariant
m form. As is true for left Haar measures, any two right Haar measures
are proportional. To simplify the notation, we shall denote particular left
and right Haar measures onG by dl x anddr x , respectively.

An important property of left and right Haar measures is that

(8.24) any nonempty open set has nonzero Haar measure.

In fact, in the case of a left Haar measure if any compact set is given, finitely
many left translates of the given open set together cover the compact set. If
the open set had 0 measure, so would its left translates and so would every
compact set. Then the measure would be identically 0 by regularity.

Another important property is that

(8.25) any lower-dimensional set inG has 0 Haar measure.

In fact, Theorems 8.21 and 8.23 show that left and right Haar measures
are given by nowhere-vanishing differential forms. The sets of measure 0
relative to Haar measure are therefore the same as the sets of measure zero
in the sense of Sard’s Theorem, and (8.25) is a special case of (8.18).

Since left translations onG commute with right translations,dl( · t) is
a left Haar measure for anyt ∈ G. Left Haar measures are proportional,
and we therefore define themodular function 
 : G → R+ of G by

(8.26) dl( · t) = 
(t)−1dl( · ).
Proposition 8.27. If G is a Lie group, then the modular function forG

is given by
(t) = | det Ad(t)|.
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PROOF. If X is ing andX̃ is the corresponding left-invariant vector field,
then we can use Proposition 1.86 to make the computation

(d Rt−1)p(X̃ p)h = X̃ p(h ◦ Rt−1) = d

dr
h(p(expr X)t−1)|r=0

= d

dr
h(pt−1 exprAd(t)X)|r=0 = (Ad(t)X)˜h(pt−1),

and the conclusion is that

(8.28) (d Rt−1)p(X̃ p) = (Ad(t)X) p̃t−1.

Therefore the left-invariantm form ω has

(R∗
t−1ω)p((X̃1)p, . . . , (X̃m)p)

= ωpt−1((d Rt−1)p(X̃1)p, . . . , (d Rt−1)p(X̃m)p)

= ωpt−1((Ad(t)X1) p̃t−1, . . . , (Ad(t)Xm) p̃t−1) by (8.28)

= (det Ad(t))ωpt−1((X̃1)pt−1, . . . , (X̃m)pt−1),

and we obtain

(8.29) R∗
t−1ω = (det Ad(t))ω.

The assumption is thatω is positive, and thereforeR∗
t−1ω or −R∗

t−1ω is
positive according as the sign of det Ad(t). When det Ad(t) is positive,
Proposition 8.19 and (8.29) give

(det Ad(t))
∫

G

f (x) dl x = (det Ad(t))
∫

G

f ω =
∫

G

f R∗
t−1ω

=
∫

G

( f ◦ Rt)ω =
∫

G

f (xt) dl x

=
∫

G

f (x) dl(xt−1) = 
(t)
∫

G

f (x) dl x,

and thus det Ad(t) = 
(t). When det Ad(t) is negative, every step of this
computation is valid except for the first equality of the second line. Since
−R∗

t−1ω is positive, Proposition 8.19 requires a minus sign in its formula
in order to apply to� = Rt−1. Thus− det Ad(t) = 
(t). For all t , we
therefore have
(t) = | det Ad(t)|.
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Corollary 8.30. The modular function
 for G has the properties that

(a) 
 : G → R+ is a smooth homomorphism,
(b) 
(t) = 1 for t in any compact subgroup ofG and in any semisimple

analytic subgroup ofG,
(c) dl(x−1) and
(x) dl x are right Haar measures and are equal,
(d) dr(x−1) and
(x)−1 dr x are left Haar measures and are equal,
(e) dr(t · ) = 
(t) dr( · ) for any right Haar measure onG.

PROOF. Conclusion (a) is immediate from Proposition 8.27. The image
under
 of any compact subgroup ofG is a compact subgroup ofR+ and
hence is{1}. This proves the first half of (b), and the second half follows
from Lemma 4.28.

In (c) put dµ(x) = 
(x) dl x . This is a Borel measure since
 is
continuous (by (a)). Since
 is a homomorphism, (8.26) gives∫

G

f (xt) dµ(x) =
∫

G

f (xt)
(x) dl x =
∫

G

f (x)
(xt−1) dl(xt−1)

=
∫

G

f (x)
(x)
(t−1)
(t) dl x

=
∫

G

f (x)
(x) dl x =
∫

G

f (x) dµ(x).

Hencedµ(x) is a right Haar measure. It is clear thatdl(x−1) is a right
Haar measure, and thus Theorem 8.23 for right Haar measures implies that
dl(x−1) = c
(x) dl x for some constantc > 0. Changingx to x−1 in this
formula, we obtain

dl x = c
(x−1) dl(x−1) = c2
(x−1)
(x) dl x = c2 dl x .

Hencec = 1, and (c) is proved.
For (d) and (e) there is no loss of generality in assuming thatdr x =

dl(x−1) = 
(x) dl x , in view of (c). Conclusion (d) is immediate from this
identity if we replacex by x−1. For (e) we have∫

G

f (x) dr(t x) =
∫

G

f (t−1x) dr x =
∫

G

f (t−1x)
(x) dl x

=
∫

G

f (x)
(t x) dl x

= 
(t)
∫

G

f (x)
(x) dl x = 
(t)
∫

G

f (x) dr x,

and we conclude thatdr(t · ) = 
(t) dr( · ).
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The Lie groupG is said to beunimodular if every left Haar measure is
a right Haar measure (and vice versa). In this case we can speak ofHaar
measure onG. In view of (8.26),G is unimodular if and only if
(t) = 1
for all t ∈ G.

Corollary 8.31. The following kinds of Lie groups are always unimod-
ular:

(a) abelian Lie groups,
(b) compact Lie groups,
(c) semisimple Lie groups,
(d) reductive Lie groups,
(e) nilpotent Lie groups.

PROOF. Conclusion (a) is trivial, and (b) and (c) follow from Corollary
8.30b. For (d) let(G, K , θ, B) be reductive. By Proposition 7.27,G ∼=
0G × Zvec. A left Haar measure forG may be obtained as the product of
the left Haar measures of the factors, and (a) shows thatZvec is unimodular.
Hence it is enough to consider0G, which is reductive by Proposition 7.27c.
The modular function for0G must be 1 onK by Corollary 8.30b, andK
meets every component of0G. Thus it is enough to prove that0G0 is
unimodular. This group is generated by its center and its semisimple part.
The center is compact by Proposition 7.27, and the modular function must
be 1 there, by Corollary 8.30b. Again by Corollary 8.30b, the modular
function must be 1 on the semisimple part. Then (d) follows.

For (e) we appeal to Proposition 8.27. It is enough to prove that
det Ad(x) = 1 for all x in G. By Theorem 1.127 the exponential map
carries the Lie algebragontoG. If x = expX , then det Ad(x) = deteadX =
eTr adX . Sinceg is nilpotent, (1.31) shows that adX is a nilpotent linear
transformation. Therefore 0 is the only generalized eigenvalue of adX ,
and Tr adX = 0. This proves (e).

3. Decompositions of Haar Measure

In this section we letG be a Lie group, and we letdl x anddr x be left
and right Haar measures for it.

Theorem 8.32. Let G be a Lie group, and letS and T be closed
subgroups such thatS ∩ T is compact, multiplicationS × T → G is
an open map, and the set of productsST exhaustsG except possibly for a
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set of Haar measure 0. Let
T and
G denote the modular functions ofT
andG. Then the left Haar measures onG, S, andT can be normalized so
that ∫

G

f (x) dl x =
∫

S×T

f (st)

T (t)


G(t)
dls dl t

for all Borel functionsf ≥ 0 onG.

PROOF. Let � ⊆ G be the set of productsST , and letK = S ∩ T . The
groupS × T acts continuously on� by (s, t)ω = sωt−1, and the isotropy
subgroup at 1 is diagK . Thus the map(s, t) �→ st−1 descends to a map
(S×T )/diagK → �. This map is a homeomorphism since multiplication
S × T → G is an open map.

Hence any Borel measure on� can be reinterpreted as a Borel measure
on (S × T )/diagK . We apply this observation to the restriction of a left
Haar measuredl x for G from G to �, obtaining a Borel measuredµ on
(S × T )/diagK . On�, we have

dl(Ls0 Rt−1
0

x) = 
G(t0) dl x

by (8.26), and the action unwinds to

(8.33) dµ(L (s0,t0)x) = 
G(t0) dµ(x)

on (S × T )/diagK . Define a measuredµ̃(s, t) on S × T by∫
S×T

f (s, t) dµ̃(s, t) =
∫

(S×T )/diagK

[ ∫
K

f (sk, tk) dk
]

dµ((s, t)K ),

wheredk is a Haar measure onK normalized to have total mass 1. From
the formula (8.33) it follows that

dµ̃(s0s, t0t) = 
G(t0) dµ̃(s, t).

The same proof as for Theorem 8.23 shows that any two Borel measures
on S × T with this property are proportional, and
G(t) dls dl t is such a
measure. Therefore

dµ̃(s, t) = 
G(t) dls dl t

for a suitable normalization ofdls dl t .
The resulting formula is∫

�

f (x) dl x =
∫

S×T

f (st−1)
G(t) dls dl t
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for all Borel functionsf ≥ 0 on�. On the right side the change of variables
t �→ t−1 makes the right side become∫

S×T

f (st)
G(t)−1 dls 
T (t) dlt,

according to Corollary 8.30c, and we can replace� by G on the left side
since the complement of� in G has measure 0. This completes the proof.

If H is a closed subgroup ofG, then we can ask whetherG/H has
a nonzeroG invariant Borel measure. Theorem 8.36 below will give a
necessary and sufficient condition for this existence, but we need some
preparation. Fix a left Haar measuredlh for H . If f is in Ccom(G), define

(8.34a) f #(g) =
∫

H

f (gh) dlh.

This function is invariant under right translation byH , and we can define

(8.34b) f ##(gH) = f #(g).

The function f ## has compact support onG/H .

Lemma 8.35. The map f �→ f ## carriesCcom(G) onto Ccom(G/H),
and a nonnegative member ofCcom(G/H) has a nonnegative preimage in
Ccom(G).

PROOF. Let π : G → G/H be the quotient map. LetF ∈ Ccom(G/H)

be given, and letK be a compact set inG/H with F = 0 off K . We first
produce a compact set̃K in G with π(K̃ ) = K . For each coset inK , select
an inverse imagex and letNx be a compact neighborhood ofx in G. Since
π is open,π of the interior ofNx is open. These open sets coverK , and a
finite number of them suffices. Then we can takeK̃ to be the intersection
of π−1(K ) with the union of the finitely manyNx ’s.

Next let K H be a compact neighborhood of 1 inH . By (8.24) the
left Haar measure onH is positive onK H . Let K̃ ′ be the compact set
K̃ ′ = K̃ K H , so thatπ(K̃ ′) = π(K̃ ) = K . Choosef1 ∈ Ccom(G) with
f1 ≥ 0 everywhere and withf1 = 1 onK̃ ′. If g is in K̃ ′, then

∫
H f1(gh) dlh

is ≥ the H measure ofK H , and hencef ##
1 is > 0 on K . Define

f (g) =
 f1(g)

F(π(g))

f ##
1 (π(g))

if π(g) ∈ K

0 otherwise.
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Then f ## is F on K and is 0 offK , so that f ## = F everywhere.
Certainly f has compact support. To see thatf is continuous, it suffices

to check that the two formulas forf (g) fit together continuously at pointsg
of π−1(K ). It is enough to check points wheref (g) 
= 0. Saygn → g. We
must haveF(π(g)) 
= 0. SinceF is continuous,F(π(gn)) 
= 0 eventually.
Thus for all n sufficiently large, f (gn) is given by the first of the two
formulas. Thusf is continuous.

Theorem 8.36. Let G be a Lie group, letH be a closed subgroup, and
let 
G and
H be the respective modular functions. Then a necessary and
sufficient condition forG/H to have a nonzeroG invariant Borel measure
is that the restriction toH of 
G equal
H . In this case such a measure
dµ(gH) is unique up to a scalar, and it can be normalized so that

(8.37)
∫

G

f (g) dl g =
∫

G/H

[ ∫
H

f (gh) dlh
]

dµ(gH)

for all f ∈ Ccom(G).

PROOF. Let dµ(gH) be such a measure. In the notation of (8.34), we
can define a measuredµ̃(g) on G by∫

G

f (g) dµ̃(g) =
∫

G/H

f ##(gH) dµ(gH).

Since f �→ f ## commutes with left translation byG, dµ̃ is a left Haar
measure onG. By Theorem 8.23,dµ̃ is unique up to a scalar; hence
dµ(gH) is unique up to a scalar.

Under the assumption thatG/H has a nonzero invariant Borel measure,
we have just seen in essence that we can normalize the measure so that (8.37)
holds. If we replacef in (8.37) by f ( · h0), then the left side is multiplied
by
G(h0), and the right side is multiplied by
H (h0). Hence
G |H = 
H

is necessary for existence.
Let us prove that this condition is sufficient for existence. Givenh in

Ccom(G/H), we can choosef in Ccom(G) by Lemma 8.35 so thatf ## = h.
Then we defineL(h) = ∫

G f (g) dl g. If L is well defined, then it is linear,
Lemma 8.35 shows that it is positive, andL certainly is the same on a
function as on itsG translates. ThereforeL defines aG invariant Borel
measuredµ(gH) on G/H such that (8.37) holds.

Thus all we need to do is see thatL is well defined if
G |H = 
H . We
are thus to prove that iff ∈ Ccom(G) has f # = 0, then

∫
G f (g) dl g = 0.
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Let ψ be inCcom(G). Then we have

0 =
∫

G

ψ(g) f #(g) dl g

=
∫

G

[ ∫
H

ψ(g) f (gh) dlh
]

dl g

=
∫

H

[ ∫
G

ψ(g) f (gh) dl g
]

dlh

=
∫

H

[ ∫
G

ψ(gh−1) f (g) dl g
]

G(h) dlh by (8.26)

=
∫

G

f (g)
[ ∫

H

ψ(gh−1)
G(h) dlh
]

dl g

=
∫

G

f (g)
[ ∫

H

ψ(gh)
G(h)−1
H (h) dlh
]

dl g by Corollary 8.30c

=
∫

G

f (g)ψ#(g) dl g since
G |H = 
H .

By Lemma 8.35 we can chooseψ ∈ Ccom(G) so thatψ## = 1 on the
projection toG/H of the support off . Then the right side is

∫
G f (g) dl g,

and the conclusion is that this is 0. ThusL is well defined, and existence
is proved.

4. Application to Reductive Lie Groups

Let (G, K , θ, B) be a reductive Lie group. We shall use the notation of
Chapter VII, but we drop the subscripts 0 from real Lie algebras since we
shall have relatively few occurrences of their complexifications. Thus, for
example, the Cartan decomposition of the Lie algebra ofG will be written
g = k ⊕ p.

In this section we use Theorem 8.32 and Proposition 8.27 to give de-
compositions of Haar measures that mirror group decompositions in Chap-
ter VII. The groupG itself is unimodular by Corollary 8.31d, and we write
dx for a two-sided Haar measure. We shall be interested in parabolic
subgroupsM AN , and we need to compute the corresponding modular
function that is given by Proposition 8.27 as


M AN (man) = | det Adm+a+n(man)|.
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For the elementm, | det Adm+a+n(m)| = 1 by Corollary 8.30b. The element
a acts as 1 onm anda, and hence det Adm+a+n(a) = det Adn(a). On ana

root spacegλ, a acts byeλ loga, and thus det Adn(a) = e2ρA loga, where 2ρA

is the sum of all the positivea roots with multiplicities counted. Finally
det Adm+a+n(n) = 1 for the same reasons as in the proof of Corollary
8.31e. Therefore

(8.38) 
M AN (man) = | det Adm+a+n(man)| = e2ρA loga.

We can then apply Theorem 8.32 and Corollary 8.31 to obtain

(8.39a) dl(man) = 
N (n)


M AN (n)
dl(ma) dln = dm da dn.

By (8.38) and Corollary 8.30c,

(8.39b) dr(man) = e2ρA loga dm da dn.

Similarly for the subgroupAN of M AN , we have

(8.40) 
AN (an) = e2ρA loga

and

(8.41)
dl(an) = da dn

dr(an) = e2ρA loga da dn.

Now we shall apply Theorem 8.32 toG itself. Combining Corollary
8.30c with the fact thatG is unimodular, we can write

(8.42) dx = dls dr t

whenever the hypotheses in the theorem forS andT are satisfied.

Proposition 8.43. If G = K ApNp is an Iwasawa decomposition of the
reductive Lie groupG, then the Haar measures ofG, ApNp, Ap, andNp

can be normalized so that

dx = dk dr(an) = e2ρAp loga dk da dn.

If the Iwasawa decomposition is written instead asG = ApNpK , then the
decomposition of measures is

dx = dl(an) dk = da dn dk.

PROOF. If G is written asG = K ApNp, then we useS = K and
T = ApNp in Theorem 8.32. The hypotheses are satisfied since Proposition
7.31 shows thatS × T → G is a diffeomorphism. The second equality
follows from (8.41). The argument whenG = ApNpK is similar.
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Proposition 8.44. If G is a reductive Lie group andM AN is a parabolic
subgroup, so thatG = K M AN , then the Haar measures ofG, M AN , M ,
A, andN can be normalized so that

dx = dk dr(man) = e2ρA logadk dm da dn.

PROOF. We useS = K and T = M AN in Theorem 8.32. Here
S ∩ T = K ∩ M is compact, and we know thatG = K M AN . Since
ApNp ⊆ M AN andK × ApNp → G is open,K × M AN → G is open.
Then Theorem 8.32 gives the first equality, and the second equality follows
from (8.39b).

Proposition 8.45. If M AN is a parabolic subgroup of the reductive
Lie groupG, thenN −M AN is open inG and its complement is a lower-
dimensional set, hence a set of measure 0. The Haar measures ofG, M AN ,
N −, M , A, andN can be normalized so that

dx = dn̄ dr(man) = e2ρA logadn̄ dm da dn (n̄ ∈ N −).

PROOF. We useS = N − and T = M AN in Theorem 8.32. Here
S ∩ T = {1} by Lemma 7.64, andS × T → G is everywhere regular
(hence open) by Lemma 6.44. We need to see that the complement of
N −M AN is lower dimensional and has measure 0. LetMp ApNp ⊆ M AN
be a minimal parabolic subgroup. In the Bruhat decomposition ofG as in
Theorem 7.40, a double coset ofMp ApNp is of the form

Mp ApNpwMp ApNp = NpwMp ApNp = w(w−1Npw)Mp ApNp,

wherew is a representative inNK (ap) of a member ofNK (ap)/Mp. The
double coset is thus a translate of(w−1Npw)Mp ApNp. To compute the
dimension of this set, we observe that

dim Ad(w)−1
np + dim(mp ⊕ ap ⊕ np) = dimg.

Now Ad(w)−1np has 0 intersection withmp ⊕ ap ⊕ np if and only if
Ad(w)−1np = θnp, which happens for exactly one cosetwMp by Propo-
sition 7.32 and Theorem 2.63. This case corresponds to the open set
N −

p
Mp ApNp. In the other cases, there is a closed positive-dimensional

subgroupRw of w−1Npw such that the smooth map

w−1Npw × Mp ApNp → (w−1Npw)Mp ApNp



542 VIII. Integration

given by(x, y) �→ xy−1 factors to a smooth map

(w−1Npw × Mp ApNp)/diagRw → (w−1Npw)Mp ApNp.

Hence in these cases(w−1Npw)Mp ApNp is the smooth image of a manifold
of dimension< dimG and is lower dimensional inG.

This proves forMp ApNp that N −
p

Mp ApNp is open with complement of
lower dimension. By (8.25) the complement is of Haar measure 0. Now
let us considerN −M AN . SinceMp ApNp ⊆ M AN , we have

N −
p

Mp ApNp = (Mp ApN −
p
)Mp ApNp

⊆ (M AN −)M AN = N −M AN .

Thus the open setN −M AN has complement of lower dimension and hence
of Haar measure 0.

Theorem 8.32 is therefore applicable, and we obtaindx = dn̄ dr(man).
The equalitydn̄ dr(man) = e2ρA loga dn̄ dm da dn follows from (8.39b).

Proposition 8.46. Let M AN be a parabolic subgroup of the reductive
Lie groupG, and letρA be as in (8.38). Forg in G, decomposeg according
to G = K M AN as

g = κ(g)µ(g) expH(g) n.

Then Haar measures, when suitably normalized, satisfy∫
K

f (k) dk =
∫

N−
f (κ(n̄))e−2ρA H(n̄) dn̄

for all continuous functions onK that are right invariant underK ∩ M .

REMARK. The expressionsκ(g) andµ(g) are not uniquely defined, but
H(g) is uniquely defined, as a consequence of the Iwasawa decomposition,
and f (κ(n̄)) will be seen to be well defined because of the assumed right
invariance underK ∩ M .

PROOF. Given f continuous onK and right invariant underK ∩ M ,
extend f to a functionF on G by

(8.47) F(kman) = e−2ρA loga f (k).

The right invariance off under K ∩ M makesF well defined since
K ∩ M AN = K ∩ M . Fix ϕ ≥ 0 in Ccom(M AN ) with∫

M AN

ϕ(man) dl(man) = 1;
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by averaging overK ∩ M , we may assume thatϕ is left invariant under
K ∩ M . Extendϕ to G by the definitionϕ(kman) = ϕ(man); the left
invariance ofϕ underK ∩ M makesϕ well defined. Then∫

M AN

ϕ(xman) dl(man) = 1 for all x ∈ G.

The left side of the formula in the conclusion is∫
K

f (k) dk

=
∫

K

f (k)
[ ∫

M AN

ϕ(kman) dl(man)
]

dk

=
∫

K×M AN

f (k)ϕ(kman)e−2ρA loga dk dr(man) by (8.39)

=
∫

K×M AN

F(kman)ϕ(kman) dk dr(man) by (8.47)

=
∫

G

F(x)ϕ(x) dx by Proposition 8.44,

while the right side of the formula is∫
N−

f (κ(n̄))e−2ρA H(n̄) dn̄

=
∫

N−
F(n̄)

[ ∫
M AN

ϕ(n̄man) dl(man)
]

dn̄ by (8.47)

=
∫

N−×M AN

F(n̄)e−2ρA logaϕ(n̄man) dn̄ dr(man) by (8.39)

=
∫

N−×M AN

F(n̄man)ϕ(n̄man) dn̄ dr(man) by (8.47)

=
∫

G

F(x)ϕ(x) dx by Proposition 8.45.

The proposition follows.

For an illustration of the use of Proposition 8.46, we shall prove a theorem
of Helgason that has important applications in the harmonic analysis of
G/K . We suppose that the reductive groupG is semisimple and has a
complexificationGC. We fix an Iwasawa decompositionG = K ApNp.



544 VIII. Integration

Let tp be a maximal abelian subspace ofmp, so thattp ⊕ ap is a maximally
noncompactθ stable Cartan subalgebra ofg. Representations ofG yield
representations ofg, hence complex-linear representations ofgC. Then
the theory of Chapter V is applicable, and we use the complexification of
tp ⊕ ap as Cartan subalgebra for that purpose. Let
 and� be the sets
of roots and restricted roots, respectively, and let�+ be the set of positive
restricted roots relative tonp.

Roots and weights are real onitp⊕ap, and we introduce an ordering such
that the nonzero restriction toap of a member of
+ is a member of�+.
By arestricted weight of a finite-dimensional representation, we mean the
restriction toap of a weight. We introduce in an obvious fashion the notions
of restricted-weight spaces andrestricted-weight vectors. Because of
our choice of ordering, the restriction toap of the highest weight of a
finite-dimensional representation is the highest restricted weight.

Lemma 8.48. Let the reductive Lie groupG be semisimple. Ifπ is
an irreducible complex-linear representation ofgC, thenmp acts in each
restricted weight space ofπ , and the action bymp is irreducible in the
highest restricted-weight space.

PROOF. The first conclusion follows at once sincemp commutes withap.
Let v 
= 0 be a highest restricted-weight vector, say with weightν. Let V
be the space forπ , and letVν be the restricted-weight space corresponding
to ν. We writeg = θnp ⊕ mp ⊕ ap ⊕ np, express members ofU (gC) in the
corresponding basis given by the Poincar´e–Birkhoff–Witt Theorem, and
apply an element tov. Sincenp pushes restricted weights up andap acts by
scalars inVν andθnp pushes weights down, we see from the irreducibility
of π on V thatU (mC

p
)v = Vν . Sincev is an arbitrary nonzero member of

Vν , mp acts irreducibly onVν .

Theorem 8.49 (Helgason). Let the reductive Lie groupG be semisimple
and have a complexificationGC. For an irreducible finite-dimensional
representationπ of G, the following statements are equivalent:

(a) π has a nonzeroK fixed vector,
(b) Mp acts by the 1-dimensional trivial representation in the highest

restricted-weight space ofπ ,
(c) the highest weight̃ν of π vanishes ontp, and the restrictionν of ν̃

toap is such that〈ν, β〉/|β|2 is an integer for every restricted rootβ.
Conversely any dominantν ∈ a∗

p
such that〈ν, β〉/|β|2 is an integer for

every restricted rootβ is the highest restricted weight of some irreducible
finite-dimensionalπ with a nonzeroK fixed vector.
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PROOF. For the proofs that (a) through (c) are equivalent, there is no
loss in generality in assuming thatGC is simply connected, as we may
otherwise take a simply connected cover ofGC and replaceG by the analytic
subgroup of this cover with Lie algebrag. With GC simply connected, the
representationπ of G yields a representation ofg = k ⊕ p, then ofgC,
and then of the compact formu = k ⊕ ip. SinceGC is simply connected,
so is the analytic subgroupU with Lie algebrau (Theorem 6.31). The
representationπ therefore lifts fromu to U . By Proposition 4.6 we can
introduce a Hermitian inner product on the representation space so thatU
acts by unitary operators. Then it follows thatK acts by unitary operators
and itp ⊕ ap acts by Hermitian operators. In particular, distinct weight
spaces are orthogonal, and so are distinct restricted-weight spaces.

(a) ⇒ (b). Let φν be a nonzero highest restricted-weight vector, and
let φK be a nonzeroK fixed vector. Sincenp pushes restricted weights
up and since the exponential map carriesnp onto Np (Theorem 1.127),
π(n)φν = φν for n ∈ Np. Therefore

(π(kan)φν, φK ) = (π(a)φν, π(k)−1φK ) = eν loga(φν, φK ).

By the irreducibility ofπ and the fact thatG = K ApNp, the left side cannot
be identically 0, and hence(φν, φK ) on the right side is nonzero. The inner
product withφK is then an everywhere-nonzero linear functional on the
highest restricted-weight space, and the highest restricted-weight space
must be 1-dimensional. Ifφν is a nonzero vector of norm 1 in this space,
then(φK , φν)φν is the orthogonal projection ofφK into this space. Since
Mp commutes withap, the action byMp commutes with this projection.
But Mp acts trivially onφK sinceMp ⊆ K , and thereforeMp acts trivially
onφν .

(b) ⇒ (a). Letv 
= 0 be in the highest restricted-weight space, with
restricted weightν. Then

∫
K π(k)v dk is obviously fixed byK , and the

problem is to see that it is not 0. Sincev is assumed to be fixed byMp,
k �→ π(k)v is a function onK right invariant underMp. By Proposition
8.46,∫

K

π(k)v dk =
∫

N−
p

π(κ(n̄))ve−2ρAp H(n̄) dn̄ =
∫

N−
p

π(n̄)ve(−ν−2ρAp )H(n̄) dn̄.

Heree(−ν−2ρAp )H(n̄) is everywhere positive sinceν is real, and(π(n̄)v, v) =
|v|2 since the exponential map carriesθnp onto N −

p
, θnp lowers restricted

weights, and the different restricted-weight spaces are orthogonal. There-

fore
( ∫

K π(k)v dk, v
)

is positive, and
∫

K π(k)v dk is not 0.
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(b) ⇒ (c). Since(Mp)0 acts trivially, it follows immediately that̃ν
vanishes ontp. For each restricted rootβ, defineγβ = exp 2π i |β|−2Hβ as
in (7.57). This element is inMp by (7.58). SinceGC is simply connected,
π extends to a holomorphic representation ofGC. Then we can compute
π(γβ) on a vectorv of restricted weightν as

(8.50) π(γβ)v = π(exp(2π i |β|−2Hβ))v = e2π i〈ν,β〉/|β|2v.

Since the left side equalsv by (b),〈ν, β〉/|β|2 must be an integer.
(c) ⇒ (b). The action of(Mp)0 on the highest restricted-weight space is

irreducible by Lemma 8.48. Sincẽν vanishes ontp, the highest weight of
this representation of(Mp)0 is 0. Thus(Mp)0 acts trivially, and the space
is 1-dimensional. The calculation (8.50), in the presence of (c), shows that
eachγβ acts trivially. Since theγβ that come from real roots generateF
(by Theorem 7.55) and sinceMp = (F)(Mp)0 (by Corollary 7.52),Mp acts
trivially.

We are left with the converse statement. Supposeν ∈ a∗
p

is such that
〈ν, β〉/|β|2 is an integer≥ 0 for all β ∈ �+. Defineν̃ to beν on ap and
0 on tp. We are to prove that̃ν is the highest weight of an irreducible
finite-dimensional representation ofG with a K fixed vector. The form
ν̃ is dominant. If it is algebraically integral, then Theorem 5.5 gives us a
complex-linear representationπ of gC with highest weight̃ν. Some finite
covering group̃G of G will have a simply connected complexification, and
thenπ lifts to G̃. By the implication (c)⇒ (a),π has a nonzerõK fixed
vector. Since the kernel of̃G → G is in K̃ and since such elements must
then act trivially,π descends to a representation ofG with a nonzeroK
fixed vector. In other words, it is enough to prove thatν̃ is algebraically
integral.

Let α be a root, and letβ be its restriction toap. Since〈̃ν, α〉 = 〈ν, β〉,
we may assume thatβ 
= 0. Let |α|2 = C |β|2. Then

2〈̃ν, α〉
|α|2 = 2〈ν, β〉

C |β|2 ,

and it is enough to show that either

(8.51a) 2/C is an integer

or

(8.51b) |2/C | = 1
2 and 〈ν, β〉/|β|2 is even.
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Write α = β + ε with ε ∈ it∗
p
. Thenθα is the rootθα = −β + ε. Thus

−θα = β − ε is a root with the same length asα.
If α and−θα are multiples of one another, thenε = 0 andC = 1, so

that 2/C is an integer. Ifα and−θα are not multiples of one another, then
the Schwarz inequality gives

(8.52)

(−1 or 0 or + 1) = 2〈α, −θα〉
|α|2 = 2〈β + ε, β − ε〉

|α|2

= 2(|β|2 − |ε|2)
|α|2 = 2(2|β|2 − |α|2)

|α|2 = 4

C
− 2.

If the left side of (8.52) is−1, then 2/C = 1
2. Since the left side of (8.52)

is −1, α − θα = 2β is a root, hence also a restricted root. By assumption,
〈ν, 2β〉/|2β|2 is an integer; hence〈ν, β〉/|β|2 is even. Thus (8.51b) holds.
If the left side of (8.52) is 0, then 2/C = 1 and (8.51a) holds.

To complete the proof, we show that the left side of (8.52) cannot be+1.
If it is +1, thenα − (−θα) = 2ε is a root vanishing onap, and hence any
root vector for it is inmC

p
⊆ kC. However this root is also equal toα + θα,

and [Xα, θ Xα] must be a root vector. Sinceθ [ Xα, θ Xα] = −[ Xα, θ Xα],
[ Xα, θ Xα] is in pC. Thus the root vector is inkC ∩ pC = 0, and we have a
contradiction.

5. Weyl Integration Formula

The original Weyl Integration Formula tells how to integrate over a
compact connected Lie group by first integrating over each conjugacy class
and then integrating over the set of conjugacy classes. LetG be a compact
connected Lie group, letT be a maximal torus, and letg0 and t0 be the
respective Lie algebras. Letm = dimG andl = dim T . As in §VII.8, an
elementg of G is regular if the eigenspace of Ad(g) for eigenvalue 1 has
dimensionl. Let G ′ andT ′ be the sets of regular elements inG andT ;
these are open subsets ofG andT , respectively.

Theorem 4.36 implies that the smooth mapG × T → G given by
ψ(g, t) = gtg−1 is ontoG. Fix g ∈ G andt ∈ T . If we identify tangent
spaces atg, t , andgtg−1 with g0, t0, andg0 by left translation, then (4.45)
computes the differential ofψ at (g, t) as

dψ(X, H) = Ad(g)((Ad(t−1) − 1)X + H) for X ∈ g0, H ∈ t0.
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The mapψ descends toG/T × T → G, and we call the descended map
ψ also. We may identify the tangent space ofG/T with an orthogonal
complementt⊥0 to t0 in g0 (relative to an invariant inner product). The
spacet⊥0 is invariant under Ad(t−1) − 1, and we can write

dψ(X, H) = Ad(g)((Ad(t−1) − 1)X + H) for X ∈ t
⊥
0 , H ∈ t0.

Now dψ at (g, t) is essentially a map ofg0 to itself, with matrix

(dψ)(g,t) = Ad(g)

t0 t⊥0(
1 0
0 Ad(t−1) − 1

)
.

Since det Ad(g) = 1 by compactness and connectedness ofG,

(8.53) det(dψ)(g,t) = det((Ad(t−1) − 1)|t⊥
0
).

We can think of building a left-invariant(m − l) form on G/T from the
duals of theX ’s in t⊥0 and a left-invariantl form on T from the duals of
the H ’s in t0. We may think of a left-invariantm form onG as the wedge
of these forms. Referring to Proposition 8.19 and (8.7b) and taking (8.53)
into account, we at first expect an integral formula

(8.54a)∫
G

f (x) dx
?=

∫
T

[ ∫
G/T

f (gtg−1) d(gT )
] ∣∣ det(Ad(t−1) − 1)|t⊥

0

∣∣ dt

if the measures are normalized so that

(8.54b)
∫

G

f (x) dx =
∫

G/T

[ ∫
T

f (xt) dt
]

d(xT ).

But Proposition 8.19 fails to be applicable in two ways. One is that the
onto mapψ : G/T × T → G has differential of determinant 0 at some
points, and the other is thatψ is not one-one even if we exclude points of
the domain where the differential has determinant 0.

From (8.53) we can exclude the points where the differential has deter-
minant 0 if we restrictψ to a mapψ : G/T × T ′ → G ′. To understand
T ′, consider Ad(t−1)−1 as a linear map of the complexificationg to itself.
If 
 = 
(g, t) is the set of roots, then Ad(t−1) − 1 is diagonable with
eigenvalues 0 with multiplicityl and alsoξα(t−1) − 1 with multiplicity 1
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each. Hence
∣∣ det(Ad(t−1) − 1)|t⊥

0

∣∣ = ∣∣ ∏
α∈
 (ξα(t−1) − 1)

∣∣. If we fix a

positive system
+ and recognize thatξα(t−1) = ξ−α(t−1), then we see that

(8.55)
∣∣ det(Ad(t−1) − 1)|t⊥

0

∣∣ =
∏

α∈
+
|ξα(t

−1) − 1|2.

Puttingt = expi H with i H ∈ t0, we haveξα(t−1) = e−iα(H). Thus the set
in the torus where (8.55) is 0 is a countable union of lower-dimensional
sets and is a lower-dimensional set. By (8.25) the singular set inT has
dt measure 0. The singular set inG is the smooth image of the product
of G/T and the singular set inT , hence is lower dimensional and is of
measure 0 fordµ(gT ). Therefore we may disregard the singular set and
considerψ as a mapG/T × T ′ → G ′.

The mapψ : G/T × T ′ → G ′ is not, however, one-one. Ifw is in
NG(T ), then

(8.56) ψ(gwT, w−1tw) = ψ(gT, t).

SincegwT 
= gT whenw is not in ZG(T ) = T , each member ofG ′ has
at least|W (G, T )| preimages.

Lemma 8.57. Each member ofG ′ has exactly|W (G, T )| preimages
under the mapψ : G/T × T ′ → G ′.

PROOF. Let us call two members ofG/T × T ′ equivalent, written∼, if
they are related by a memberw of NG(T ) as in (8.56), namely

(gwT, w−1tw) ∼ (gT, t).

Each equivalence class has exactly|W (G, T )| members.
Now suppose thatψ(gT, s) = ψ(hT, t) with s andt regular. We shall

show that

(8.58) (gT, s) ∼ (hT, t),

and then the lemma will follow. The given equalityψ(gT, s) = ψ(hT, t)
means thatgsg−1 = hth−1. Proposition 4.53 shows thats andt are conju-
gate viaNG(T ). Says = w−1tw. Thenhth−1 = gw−1twg−1, andwg−1h
centralizes the elementt . Sincet is regular andG has a complexification,
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Corollary 7.106 shows thatwg−1h is in NG(T ), saywg−1h = w′. Then
h = gw−1w′, and we have

(hT, t) = (gw−1w′T, t)

= (gw−1w′T, w′−1tw′)

∼ (gw−1T, t)

∼ (gT, w−1tw)

= (gT, s).

This proves (8.58) and the lemma.

Now we look at Proposition 8.19 again. Instead of assuming that
� : M → N is an orientation-preserving diffeomorphism, we assume
for somen that� is an everywhere regularn-to-1 map ofM onto N with
dim M = dim N . Then the proof of Proposition 8.19 applies with easy
modifications to give

(8.59) n
∫

N

f ω =
∫

M

( f ◦ �)�∗ω.

Therefore we have the following result in place of (8.54).

Theorem 8.60 (Weyl Integration Formula). LetT be a maximal torus
of the compact connected Lie groupG, and let invariant measures onG,
T , andG/T be normalized so that∫

G

f (x) dx =
∫

G/T

[ ∫
T

f (xt) dt
]

d(xT )

for all continuousf onG. Then every Borel functionF ≥ 0 onG satisfies∫
G

F(x) dx = 1

|W (G, T )|
∫

T

[ ∫
G/T

F(gtg−1) d(gT )
]
|D(t)|2 dt,

|D(t)|2 =
∏

α∈
+
|1 − ξα(t

−1)|2.where

The integration formula in Theorem 8.60 is a starting point for an an-
alytic treatment of parts of representation theory for compact connected
Lie groups. For a given such group for whichδ is analytically integral,
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let us sketch how the theorem leads simultaneously to a construction of an
irreducible representation with given dominant analytically integral highest
weight and to a proof of the Weyl Character Formula.

Define

(8.61) D(t) = ξδ(t)
∏

α∈
+
(1 − ξ−α(t)),

so that Theorem 8.60 for any Borel functionf constant on conjugacy
classes and either nonnegative or integrable reduces to

(8.62)
∫

G

f (x) dx = 1

|W (G, T )|
∫

T

f (t)|D(t)|2 dt

if we takedx , dt , andd(gT ) to have total mass one. Forλ ∈ t∗ dominant
and analytically integral, define

χλ(t) =
∑

s∈W (G,T ) ε(s)ξs(λ+δ)(t)

D(t)
.

Thenχλ is invariant underW (G, T ), and Proposition 4.53 shows thatχλ(t)
extends to a functionχλ on G constant on conjugacy classes. Applying
(8.62) with f = |χλ|2, we see that

(8.63a)
∫

G

|χλ|2 dx = 1.

Applying (8.62) with f = χλχλ′ , we see that

(8.63b)
∫

G

χλ(x)χλ′(x) dx = 0 if λ 
= λ′.

Let χ be the character of an irreducible finite-dimensional representation
of G. On T , χ(t) must be of the form

∑
µ ξµ(t), where theµ’s are

the weights repeated according to their multiplicities. Alsoχ(t) is even
underW (G, T ). ThenD(t)χ(t) is odd underW (G, T ) and is of the form∑

ν nνξν(t) with eachnν in Z. Focusing on the dominantν’s and seeing that
theν’s orthogonal to a root must drop out, we find thatχ(t) = ∑

λ aλχλ(t)
with aλ ∈ Z. By (8.63),∫

G

|χ(x)|2 dx =
∑

λ

|aλ|2.
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For an irreducible character Corollary 4.16 shows that the left side is 1. So
oneaλ is ±1 and the others are 0. Sinceχ(t) is of the form

∑
µ ξµ(t), we

readily find thataλ = +1 for someλ. Hence every irreducible character is
of the formχ = χλ for someλ. This proves the Weyl Character Formula.
Using the Peter–Weyl Theorem (Theorem 4.20), we readily see that no
L2 function onG that is constant on conjugacy classes can be orthogonal
to all irreducible characters. Then it follows from (8.63b) that everyχλ

is an irreducible character. This proves the existence of an irreducible
representation corresponding to a given dominant analytically integral form
as highest weight.

For reductive Lie groups that are not necessarily compact, there is a
formula analogous to Theorem 8.60. This formula is a starting point for
the analytic treatment of representation theory on such groups. We state the
result as Theorem 8.64 but omit the proof. The proof makes use of Theorem
7.108 and of other variants of results that we applied in the compact case.

Theorem 8.64 (Harish-Chandra). LetG be a reductive Lie group, let
(h1)0, . . . , (hr)0 be a maximal set of nonconjugateθ stable Cartan subal-
gebras ofg0, and letH1, . . . , Hr be the corresponding Cartan subgroups.
Let the invariant measures on eachHj andG/Hj be normalized so that∫

G

f (x) dx =
∫

G/Hj

[ ∫
Hj

f (gh) dh
]

d(gHj) for all f ∈ Ccom(G).

Then every Borel functionF ≥ 0 onG satisfies∫
G

F(x) dx =
r∑

j=1

1

|W (G, Hj)|
∫

Hj

[ ∫
G/Hj

F(ghg−1) d(gHj)
]
|DHj (h)|2 dh,

where
|DHj (h)|2 =

∏
α∈
(g,hj )

|1 − ξα(h
−1)|.

6. Problems

1. Prove that ifM is an orientedm-dimensional manifold, thenM admits a
nowhere-vanishing smoothm form.
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2. Prove that the zero locus of a nonzero real analytic function on a cube inRn

has Lebesgue measure 0.

3. Let G be the group of all real matrices

(
a b
0 1

)
with a > 0. Show that

a−2 da db is a left Haar measure and thata−1 da db is a right Haar measure.

4. Let G be a noncompact semisimple Lie group with finite center, and let
Mp ApNp be a minimal parabolic subgroup. Prove thatG/Mp ApNp has no
nonzeroG invariant Borel measure.

5. Prove that the complement of the set of regular points in a reductive Lie group
G is a closed set of Haar measure 0.

Problems 6–8 concern Haar measure onGL(n, R).

6. Why is Haar measure onGL(n, R) two-sided invariant?

7. Regardgl(n, R) as ann2-dimensional vector space overR. For eachx in
GL(n, R), letLx denote left multiplication byx . Prove that detLx = (detx)n.

8. Let Ei j be the matrix that is 1 in the(i, j)th place and is 0 elsewhere. Regard
{Ei j } as the standard basis ofgl(n, R), and introduce Lebesgue measure
accordingly.
(a) Why does{x ∈ gl(n, R) | detx = 0} have Lebesgue measure 0?
(b) Deduce from Problem 7 that| dety|−n dy is a Haar measure forGL(n, R).

Problems 9–12 concern the functioneνHp(x) for a semisimple Lie groupG with
a complexificationGC. Here it is assumed thatG = K ApNp is an Iwasawa
decomposition ofG and that elements decompose asx = κ(g) expHp(x) n. Let
ap be the Lie algebra ofAp, and letν be ina∗

p.

9. Let π be an irreducible finite-dimensional representation ofG on V, and
introduce a Hermitian inner product inV as in the proof of Theorem 8.49. If
π has highest restricted weightν and ifv is in the restricted-weight space for
ν, prove that‖π(x)v‖2 = e2νHp(x)‖v‖2.

10. In G = SL(3, R), let K = SO(3) and let Mp ApNp be upper-triangular.

Introduce parameters forN−
p by writing N−

p =
{

n̄ =
( 1 0 0

x 1 0
z y 1

)}
. Let

f1 − f2, f2 − f3, and f1 − f3 be the positive restricted roots as usual, and let
ρp denote half their sum (namelyf1 − f3).

(a) Show thate2 f1Hp(n̄) = 1+ x2+ z2 ande2( f1+ f2)Hp(n̄) = 1+ y2+ (z − xy)2

for n̄ ∈ N−
p .

(b) Deduce thate2ρp Hp(n̄) = (1+ x2 + z2)(1+ y2 + (z − xy)2) for n̄ ∈ N−
p .
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11. InG = SO(n, 1)0, let K = SO(n)×{1} andap = R(E1,n+1 + En+1,1), with
Ei j as in Problem 8. Ifλ(E1,n+1 + En+1,1) > 0, say thatλ ∈ a∗

p is positive,
and obtainG = K ApNp accordingly.
(a) Using the standard representation ofSO(n, 1)0, computee2λHp(x) for a

suitableλ and allx ∈ G.
(b) Deduce a formula fore2ρp Hp(x) from the result of (a). Hereρp is half the

sum of the positive restricted roots repeated according to their multiplic-
ities.

12. In G = SU (n, 1), let K = S(U (n) × U (1)), and letap and positivity be as
in Problem 11. Repeat the two parts of Problem 11 for this group.




