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CHAPTER I

Complex Semisimple Lie Algebras

Abstract. The theme of this chapter is an investigation of complex semisimple Lie
algebras by a two-step process, first by passing from such a Lie algebra to a reduced abstract
root system via a choice of Cartan subalgebra and then by passing from the root system to
an abstract Cartan matrix and an abstract Dynkin diagram via a choice of an ordering.

The chapter begins by making explicit a certain amount of this structure for four infinite
classes of classical complex semisimple Lie algebras. Then for a general finite-dimensional
complex Lie algebra, it is proved that Cartan subalgebras exist and are unique up to
conjugacy.

When the given Lie algebra is semisimple, the Cartan subalgebra is abelian. The adjoint
action of the Cartan subalgebra on the given semisimple Lie algebra leads to a root-space
decomposition of the given Lie algebra, and the set of roots forms a reduced abstract root
system.

If a suitable ordering is imposed on the underlying vector space of an abstract root
system, one can define simple roots as those positive roots that are not sums of positive
roots. The simple roots form a particularly nice basis of the underlying vector space, and
a Cartan matrix and Dynkin diagram may be defined in terms of them. The definitions of
abstract Cartan matrix and abstract Dynkin diagram are arranged so as to include the matrix
and diagram obtained from a root system.

Use of the Weyl group shows that the Cartan matrix and Dynkin diagram obtained from
a root system by imposing an ordering are in fact independent of the ordering. Moreover,
nonisomorphic reduced abstract root systems have distinct Cartan matrices. It is possible
to classify the abstract Cartan matrices and then to see by a case-by-case argument that
every abstract Cartan matrix arises from a reduced abstract root system. Consequently
the correspondence between reduced abstract root systems and abstract Cartan matrices is
one-one onto, up to isomorphism.

The correspondence between complex semisimple Lie algebras and reduced abstract root
systems lies deeper. Apart from isomorphism, the correspondence does not depend upon
the choice of Cartan subalgebra, as a consequence of the conjugacy of Cartan subalgebras
proved earlier in the chapter. To examine the correspondence more closely, one first
finds generators and relations for any complex semisimple Lie algebra. The Isomorphism
Theorem then explains how much freedom there is in lifting an isomorphism between
root systems to an isomorphism between complex semisimple Lie algebras. Finally the
Existence Theorem says that every reduced abstract root system arises from some complex
semisimple Lie algebra. Consequently the correspondence between complex semisimple
Lie algebras and reduced abstract root systems is one-one onto, up to isomorphism.
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124 Il. Complex Semisimple Lie Algebras
1. Classical Root-space Decompositions

Recall from 8I.8 that the complex Lie algebrsign, C) for n > 2,
so(n, C) forn > 3, andsp(n, C) for n > 1 are all semisimple. As we shall
see in this section, each of these Lie algebras has an abelian subdlgebra
such that an analysis of §deads to a rather complete understanding of
the bracket law in the full Lie algebra. We shall give the analysis d¢f ad
in each example and then, to illustrate the power of the formulas we have,
identify which of these Lie algebras are simple oler

ExampLE 1. The complex Lie algebra ig= sl(n, C). Let

ho = real diagonal matrices i
h = all diagonal matrices ig.

Thenh = ho®iho = (ho)©. Define a matrixE;; to be 1in thei, j)™ place
and 0 elsewhere, and define a memdgeaf the dual spacg* by

hy
ej( ..‘ ):hj‘
hn

For eachH € b, adH is diagonalized by the basis g@f consisting of
members of) and theE;; fori # j. We have

(@dH)Ej; = [H, Ejj] = (&(H) — g (H))E;;.

In other words E;; is a simultaneous eigenvector for all Hd with eigen-
valuee (H)—e (H). Initsdependence ad, the eigenvalue is linear. Thus
the eigenvalue is a linear functional gnnamelye — g. The(e — g)’s,
fori # |, are calledoots. The set of roots is denotetl. We have

g=h®@CEij,

i#]
which we can rewrite as
(2.1) QZUGB@Qa—e,,
i#]

where

ge—¢ = (X egl|(@H)X = (e —¢g)(H)XforallH € b}.
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The decomposition (2.1) is called@ot-space decomposition The setA
of roots spang™* overC.

The bracket relations are easy, relative to (2.1 dindg are roots, we
can computelf;;, E;/;] and see that

= Guip if « + B isaroot
(2.2) [90.94] 4 =0 if « + Bisnotarootor0

In the last case the exact formula is
[Eij, Ei]l =Ei — Ejj eb.

All the roots are real oh, and thus, by restriction, can be considered as
members of§. The next step is to introduce a notion of positivity within
b such that

(i) for any nonzerap € b}, exactly one ofp and—g is positive,
(ii) the sum of positive elements is positive, and any positive multiple
of a positive element is positive.

The way in which such a notion of positivity is introduced is not important,
and we shall just choose one at this stage.

To do so, we observe a canonical form for memberg;ofThe linear
functionalse,, . . ., €, spanhj, and their sum is 0. Any member §f can
therefore be written nonuniquely as, ¢jg, and(3_; ¢)(e1+---+€,) = 0.
Therefore our given linear functional equals

n n

(=m0

j=1 i=1

In this latter representation the sum of the coefficients is 0. Thus any
member oh; can be realized g5, ajg with ), 8 = 0. No such nonzero
expression can vanish df); — E,, for all i with 1 <i < n, and thus the
realization a9 _; a; with . & = 0 is unique.

If o =3, 3¢ is given as a member ¢f with } . & = 0, we say that
anonzera is positive (written ¢ > 0) if the first nonzero coefficiers; is
> 0. Itis clear that this notion of positivity satisfies properties (i) and (ii)
above.

We say thaty > v if ¢ — ¢ is positive. The result is a simple ordering
onb; that is preserved under addition and under multiplication by positive
scalars.
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For the roots the effect is that

-6 >6—-6_1> - ->6—6
> —6>8 -6 1> ->6—6
> > 82— 6 >€_2—6_1>6_1—6 >0,

and afterward we have the negatives. The positive roots asg-thg with
i< .

Now let us prove thag is simple overC for n > 2. Leta C g be an
ideal, and first supposeC §. LetH # 0 be ina. Since the roots spayt,
we can find a root with a(H) # 0. If X ising, andX # 0, then

a(H)X =[H, X] €[a,g] Cach,

and soX is in b, contradiction. Hence C h impliesa = 0.

Next, suppose is not contained ify. Let X = H + > X, be ina with
eachX, in g, and with someX, # 0. For the moment assume that there
is some rootx < 0 with X, # 0, and letg be the smallest sual. Say
X = cEjj withi > j andc # 0. Form

(2.3) [Ex, [X, Ejnll-

The claim is that (2.3) is a nonzero multiple Bf,. In fact, we cannot
havei = 1sincej <i. Ifi < n, then [E;, Ej,] = aE;, with a # 0, and
also [Ey, Ein] = bEy, with b £ 0. Thus (2.3) has a nonzero component
iN ge, e, iIN the decomposition (2.1). The other components of (2.3) must
correspond to larger roots than— e, if they are nonzero, bud; — e, is

the largest root. Hence the claim follows ik n. If i = n, then (2.3) is

= [Elna [CEnj +---, Ejn]] = C[Elm Enn - Ejj] +--o= CEln-

Thus the claim follows if = n.
In any case we conclude thgt, is in a. Fori # j, the formula

Ew = C[Ex, [Em, Enll with ¢’ # 0
(with obvious changes K = 1 orl = n) shows thaE, is in a, and
[Ex, Ei] = B — B

shows that a spanning setfpfs in a. Hencea = g.

Thus an ideah that is not inh has to be all ofj if there is somex < 0
with X, # 0 above. Similarly if there is some > 0 with X, # 0, lets
be the largest such, saye = & — e withi < j. Form [Ey, [X, Ej1]]
and argue witlE,; in the same way to get= g. Thusg is simple overC.
This completes the first example.
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We can abstract these properties. The complex Lie algghvil be
simple whenever we can arrange that
1) p is an abelian subalgebra g@f such thatg has a simultaneous
eigenspace decomposition relative tchaehd
(a) the 0 eigenspacelis
(b) the other eigenspaces are 1-dimensional,
(c) with the setA of roots defined as before, (2.2) holds,
(d) the roots are all real on some real foljgof b.

2) the roots spab*. If « is a root, so is-«.

3) ZaeA[gav g—a] = h

4) each roop < O relative to an ordering df; defined from a notion
of positivity satisfying (i) and (ii) above has the following property: There
exists a sequence of roats, . . ., o such that each partial sum from the
leftof B + a1 + - - - + ax is a root or 0 and the full sum is the largest root.
If a partial sumg + - - - +«; is 0, then the membekg], , E_,, ] of h is such
thate; .1 ([Ey, E_o]) # 0.

We shall see that the other complex Lie algebras from §1.8, namely
so(n, C) andsp(n, C), have the same kind of structure, provideds
restricted suitably.

ExampPLE 2. The complex Lie algebra ig = so(2n + 1, C). Here a
similar analysis by means of §dor an abelian subalgebfgis possible,
and we shall say what the constructs are that lead to the conclusign that
is simple forn > 1. We define

h={H eso(2n+1,C) | H = matrix below

0 ihg
—ihy 0
( 0 ihg)
H— —|h2 0

0 ihy
—ih, O

g (aboveH) = h;, 1<j<n
ho = {H € b | entries are purely imaginayy
A ={+e ¢ withi # j}U {£eal}.

0
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The members off; are the linear functional ; a & with all g real, and
every root is of this form. A membes = Zj a g of b is defined to be
positive if ¢ # 0 and if the first nonzera; is positive. In the resulting
ordering the largest root i + e,. The root-space decomposition is

s=he@a  withg, =CE,

acA

and withE, as defined below. To defing,, first leti < j and leta =
+e +¢. ThenE, is 0 except in the sixteen entries corresponding to the
i and j™ pairs of indices, where it is

with

1 i 1 —i
Xafej = <—| 1)3 Xa+ej = (_I _1)7
1 —i 1 i
X-ate = (i 1)’ Xq-q = (i —1)'

To defineE, for a = +g,, write

pair  entry
k 2n+1

0 X,
E.=\-xt o

with O’s elsewhere and with

Xo, = <_|1> and  X_o = (Il)

ExamMPLE 3. The complex Lie algebra ig = sp(n, C). Again an
analysis by means of d@gdfor an abelian subalgebtgais possible, and we
shall say what the constructs are that lead to the conclusiop ihatmple
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forn > 1. We define

hy

—h;

—h,

g (aboveH) = h;, l1<j=<n
ho = {H € b | entries are redl
A ={+g £ e withi # j} U {£2¢]}
EQ*EJ’ = Ei,j - Ej+n,i+ns EZ(a( = Ek,k+n,
Eeie = Eijin+ Ejisns E_2 = Ekinks
E e e =Einj+ Ejni
ExamPLE 4. The complex Lie algebra is = so(2n, C). The analysis

is similar to that forso(2n + 1, C). The Lie algebrao(2n, C) is simple
overC for n > 3, the constructs for this example being

h as withso(2n + 1, C) but with the last row and column deleted
g(H) =h, 1<j<n, as withso(2n + 1, C)

ho = {H € b | entries are purely imaginary

A ={te ¢ withi # j}

E,asforso(2n+1,C) when o =+e *¢g.

Whenn = 2, condition (4) in the list of abstracted properties fails. In fact,
take = —e; + &. The only choice fow, ise; — &, and ther8 +a; = 0.

We have to choose, = e, + &, anda,([E,,, E_,,]) = 0. In 85 we shall
see thato(4, C) is actually not simple.

2. Existence of Cartan Subalgebras

The idea is to approach a general complex semisimple Lie algdiyra
imposing on it the same kind of structure as in 81. We try to construct an
h, a set of roots, a real forifyy on which the roots are real, and an ordering
on h. Properties (1) through (3) in 81 turn out actually to be equivalent
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with g semisimple. Inthe presence of the first three properties, property (4)
will be equivalent withg simple. But we shall obtain better formulations
of property (4) later, and that property should be disregarded, at least for
the time being.

The hypothesis of semisimplicity gf enters the construction only by
forcing special features df and the roots. Accordingly we work with a
general finite-dimensional complex Lie algelgrantil near the end of this
section.

Leth be a finite-dimensional Lie algebra owér Recall from §1.5 that a
representatiomnr of h on a complex vector spadéis a complex-linear Lie
algebra homomaoarphism @finto End-(V). For suchr andV, whenever
« is in the duab*, we letV, be defined as

fveV]|@mMH)—a(H)D)"v=0forallH € h and somen = n(H, v)}.

If V, #£ 0,V, is called ageneralized weight spaceind« is aweight.
Members ofV, are calledgeneralized weight vectors

For now, we shall be interested only in the case tWais finite
dimensional. In this case(H) — «(H)1 has 0 as its only generalized
eigenvalue orV, and is nilpotent on this space, as a consequence of the
theory of Jordan normal form. TherefaréH, v) can be taken to be di.

Proposition 2.4. Suppose thdtis a nilpotent Lie algebra ovétand that
7 is a representation @fon a finite-dimensional complex vector spate
Then there are finitely many generalized weights, each generalized weight
space is stable undet(h), andV is the direct sum of all the generalized
weight spaces.

REMARKS.

1) The direct-sum decomposition &f as the sum of the generalized
weight spaces is calledveeight-space decompositionf V.

2) The weights need not be linearly independent. For example, they are
dependent in our root-space decompositions in the previous section.

3) Sinceh is nilpotent, itis solvable, and Lie’s Theorem (Corollary 1.29)
applies to it. In a suitable basis & 7 (h) is therefore simultaneously
triangular. The generalized weights will be the distinct diagonal entries, as
functions onh. To get the direct sum decomposition, however, is subtler;
we need to make more serious use of the factfhamnilpotent.

PrROOF. First we check tha¥, is invariant underr (). Fix H €  and
let

Von={veV]|@MH)—aMH)D"v=0for somen =n(v)},
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so thatV, = Ny, Vo n. It is enough to prove that, y is invariant under
m(h) if H #£ 0. Since} is nilpotent, acH is nilpotent. Let

bm ={Y €b | (@dH)™Y = 0},

so thath = U2 _hm with d = dimb. We prove thatr (Y)V, n € V, 4 for
Y € hm by induction orm.

Form = 0, we have), = 0 since(adH)? = 1. Sox(Y) = 7(0) =0,
andz (Y)V, y C V, 4 trivially.

We now address general under the assumption that our assertion is
true for allZ € hm_y). LetY be inbh,. Then H, Y]is in hm_y), and we
have

((H) —a(H)Dr(Y) =7 ([H, YD + 7 (V)7 (H) — a(H)7 (Y)
=n(Y)(@(H) —a(H)D) + 7 (H, Y])

and

(7(H) —a(H)D’m(Y)
= (@(H)—a(H)D7 (Y)(@(H)—a(H)1) + (w(H)—a(H) D (H, Y])
=2(Y)(@(H) = a(H)D)? + 7z ([H, YD (H) — a(H)1)
+ (@ (H) —a(H)Dm ([H, Y.

Iterating, we obtain

(r(H) —a(H)D'(Y)
=7(Y)(@(H) — a(H)1)
-1
+ Z(W(H) —a(H)D'"" 7 ([H, YD (H) — a(H)D)®.

s=0
Forv € V,u, we have(r(H) — a(H))Nv = 0if N > dimV. Take
| = 2N. When the above expression is applied toehe only terms in the
sum on the right side that can survive are those with N. For these we
havel —1—s> N. Then(w(H) —«a(H)1)%visinV, 4, 7([H, Y]) leaves
V, n stable sincel, Y]isin hm_1), and

(m(H) —a(H)D' "z ([H, Y (r(H) — a(H)1)% = 0.

Hence(r(H) — a(H)1)'7(Y)v = 0, andV,  is stable under (Y). This
completes the induction and the proof thatis invariant underr (h).
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Now we can obtain the decompositivh= _ V,. LetH,, ..., H, be
a basis foy. The Jordan decomposition #f H;) gives us a generalized
eigenspace decomposition that we can write as

V :EBVM.
A

Here we can regard the complex numheas running over all distinct
values ofa(H,) for « arbitrary inh*. Thus we can rewrite the Jordan

decomposition as
V= Vatr.h-

values of
a(Hy)

For fixede € b*, V,m, .1, iS nothing more than the spadg ,,, defined

at the start of the proof. From what we have already shown, the space
Vo 1, = Van, IS stable underr(h). Thus we can decompose it under

w(H,) as
V= @ @(V‘X(Hl)’Hl N V‘X(Hz)sz)’

a(Hp) a(Hz)
and we can iterate to obtain

Ve @ ((Verwn)

a(Hp),..a(H) =1

with each of the spaces invariant unaeth). By Lie’'s Theorem (Corol-
lary 1.29), we can regard atl(H;) as acting simultaneously by triangu-
lar matrices orﬁ;:l V.1 » €vidently with all diagonal entries(H;).
Thenn (3 ¢ H) must act as a triangular matrix with all diagonal entries
> Ga(H)). Thus if we define a linear functional by «(> ¢ H;) =

Y ca(H), we see thaﬂ;:l Vo).n IS exactlyV,. ThusV = @, V.,
and in particular there are only finitely many weights.

Proposition 2.5. If g is any finite-dimensional Lie algebra ov€rand
if b is a nilpotent Lie subalgebra, then the generalized weight spaggs of
relative to ag b satisfy

(@) g = P g., whereg, is defined as
{(Xeg|@H —a(H)1)"X =0forallH € h and somen = n(H, X)},

(b) h < go,
(©) [84, 95] S gusp (With g, understood to be 0 i + B is not a
generalized weight).
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PROOF

(a) This is by Proposition 2.4.

(b) Sincey is nilpotent, ady is nilpotent onf. Thush C go.
(c)LetX € g,,Y € g, andH € h. Then

(@adH — (a(H) + B(H)DIX, Y]

=[(@dH —a(H)D X, Y] +[X, (adH — B(H)1)Y],

and we can readily set up an induction to see that
@dH — (a(H) + B(H)HD"[X, Y]

= Z (E) [(@dH —a(H)D*X, (adH —B(H)1)"Y].
k=0

If n > 2dimg, eitherk orn — k is > dimg, and hence every term on the
right side is 0.

Corollary 2.6. g, is a subalgebra.

PrROOF. This follows from Proposition 2.5c.

To match the behavior of our examples in the previous section, we
make the following definition. A nilpotent Lie subalgelyaof a finite-
dimensional complex Lie algebgds aCartan subalgebraif h = go. The
inclusionh C go is always guaranteed by Proposition 2.5h.

Proposition 2.7. A nilpotent Lie subalgebrg of a finite-dimensional
complex Lie algebrg is a Cartan subalgebra if and onlyhifequals the
normalizerNg(h) = {X e g | [X, b] C b}.

PrROOF We always have

(2.8) b < Ny(h) < go.

The first of these inclusions holds becauses a Lie subalgebra. The
second holds becaugadH)"X = (adH)""[H, X] and adH is nilpotent
onp.

Now assume thaj is a Cartan subalgebra. Then= b by definition.
By (2.8),h = Ny(h) = go. Conversely assume thatis not a Cartan
subalgebra, i.e., thay # h. Form ady : go/h — go/h as a Lie algebra of
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transformations of the nonzero vector spgg#). Since is solvable, this

Lie algebra of transformations is solvable. By Lie’s Theorem (Theorem
1.25) there exists aX + h in go/h with X ¢ b that is a simultaneous
eigenvector for ag, and we know that its simultaneous eigenvalue has to
be 0. This means thaadH)(X + ) < b, i.e., [H, X]isin h. HenceX is
notinh but X is in Ny(h). Thush £ Ny (bh).

Theorem 2.9. Any finite-dimensional complex Lie algebgahas a
Cartan subalgebra.

Before coming to the proof, we introduce “regular” elementg.ofn
sl(n, C) the regular elements will be the matrices with distinct eigenvalues.
Let us consider matters more generally.

If 7 is a representation @f on a finite-dimensional vector spavewe
can regard eac € g as generating a 1-dimensional abelian subalgebra,
and we can then fornv, x, the generalized eigenspace for eigenvalue 0
underr (X). Let

(V) = r)r(ngdlm Vo.x

R, (V) = {X € g | dimVox = l,(V)}.

To understandl, (V) andR; (V) better, form the characteristic polynomial
n-1
detihl — (X)) = A"+ Y dj(X)A).
j=0
In any basis ofy, thed;(X) are polynomial functions og, as we see by
expanding deékl — > uim(X)). For givenX, if j is the smallest value
for whichd; (X) # 0, thenj = dimV; x, since the degree of the last term
in the characteristic polynomial is the multiplicity of O as a generalized
eigenvalue ofr (X). Thusl,(V) is the minimumj such thatd; (X) # O,
and
Ry (V) ={Xegld,w(X)#0}.

Let us apply these considerations to the adjoint representatiparog.
The elements dR; (g), relative to the adjoint representation, areréigular
elementsof g. ForanyX in g, go.x is a Lie subalgebra af by the corollary
of Proposition 2.5, withhy = CX.

Theorem 2.9. If X is a regular element of the finite-dimensional
complex Lie algebrg, then the Lie algebrgq x is a Cartan subalgebra
of g.
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PrROOF. First we show that, x is nilpotent. Assuming the contrary, we
construct two sets:

(i) the set ofZ € gox such that((adZ)|,,,)%M%x # 0, which is
nonempty by Engel’'s Theorem (Corollary 1.38) and is open,

(i) the set of W € go x such that atlV|y,,,, is nonsingular, which is
nonempty sinceX is in it (regularity is not used here) and is the
set where some polynomial is nonvanishing, hence is dense (be-
cause if a polynomial vanishes on a nonempty open set, it vanishes
identically).

These two sets must have nonempty intersection, and so we can find
go.x such that

((@dZ)[g,,)"™M0x £0  and  adZ|y,, is nonsingular

Then the generalized multiplicity of the eigenvalue O forZads less
than dimgg x, and hence dingoz < dimgg x, in contradiction with the
regularity of X. We conclude thago x is nilpotent.

Sincego x is nilpotent, we can usg x to decomposeg as in Proposition
2.4. Letgg be the 0 generalized weight space. Then we have

gox € go= ﬂ gov < gox-
Yegox
Sogo.x = go, andgo x is a Cartan subalgebra.

In this book we shall be interested in Cartan subalgeb@dy wheng
is semisimple. In this cagehas special properties, as follows.

Proposition 2.10. If g is a complex semisimple Lie algebra ainds a
Cartan subalgebra, thénis abelian.

PROOF. Sincel is nilpotent and therefore solvable, g solvable as a
Lie algebra of transformations gf By Lie's Theorem (Corollary 1.29) itis
simultaneously triangular in some basis. For any three triangular matrices
A, B, C, we have T(ABC) = Tr(BAC). Therefore

(211) Tr(ad[H]_, Hz] adH) =0 for H]_, H2, H e b

Next leta be any nonzero generalized weight Xetbe ing,,, and letH be
in h. By Proposition 2.5c, atl ad X carriesgg to g,s. Thus Proposition
2.5a shows that

(2.12) TradH adX) = 0.
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Specializing (2.12) téd = [H1, H,] and using (2.11) and Proposition 2.5a,
we see that the Killing fornB of g satisfies

B([Hi, H], X)=0  forallX e g.

By Cartan’s Criterion for Semisimplicity (Theorem 1.48)js nondegen-
erate. ThereforeH,, H,] = 0, andh is abelian.

Proposition 2.13. In a complex semisimple Lie algebig a Lie
subalgebra is a Cartan subalgebra if it is maximal among the abelian
subalgebrag such that aglh is simultaneously diagonable.

REMARKS.

1) It is immediate from this corollary that the subalgebhkam the
examples of 81 are Cartan subalgebras.

2) Proposition 2.13 implies the existence of Cartan subalgebras, but
only in the semisimple case. A uniqueness theorem, Theorem 2.15 below,
will say that any two Cartan subalgebras are conjugate, and hence every
Cartan subalgebra in the semisimple case must satisfy the properties in the
proposition.

3) The properties in the proposition can also be seen directly without
using the uniqueness theorem. Proposition 2.10 shows that any Cartan
subalgebrd in the semisimple case is abelian, and it is maximal abelian
sincelh = go. Corollary 2.23 will show for a Cartan subalgeliyan the
semisimple case that gl is simultaneously diagonable.

PrOOF. Let h be maximal among the abelian subalgebras such that
ad, b is simultaneously diagonable. Singds abelian and hence nilpo-
tent, Proposition 2.4 shows thg@thas a weight-space decompositipa-
g0 © P8 under agh. Since agh is simultaneously diagonable,
go = h @ v with [h,t] = 0. In view of Proposition 2.7, we are to prove
thath = Ny(h). Hereh € Ny(h) < go by (2.8), and it is enough to
show thatt = 0. Arguing by contradiction, suppose th¥t+# 0 is in
t. Thenh @ CX is an abelian subalgebra properly containingnd the
hypothesis of maximality says that Zdmust not be diagonable. We
apply Proposition 2.4 again, this time using,ép® CX) and obtaining
0=, @ﬁ/lh:ﬁ gp. By Theorem 1.48 we can write &= s+ nwith s
diagonablen nilpotent,sn = ns, ands = p(adX) for some polynomial
p without constant term. Since adcarries eachy, to itself, so does
s. The transformatiors must then act by the scal@f(X) on g, . Since
[gs. 9,/] € gp-+, Dy Proposition 2.5c, it follows fo¥ € gz andZ € g,/



3. Uniqueness of Cartan Subalgebras 137

thats[y, Z] = (B'(X) + Yy (X)[Y, Z] = [s(Y), Z] +[Y, s(Z)]. In other
words,s is a derivation ofg. By Proposition 1.121s = adS for someS

in g. Sinces = p(adX) and [, X] = 0, we find thatj, S| = 0. By the
hypothesis of maximalitySis in . From adX = adS -+ n, we conclude
thatn = adN for someN in h & CX. In other words we could have
assumed that ad is nilpotent from the outset. Since Xds nilpotent ory

and sincgyy = hdris asubalgebra (Corollary 2.6), Zds nilpotent orye.
Thus every member of &bl CX) is nilpotent ong,. But X is arbitrary in

t, and thus every member of gglis nilpotent ongo,. By Engel’'s Theorem
(Corollary 1.38),g, is a nilpotent Lie algebra. Consequently we can use
ad, go to decomposg according to Proposition 2.4, and the 0 weight space
can be no bigger than it was when we usegltadt the start. Thus the O
weight space has to g, andg, is a Cartan subalgebra. If we write the
decomposition according to agy asg = go ® P,., 8., then we have
B(X, Xo) = Y_(dimg,)a(X)x(X,) when X is the element above ark,

isin go. This sum is 0 since the nilpotence of ddnakesx(X) = 0 for all

a. Asin(2.12),B(X, X,) = 0for X, € g, witha # 0. ThusB(X, g) = 0.
SinceB is nondegenerate, it follows that = 0, and we have arrived at a
contradiction.

3. Uniqueness of Cartan Subalgebras

We turn to the question of uniqueness of Cartan subalgebras. We begin
with a lemma about polynomial mappings.

Lemma2.14.Let P : C™ — C" be a holomorphic polynomial function
not identically 0. Then the set of vectaren C™ for which P(2) is not the
0 vector is connected i@™.

PROOF. Suppose that, andw, in C™ haveP (zy) # 0 andP (wg) # O.
As afunction ofz € C, P(zy+ z(wo — 2o)) is a vector-valued holomorphic
polynomial nonvanishing & = 0 andz = 1. The subset af € C where
it vanishes is finite, and the complementGnis connected. Thug, and
wp lie in a connected set i@™ whereP is nonvanishing. Taking the union
of these connected sets with fixed andw, varying, we see that the set
whereP (wg) # 0 is connected.

Theorem 2.15. If h; and h, are Cartan subalgebras of a finite-
dimensional complex Lie algebrg then there exist&s € Intg with

a(hy) = ba.
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REMARKS.

1) In particular any two Cartan subalgebras are conjugate by an auto-
morphism ofg. As was explained after the introduction of fnin 81.11,
Intg = Intg® is a universal version of A@) for analytic groupsG with
Lie algebrag®. Thus if G is some analytic group with Lie algebgd, the
theorem asserts that the conjugacy can be achieved by some automorphism
Ad(g) with g € G.

2) By the theorem all Cartan subalgebrag tbhve the same dimension.
The common value of this dimension is called thak of g.

PROOF. Leth be a Cartan subalgebra gf Under the definitions in 82,
Ry (g) = {Y € b | dimgqy is a minimum for elements df}.

We shall show that
(a) two alternative formulas far, (g) are

Ry(g) = {Y € b | a(Y) # O for all generalized weights # 0}
={Y €bhlgoy =h},

(b) Y € Ry(g) implies adY is nonsingular o, ., ga:
(c) the image of the map

o:lntgx Ry(g) —> ¢

given byo (a, Y) = a(Y) is open ing and is contained iR, (g),

(d) if b, andh, are Cartan subalgebras that are not conjugate hy; Int
then the corresponding images of the maps in (c) are disjoint,

(e) every member oR;(g) is in the image of the map in (c) for some
Cartan subalgebiig,

(f) Ry(g) is connected.

These six statements prove the theorem. In fact, (c) through (e) exhibit
R,(g) as a nontrivial disjoint union of open sets if we have nonconjugacy.
But (f) says that such a nontrivial disjoint union is impossible. Thus let us
prove the six statements.

(a) Since is a Cartan subalgebrg,= h © P, 8.- If Y isinb, then
goy = {X € g | (adY)"X = 0}, wheren = dimg. Thus elementxX
in goy are characterized by being in the generalized eigenspace %6r ad
with eigenvalue 0. S@oy = h & @#O’Q(Y)ZO go- Since finitely many
hyperplanes irh cannot have uniof) (C being an infinite field), we can
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find Y with «(Y) # O for allee # 0. Then we see that v is smallest when
itis h, and (a) follows.

(b) The linear map ad acts ory, with generalized eigenvalugY) # 0,
by (a). Hence al is nonsingular on ead},.

(c) Since Infg is a group, it is enough to show théte R, (g) implies
that(Int g) (R, (g)) contains a neighborhood ¥fin g. Form the differential
do at the point(1, Y). SinceR;(g) is open inh, the tangent space at
may be regarded ds(with cy (t) = Y + tH being a curve with derivative
H e h). Similarly the tangent space at the pointl, Y) of g may be
identified withg. Finally the tangent space at the point 1 ofgs the Lie
algebra ag. Hencedo is a map

do :adg x h — g.

Now
d t adX
do(adX, 0) = at o€, Y)l-o
d tadX
= a(e )Ylizo = (@dX)Y = [X, Y]
and

d d
do(0,H) = aa(l,Y +tH)|i—0 = a(Y +tH)|i—o = H.

Thus imagédo) = [V, g] + h. By (b), do is ontog. Hence the image of
o includes a neighborhood of(1, Y) in g. Therefore image ) is open.
But R,(g) is dense. So image) contains a membeX of R;(g). Then
a(Y) = X for somea € Intg andY < h. Froma(Y) = X we easily check
thata(goy) = gox. Hence dingey = dimgg x. Since dimgey = l;(g)
and dimgo x = |,(g), we obtairl,(g) = I,(g). ThusR;(g) € R,(g). Now
R,(g) is stable under Autg, and so imager) € R,(g).

(d) Letay (Y1) = ax(Y2) with Y; € Ry, (g) andY, € Ry,(g). Thena =
a,'a; hasa(Y;) = Y,. As in the previous step, we obtadrigoy,) = go.v,-
By (a),gov, = h1 andgoy, = h2. Hencea(h,) = bh..

(e) If X isin Ry(g), leth = gox. This is a Cartan subalgebra, by
Theorem 2.9 and (a) says thaf is in R, (g) for thish. Theno (1, X) = X
shows thaiX is in the image of the defined relative to thig.

(f) We have seen thd, (g) is the complement of the set where anonzero
polynomial vanishes. By Lemma 2.14 this set is connected.
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4. Roots

Throughout this sectiory,denotes a complex semisimple Lie algelBa,
is its Killing form, andp is a Cartan subalgebra gf We saw in Proposition
2.10 thath is abelian. The nonzero generalized weights off ad g are
called theroots of g with respect toh. We denote the set of roots by
A or A(g, h). Then we can rewrite the weight-space decomposition of
Proposition 2.5a as

(2.16) g=bePo..

This decomposition is called th®ot-space decompositionof g with
respect td). Members ofy, are calledoot vectors for the rootc.

Proposition 2.17.

(a) If« andp are inA U {0} anda + B # 0O, thenB(g,, gs) = 0.

(b) If @ isin A U {0}, thenB is nonsingular org, X g_,.

() If aisin A, then so is—«.

(d) B|y«p is nondegenerate; consequently to eachaamirrespondsi,
in h with @(H) = B(H, H,) forall H < .

(e) A spangy*.

PROOF

(a) By Proposition 2.5c, agl, adg, carriesg, into g;.,.s and conse-
quently, when written as a matrix in terms of a basig cbmpatible with
(2.16), has zero in every diagonal entry. Therefore its trace is 0.

(b) SinceB is nondegenerate (Theorem 1.48) X, g) # 0 for each
X € g,. Since (a) shows th&(X, gz) = 0 for everyp other than-«, we
must haveB(X, g_,) # 0.

(c,d) These are immediate from (b).

(e) SupposeH € h hasa(H) = 0 for alle € A. By (2.16), adH
is nilpotent. Since) is abelian, adH adH’ is nilpotent for allH" € b.
ThereforeB(H, h) = 0. By (d),H = 0. ConsequenthA spansy*.

For each rootr, choose and fix, by Lie’s Theorem (Theorem 1.25)
applied to the action of on g,, a vectorg, # 0 in g, with [H, E,] =
a(H)E, forall H € b.



4. Roots 141

Lemma 2.18.

(a) If o is aroot andX is in g_,, then [E,, X] = B(E,, X)H,.

(b) If « andp are inA, theng(H,) is a rational multiple of(H,).
(©) If aisin A, thena(H,) # 0.

PROOF.
(a) Since §., g_«] C go by Proposition 2.5¢,E,, X]isin h. ForH in
b, we have

B([Ea’ X]’ H) = _B(Xv [Eou H]) = B(Xa [Hv Ea])
=a(H)B(X, E,) = B(H,, H)B(E,, X)
= B(B(E,, X)H,, H).

Then the conclusion follows from Proposition 2.17d.
(b) By Proposition 2.17b, we can choosé¢ , in g_, such that
B(E., X_y) = 1. Then (a) shows that

(2.19) [E,, X_.] = H,.

With g fixed in A, letg’ = €D, _; 9s+ne- This subspace is invariant under
adH,, and we shall compute the trace oftdgdon this subspace in two ways.
Noting that adH, acts ongs.,, With the single generalized eigenvalue
(B + na) (H,) and adding the contribution to the trace over all values, of

we obtain

(2.20) D (B(Hy) + na(Hy)) dimggng

nez

as the trace. On the other hand, Proposition 2.5¢c showg'tlsinvariant
under ade, and adX_,. By (2.19) the trace is

= TradH, = Tr(adE,adX_, —adX_,adE,) = 0.

Thus (2.20) equals 0, and the conclusion follows.

(c) Supposex(H,) = 0. By (b), 8(H,) = Oforall 8 € A. By
Proposition 2.17e every member ipf vanishes orH,. ThusH, = 0.
But this conclusion contradicts Proposition 2.17d, siade assumed to
be nonzero.

Proposition 2.21. If « is in A, then dimg, = 1. Alsone is notin A
for any integen > 2.
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REMARK. Thus we no longer need to use the cumbersome condition
(adH — a(H)1)¥X = 0 for X € g, but can work withk = 1. Briefly
(2.22) g ={Xeg|@H)X =a(H)X]}.

PrROOF. As in the proof of Lemma 2.18b, we can choose, in g_,
with B(E,, X_,) = 1 and obtain the bracket relation (2.19). RUt=
CE, @ CH, @ @, _;9n- This subspace is invariant under ldgl and
adE,, by Proposition 2.5c¢, and it is invariant underad, by Proposition
2.5c and Lemma 2.18a. By (2.19), Hg has trace 0 in its action ogf'.
But adH, acts on each summand with a single generalized eigenvalue, and
thus the trace is

=a(H,) + 0+ > na(H,) dimgy, = 0.
n<0

Using Lemma 2.18c, we see that

Z ndimg_n, = 1.
n=1

Consequently ding_, = 1 and dimg_,, = 0 forn > 2. Proposition 2.17c
shows that we may replaeeby —a everywhere in the above argument,
and then we obtain the conclusion of the proposition.

Corollary 2.23. The action of ady on g is simultaneously diagonable.

ReEMARK. This corollary completes the promised converse to Proposi-
tion 2.13.

PrOOF. This follows by combining (2.16), Proposition 2.10, and Propo-
sition 2.21.

Corollary 2.24. Onb x b, the Killing form is given by
B(H.H) =) a(H)a(H).

aeA
ReEMARK. This formula is a special property of the Killing form. By
contrast the previous results of this section remain valilig replaced by
any nondegenerate symmetric invariant bilinear form. We shall examine
the role of special properties &further when we come to Corollary 2.38.

PrROOF. Let{H;} be abasis df. By Proposition 2.21 and Corollary 2.23,
{Hi}U{E,} is a basis ofj, and each a#ll acts diagonally. Then ad adH’
acts diagonally, and the respective eigenvalues are Qaftd)a(H")}.
Hence

B(H, H') = Tr(adH adH’) =} " a(H)a(H").

aeA
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Corollary 2.25. The pair of vector§E,, E_,} selected before Lemma
2.18 may be normalized so thBtE,, E_,) = 1.

PrROOF. By Proposition 2.17bg, andg_, are nonsingularly paired.
Since Proposition 2.21 shows each of these spaces to be 1-dimensional, the
result follows.

The above results may be interpreted as sayingtisdiuilt out of copies
of s1(2, C) in a certain way. To see this, I&, andE_, be normalized as
in Corollary 2.25. Then Lemma 2.18a gives us the bracket relations

[Hou Ea] - a(H(x)Eot
[Haa E—a] = _a(Ha) E—a
[Eaa E*Cl] = Ha-

We normalize these vectors suitably, for instance by

2 2

(2.26) H =——H, E =——E, E_=E,.
“a(Hy) “ a(Hy) “
Then
[H.. E.] = 2E,
[H,E" ]=—-2E,
[E.,E" ] =H.

As in (1.5) let us define elements g{2, C) by

h=(5) e=(s) f=(%0)

These satisfy

[h, el = 2e
[h, f] = —2f
[e, f] = h.

Consequently

(2.27) H —h, E —e E_ i f
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extends linearly to an isomorphism of spbely, E,, E_,} ontosl(2, C).
Thusg is spanned by embedded copies@®, C). The detailed structure
of g comes by understanding how these copiesl@, C) fit together. To
investigate this question, we study the action of suciiéh C) subalgebra
on all of g, i.e., we study a complex-linear representation(@®, C) ong.
We already know some invariant subspaces for this representation, and we
study these one at a time.

Thus the representation to study is the one in the proof of Lemma 2.18Db,
with the version o%((2, C) built from a roota acting on the vector space
g = P, 95+n. by ad. Correspondingly we make the following definition
of root string. Leta be in A, and letg be in A U {0}. Thea string
containing 8 is the set of all members & U {0} of the formg + n« for
n € Z. Two examples of root strings appear in Figure 2.1.

@ (b)

el_“ez 2e,

FIGURE2.1. Root strings: (a8, — e; string containinge; — &,
fors((3,C), (b)e, — & string through 2, for sp(2, C)

Also we transfer the restriction tpof the Killing form to a bilinear form
on the duah* by the definition

(2.28) (@, ¥) = B(Hy, Hy) = @(Hy) = ¢ (H,)
for ¢ andy in h*. HereH, andH,, are defined as in Proposition 2.17d.

Proposition 2.29.Let« be inA, and lets be in A U {0}.

(a) Thex string containings has the formg + na for —p < n < q with
p > 0andg > 0. There are no gaps. Furthermore
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and 2(p. )

(o, a)

(b) If B8+ n« is never 0, definel, to be the isomorphic copy ef(2, C)

spanned byH/, E,, andE’ , as in (2.26), and lef§’ = €P,,., gp+ne- Then
the representation ef, ong’ by ad is irreducible.

isinZ.

PrOOF. If 8 + na = 0 for somen, then conclusion (a) follows from
Proposition 2.21, and there is nothing to prove for (b). Thus we may assume
that8 + na is never 0, and we shall prove (a) and (b) together.

By Proposition 2.21 the transformation Hg is diagonable ory’ with
distinct eigenvalues, and these eigenvalues are

(B + na)(Hy) = (B + nar)(Ha)

(o, a)

2
= (B, &) + (e, @)
(o, )

(2.30) _AB o

(o, )

Thus any adH, invariant subspace @f is a sum of certaigs..n,’S. Hence
the same thing is true of any @d,) invariant subspace.

LetV be anirreducible such subspace, andHetandq be the smallest
and largesh’s appearing folV. Theorem 1.66 shows that the eigenvalues
ofadh =adH/ inV areN — 2i with0 <i < N, whereN =dimV — 1.
Since these eigenvalues jump by 2’s, (2.30) shows thatsltletween-p
andq are present. Also (2.30) gives

N = 26, ) + 2q
(o, )
and —N = M -2
(o, )
Adding, we obtain
(2.31) p—q= 2(B. a>.
(o, )

Theorem 1.67 shows that is the direct sum of irreducible subspaces
undersl,. If V' is another irreducible subspace, lep’ andq’ be the
smallest and largests appearing fol/’. Then (2.31), applied t¥’, gives

,_ 2B.a)

(a, a)

/

P—q

k]
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so that

(2.32) P-q=p-a.

On the other hand, all th&s from — p to g are accounted for by, and we
must therefore have eitherp’ > q orq’ < —p. By symmetry we may
assume that- p’ > g. This inequality implies that

(2.33) p < —q
and thatly’ > —p’ > q > —p. From the latter inequality we obtain
(2.34) —q' < p.

Adding (2.33) and (2.34), we obtain a contradiction with (2.32), and the
proposition follows.

Corollary 2.35. If « andp are inA U {0} anda + B8 # O, then
[9a> 8] = Gass-

PrOOF. Without loss of generality, let # 0. Proposition 2.5¢ shows
that

(236) [Ga’ gﬂ] g 9a+/3'

We are to prove that equality holds in (2.36) We consider cases.

If 8is an integral multiple of and is not equal te-«, then Proposition
2.21 shows thas must bex or 0. If 8 = «, theng, .z = 0 by Proposition
2.21, and hence equality must hold in (2.36) 81& 0, then the equality
[b, g.] = g. Says that equality holds in (2.36).

If g is not an integral multiple af, then Proposition 2.29b is applicable
and shows thasl, acts irreducibly ong’ = @, _; 9sne- Making the
identification (2.27) and matching data with Theorem 1.66, we see that
the root vectorsEg, ., except for constant factors, are the vectgrsf

Theorem 1.66. The onlyfor whiche = 8 é) mapsvi to 0 isi = 0, and

vp corresponds tdes,q,. Thus fg., gs] = O forcesq = 0 and says that
B +aisnotaroot. Inthis casg,.s = 0, and equality must hold in (2.36).

Corollary 2.37. Let « and 8 be roots such thgé + na is never 0
forn € Z. LetE,, E_,, andEgz be any root vectors fox, —«, andg,
respectively, and lgp andq be the integers in Proposition 2.29a. Then

_ql+p)

[E—a’ [Eou Eﬁ]] - 2 a(Ha)B(Ea’ E—a)Eﬁ-
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PROOF. Both sides are linear ik, and E_,, and we may therefore
normalize them as in Corollary 2.25 so th&tE,, E_,) = 1. If we then
make the identification (2.27) of the span{éf,, E,, E_,} with s((2, C),
we can reinterpret the desired formula as
» g1+ p)

O e e 2 X R anE,,

i.e., as
[f’ [e’ Eﬁ]] = q(1+ p)Eﬁ

From Proposition 2.29b, the action of the sparilafe, f} ong’ is irre-
ducible. The vectoEg,4, corresponds to a multiple of the vectay in
Theorem 1.66. SincEg is a multiple of(ad f)9E;. 44, Eg corresponds to
a multiple ofvg. By (d) and then (c) in Theorem 1.66, we obtain

(adf)(ade)Es; = q(N — g + 1) Eg,

whereN =dimg'—1=(g+p+1) —1. Thengq(N—g+1) = q(1+ p),
and the result follows.

Corollary 2.38. LetV be theR linear span ofA in h*. ThenV is areal
form of the vector spack®, and the restriction of the bilinear forfn, -)
toV x V is a positive-definite inner product. Moreoverpif denotes the
R linear span of alH, for ¢ € A, thenb, is a real form of the vector space
b, the members of are exactly those linear functionals that are real on
ho, and restriction of the operation of those linear functionals fhaimbh,
is anR isomorphism oV ontob;,.

REMARK. The proof will make use of Corollary 2.24, which was the only
result so far that used any properties of the Killing form other thanBhat
a nondegenerate symmetric invariant bilinear form. The present corollary
will show that B is positive definite or)o, and then Corollary 2.24 will
no longer be needed. The remaining theory for complex semisimple Lie
algebras in this chapter goes througBiis replaced by any nondegenerate
symmetric invariant bilinear form that is positive definite lpjn Because
of Theorem 2.15, once such a fofnis positive definite on the real form
ho of the Cartan subalgebfg it is positive definite on the corresponding
real form of any other Cartan subalgebra.

ProoF. Combining Corollary 2.24 with the definition (2.28), we obtain
(2.39) (¢, %) = B(H,, Hy) =Y BH)B(Hy) =) (B, 9)(B, V)

BeA BeA
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forall ¢ andy in h*. Leta be aroot, and leps andg, be the integerg and
g associated to the string containings in Proposition 2.29a. Specializing
(2.39) top = ¥ = «a gives

(@) =Y (B =) [(Ps — Gp) 3 (e, )]

BeA BeA
Since(a, ) # 0 according to Lemma 2.18c, we obtain
4
(o, a) =

B ZﬁeA (pﬁ - qﬁ)z’
and thereforda, o) is rational. By Lemma 2.18b,

(2.40) B(H,) is rational for alle andg in A.

Letdimc b =|. By Proposition 2.17e we can chods®otsas, .. ., o
such thatH,,, ..., H,, is a basis ofy overC. Letwy, ..., » be the dual
basis ofy* satisfyingw; (H,,) = &;j, and letV be the real vector space of all
members oh* that are real on all oH,,, ..., H,. ThenV = EB;:l Rowj,
and it follows thatV is a real form of the vector spaég. By (2.40) all
roots are inV. Sinceay, ..., o are already linearly independent oy
we conclude thaV is theR linear span of the roots.

If ¢ isinV, theng(Hp) is real for each roog. Since (2.39) gives

(0. 0) =Y (B, 9)° =) p(Hp)?
BeA BeA
we see that the restriction ¢f, -) to V x V is a positive-definite inner
product.

Now leth, denote theR linear span of alH, fora € A. Sincep — H,
is an isomorphism adf* with b carryingV to ho, it follows thath, is a real
form of h. We know that the real linear span of the roots (naméyhas
real dimensior, and consequently the real linear span otllifor o € A
has real dimensioh SinceH,, ..., H,, is linearly independent ov, it
is a basis of)g overR. HenceV is the set of members ¢f that are real on
all of ho. Therefore restriction fror to b is a vector-space isomorphism
of V ontohj.

Let| - |? denote the norm squared associated to the inner product
onhg x hi. Leta be aroot. Relative to the inner product, we introduce the
root reflection
2(p, )

|or|?
This is an orthogonal transformation o}y is —1 onRe, and is+1 on the
orthogonal complement of.

S(@) =9 — a  forg e b;.
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Proposition 2.41. For any rootx, the root reflectiors, carriesA into
itself.

PROOF. Let8 be inA, and letp andq be as in Proposition 2.29a. Then

2(B, )

| |?

SB=8- a=B—-—(P—Qa=+(Q—-pa

Since—p<qg-p=<q, B+ (q— peisinthea string containings.
Hences, S is aroot or is 0. Since, is an orthogonal transformation @,
s.Bis not 0. Thuss, carriesA into A.

5. Abstract Root Systems

To examine roots further, it is convenient to abstract the results we have
obtained so far. This approach will allow us to work more easily toward
a classification of complex semisimple Lie algebras and also to apply the
theory of roots in a different situation that will arise in Chapter VI.

An abstract root systemin a finite-dimensional real inner product space

V with inner product( -, -) and norm squaref - |? is a finite setA of
nonzero elements &f such that
(i) A spansv,
) . 2(p, o)
(i) the orthogonal transformatiorss(¢) = ¢ — al? a,fora € A,
o
carry A to itself,
L 2B, a) . . .
(i) e is an integer whenever andg are inA.
o

An abstract root system is said to texlucedif « € A implies 2x ¢ A.
Much of what we saw in 84 can be summarized in the following theorem.

Theorem 2.42.The root system of a complex semisimple Lie alggbra
with respect to a Cartan subalgelyriorms a reduced abstract root system

in b

PrROOF With V = g, V is an inner product space spanned/Ayas
a consequence of Corollary 2.38. Property (ii) follows from Proposition
2.41, and property (iii) follows from Proposition 2.29a. According to
Proposition 2.21, the abstract root systans reduced.
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As a consequence of the theorem, the examples of 81 give us many
examples of reduced abstract root systems. We recall them here and tell
what names we shall use for them:

(2.43)
Vector Space Root System g
PRET
A, | V=1 with A={e—¢g|i#]} slin+1,C)
> ag =0
— [y a A={te teg|i#]}
B | V={X_,a8]} U te) s0(2n+1, C)
Co|V={Y",a A={te g |i#]} n.C
{Xil.ae] O pkoe sp(n, ©)
0 | V={Xla8e} A={+e+g|i#]j} | so2n, C)

Some 2-dimensional examples of abstract root systems are given in
Figure 2.2. All but(BC), are reduced. The systef & A, arises as the
root system fos[(2, C) @ sl(2, C).

We say that two abstract root systemms V andA’ in V' areisomorphic
if there is a vector-space isomorphism\éfonto V'’ carrying A onto A’
and preserving the integer$® o) /|«|? for « andg in A. The systems,
andC, in Figure 2.2 are isomorphic.

An abstract root system is said to beeducible if A admits a nontrivial
disjoint decompositiol = A" U A” with every member oA’ orthogonal
to every member oAA”. We say thatA is irreducible if it admits no such
nontrivial decomposition. In Figure 2.2 all the abstract root systems are
irreducible exceptd; @ A;. The fact that this root system comes from
a complex semisimple Lie algebra that is not simple generalizes as in
Proposition 2.44 below.

Proposition 2.44. The root systemA of a complex semisimple Lie
algebrag with respect to a Cartan subalgebris irreducible as an abstract
reduced root system if and onlygfis simple.

PROOF THAT A IRREDUCIBLE IMPLIES g SIMPLE. Suppose thag is a
nontrivial direct sum of ideal§ = g’ ®g”. Letw be aroot, and decompose
the corresponding root vecté&, accordingly a£, = E, + E/. ForH in
b, we have

0=[H, E] —a(H)E, = (H, E]] —a(H)E) + ([H, E]] —a(H)E)).
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Sinceg’ andg” are ideals and have 0 intersection, the two terms on the
right are separately 0. Thus, andE/ are both in the root spagg. Since
dimg, =1,E, =00rE, =0. Thusg, € g’ org, C g". Define
A'={aeAlg, Cg}
A'={aeAlg, Cg"})
What we have just shown about (2.45) is that= A’U A” disjointly. Now
with obvious notation we have

o' (He) By = [Har, Eo] € [Her, g1 = [[Eor, E-or], g1 S [¢7, 0] =0,

and thusy'(H,») = 0. HenceA’ andA” are mutually orthogonal.

(2.45)

Al A A,
Bg CZ
(BC)2 G,

FIGURE 2.2. Abstract root systems with = R?
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PROOF THAT g SIMPLE IMPLIES A IRREDUCIBLE. Suppose thah =
A’ U A” exhibits A as reducible. Define

g =) {CHy+ g+ 90}

acA’

0'=) {CH.+ga+9-u).

acA”

Theng’ andg” are vector subspacesgfandg = g’ @ g” as vector spaces.
To complete the proof, it is enough to show thaandg” are ideals iry. It
is clear that they are Lie subalgebras. kbin A’ anda” in A”, we have

(2.46) M., E.] = a"(Hy)E, =0

by the assumed orthogonality. Also #[, g.] # 0, thena’ + «” is a root
that is not orthogonal to every member &f (o’ for instance) and is not
orthogonal to every member o&f” («” for instance), in contradiction with
the given orthogonal decomposition &f We conclude that

(247) Iga’v ga”] =0.

Combining (2.46) and (2.47), we see thgt p,-] = 0. Since ', h] C ¢
and sincey’ is a subalgebray’ is an ideal ing. Similarly g” is an ideal.
This completes the proof.

EXAMPLE. Letg = so(4, C) with notation as in 81. The root system is
A = {£e &} Ifwe putA’ = {+(e, — &)} andA” = {£(e; + &)},
thenA = A’ U A” exhibitsA as reducible. By Proposition 2.4gk(4, C)
is not simple. The root system is isomorphicAo® A;.

We extend our earlier definition abot string to the context of an
abstract root systemh. Fora € A andp € A U {0}, the« string
containing 8 is the set of all members d@f U {0} of the formg + na with
n € Z. Figure 2.1 in 84 showed examples of root strings. In the system
G, as pictured in Figure 2.2, there are root strings containing four roots.

If o is a root anc%a is not a root, we say that is reduced

Proposition 2.48.Let A be an abstract root system in the inner product
spaceV.

(@) Ifaisin A, then—a isin A.
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(b) If ¢ is in A and is reduced, then the only membersfofU {0}
proportional toa are +«, £2«, and 0, and-2« cannot occur ifA is
reduced.

(c) Ifaisin A andpB isin A U {0}, then

2(B, )

|or|?

=0, £1, £2, £3, or =4,

and=+4 occurs only in a nonreduced system with= 2.

(d) If « and 8 are nonproportional members af such thafe| < |8],
2(B, a)

2

(e) If « andp are inA with («, 8) > 0, thena — B is aroot or 0. Ifw
andg are inA with («, 8) < 0, thena + B is a root or 0.

(N If « andg are inA and neither + 8 nora — B isin A U {0}, then
(o, B) = 0.

(9) If ¢ isin A andg is in A U {0}, then thex string containing3 has

the formgB + na for —p < n < g with p > 0 andq > 0. There are no
2(B, )

| |?

then equals 0 oH1 or —1.

gaps. Furthermore — q =

. The string containing3 contains
at most four roots.

PROOF

(a) This follows sinces, (¢) = —a.

(b) Leta be inA, and letca be inA U {0}. We may assume thats# 0.
Then 2ca, a)/|a|? and 2a, ca)/|ca|? are both integers, from which it
follows that Z and Z/c are integers. Since # i%, the only possibilities
arec = +1 andc = £2, as asserted. A is reducedc = +2 cannot
occur.

(c) We may assume th@t=£ 0. From the Schwarz inequality we have

‘2(04,,3) 2a, ﬁ)‘
> |BI?

with equality only if 8 = ca. The case of equality is handled by (b).

2 2
If strict equality holds, then <a’|2ﬂ> (@, f> are two integers whose
o

product is< 3 in absolute value. The result follows in either case.
(d) We have an inequality of integers

}2<a, ) ‘ . ‘2<a, B)

1BI?

<

and

’

|ox|?
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and the proof of (c) shows that the product of the two sides3s Therefore
the smaller side is O or 1.

(e) We may assume that and 8 are not proportional. For the first
2<a’2ﬂ> B must
bea — B, by (d). Soa — gisin A. If |B] < |«| instead, we find that
s(B) = B —aisin A, and thenx — B isin A as a consequence of (a).
For the second statement we apply the first statemeniito

(f) This is immediate from (e).

(g) Let— p andg be the smallest and largest valuesiaiuch thapg + na
isin A U {0}. If the string has a gap, we can findands withr <s—1
suchtha +raisin AU {0}, B+ (r + Do andB + (s — D)« are notin
A U {0}, andg + sa isin A U {0}. By (e),

statement, assume that| < |8|. Thenss(«) = o —

(B+ra,a)=>0 and (B +sa, o) <O.

Subtracting these inequalities, we obtéin- s)|«|?> > 0, and thus > s,
contradiction. We conclude that there are no gaps. Next

2(,8+na,a)a:ﬂ_<n+2(ﬂ,oz)>a

lor|? l|?

S(B+na) =+ na —

2
andthus—-p <n <qgimplies—q <n+ <|ﬂ’|g> < p. Takingn = g and
o
thenn = — p, we obtain in turn
2 2
. ) <p-—q andthen p—q=< <’3’a>.
|oe|? |2

Thus 28, a)/|a|?> = p — q. Finally, to investigate the length of the string,
we may assumeg = 0. The length of the string is thep + 1, with

p = 2(B,a)/|lal?>. The conclusion that the string has at most four roots
then follows from (c) and (b).

We now introduce a notion of positivity iN that extends the notion
in the examples in 81. The intention is to single out a subset of nonzero
elements ol aspositive, writing ¢ > 0 if ¢ is a positive element. The
only properties of positivity that we need are that
(i) for any nonzerap € V, exactly one ofp and—g is positive,
(ii) the sum of positive elements is positive, and any positive multiple
of a positive element is positive.
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The way in which such a notion of positivity is introduced is not important,
and we shall give a sample construction shortly.

Wesaythap > ¥ ory < ¢if o— ispositive. Then- defines asimple
ordering onV that is preserved under addition and under multiplication by
positive scalars.

One way to define positivity is by means ofexicographic ordering.

Fix a spanning set,, . . ., ¢, 0f V, and define positivity as follows: We say
thate > Qifthere exists an indeiksuch thaty, ¢;) = 0forl<i <k-1
and{gp, ¢) > 0.

A lexicographic ordering sometimes arises disguised in a kind of dual
setting. To use notation consistent with applications, think/codis the
vector space dual of a spagg and fix a spanning seéd,, ..., Hy, for hq.
Then we say thap > O if there exists an indek such thaty(H;) = 0 for
1<i<k-1andg(Hy) > 0.

Anyway, we fix a notion of positivity and the resulting ordering %r
We say that a roak is simpleif « > 0 and ife does not decompose as
a = B+ B, with 8, andgB, both positive roots. A simple root is necessarily
reduced.

Proposition 2.49. With | = dimV, there ard simple rootsx, ..., o,
and they are linearly independent. Afis a root and is written ag =
X1 + - - - + X o, then all thex; have the same sign (if O is allowed to be
positive or negative), and all the are integers.

REMARKS. Once this proposition has been proved, any positive oot
can be written ag = Z::1 n;o; with eachn; an integer> 0. The integer
Z::l n; is called thelevel of « relative to{a;, ..., o} and is sometimes
used in inductive proofs. The first example of such a proof will be with
Proposition 2.54 below.

(2.50)
Positive Roots Simple Roots

A, e—¢g,i<]j € —€, 6—6,...,6— €4
+e withi < j

B, | © e <! e — € &—6,...,6.1— 6, &
+ e withi i

Cy | © ' e < & — & &—6,....6_1— 6, 26

Dn| etgwithi <] |e—e,....8 26 1, 81—, €116
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Before coming to the proof, let us review the examples in (2.43), which
came from the complex semisimple Lie algebras in §1. In (2.50) we recall
the choice of positive roots we made in 81 for each example and tell what
the corresponding simple roots are.

Lemma 2.51.If « and g are distinct simple roots, then— g is not a
root. Henceg, 8) < 0.

PROOF. Assuming the contrary, suppose that g is aroot. Ifa — 8 is
positive, therw = (@ — B) + B exhibitsa as a nontrivial sum of positive
roots. Ifa — B is negative, thep = (8 — o) + « exhibitsg as a nontrivial
sum of positive roots. In either case we have a contradiction. hug
is not a root, and Proposition 2.48e shows tlaais) < O.

PROOF OFPROPOSITION2.49. LetB > 0 be inA. If B8 is not simple,
write 8 = B, + B, with B, and 8, both positive inA. Then decompose
B1 and/or 8,, and then decompose each of their components if possi-
ble. Continue in this way. We can list the decompositions as tuples
(B, B1, component of3,, etc) with each entry a component of the previous
entry. The claim is that no tuple has more entries than there are positive
roots, and therefore the decomposition process must stop. In fact, otherwise
some tuple would have the same> 0 in it at least twice, and we would
havey = y +«a with @ a nonempty sum of positive roots, contradicting the
properties of an ordering. Thysis exhibited a8 = X1 + « - - + X
with all x; positive integers or 0 and with aljj simple. Thus the simple
roots span in the fashion asserted.

Finally we prove linear independence. Renumberingf® suppose
that

X101 + -+ -+ Kslls — Xsy10s41 — -+ — Xm@m = 0

with all x; > 0inR. Putg = xj01 + - - - 4+ Xsas. Then

0=<(B.B) = <Z X, Z XkOtk> = ijxk(aj,ak) <0.
= T K

k=s+1

the last inequality holding by Lemma 2.51. We conclude tisai3) = 0,
g = 0, and all thex;'s equal O since a positive combination of positive
roots cannot be 0.

For the remainder of this section, we fix an abstract root sygteand
we assume thai is reduced. Fix also an ordering coming from a notion of
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positivity as above, and |€1 be the set of simple roots. We shall associate
a “Cartan matrix” to the systerfi and note some of the properties of this
matrix. An “abstract Cartan matrix” will be any square matrix with this
list of properties. Working with an abstract Cartan matrix is made easier
by associating to the matrix a kind of graph known as an “abstract Dynkin
diagram.”

Enumeratdl asIl = {«y, ..., o}, wherd = dimV. Thel-byd matrix
A = (A)) given by
2(Oli y Clj)

log; |2

Aj =

is called theCartan matrix of A andIl. The Cartan matrix depends on
the enumeration offT, and distinct enumerations evidently lead to Cartan
matrices that are conjugate to one another by a permutation matrix.

For the examples in Figure 2.2 with dvh= 2, the Cartan matrices are
of course 2-by-2 matrices. For all the examples exGpan enumeration
of the simple roots is given in (2.50). F@ let us agree to list the short
simple root first. Then the Cartan matrices are as follows:

mon (2 9)
~ (43
« (573
o (2
= (17%)

Proposition 2.52. The Cartan matriXA = (A;;) of A relative to the set
IT of simple roots has the following properties:

(@) AjisinZforalli andj,

(b) A; =2foralli,

(c) Aj <O0fori # j,

(d) Ajj =0ifandonlyifA; =0,

(e) there exists a diagonal matiixwith positive diagonal entries such

thatD AD~! is symmetric positive definite.
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PROOF. Properties (a), (b), and (d) are trivial, and (c) follows from
Lemma 2.51. Let us prove (e). Put

(2.53) D =diag(|al, ..., | ),
sothatDAD! = (2<|a—'| |a—‘|>> This is symmetric, and we can discard
(04 o

the 2in checking positivity. But{g;, ¢;)) is positive definite whenevégyp; }
is a basis, since

C
e (e | ] =1 anl
G i

The normalized simple roots may be taken as the hasi§ V, according
to Proposition 2.49, and the result follows.

A square matrixA satisfying properties (a) through (e) in Proposition
2.52 will be called amabstract Cartan matrix. Two abstract Cartan
matrices arésomorphic if one is conjugate to the other by a permutation
matrix.

Proposition 2.54. The abstract reduced root systewnis reducible if
and only if, for some enumeration of the indices, the Cartan matrix is block
diagonal with more than one block.

PROOF. Suppose that = A’ U A” disjointly with every member of
A’ orthogonal to every member &f’. We enumerate the simple roots by
listing all those inA’ before all those im\”, and then the Cartan matrix is
block diagonal.

Conversely suppose that the Cartan matrix is block diagonal, with the
simple rootsa;, ..., as leading to one block and the simple roots
as.1, ..., o leading to another block. Let’ be the set of all roots whose
expansion in terms of the basis, ..., «, involves onlyay, ..., as, and
let A” be the set of all roots whose expansion involves eqly, . .., ;.
Then A" and A” are nonempty and are orthogonal to each other, and it
is enough to show that their union4s. Leta € A be given, and write
o = Z::l n;a;. We are to show that either = O fori > sorn; = O for
i < s. Proposition 2.49 says that all the are integers and they have the
same sign. Without loss of generality we may assumectligpositive, so
that alln; are> 0.
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We proceed by induction on the levgl_, n,. If the sum is 1, then
a = «; for somej. Certainly eithen; = O fori > sorn, =0fori <s.
Assume the result for level— 1, and let the level be > 1 for«. We have

[
0< af*= Zni<aaai>7
i—1

and thereforde, oj) > 0 for somej. To fix the notation, let us say that
1 < j <s. By Proposition 2.48ey — «; is a root, evidently of levah — 1.
By inductive hypothesisy —«; isin A’ or A”. If @ — ¢ isin A’, thenw is

in A’, and the induction is complete. So we may assumedthaty; is in
A”. Then(a — «j, ;) = 0. By Proposition 2.48g, the, string containing
a —«; hasp = q, and this number must e 1 sincex is a root. Hence
o — 205 isin A U {0}. We cannot have — 2«; = 0 sinceA is reduced,
and we conclude that the coefficientgfin « — «; is > 0, in contradiction
with the assumption that — «; is in A”. Thuse — «; could not have been
in A”, and the induction is complete.

Motivated by Proposition 2.54, we say that an abstract Cartan matrix
is reducible if, for some enumeration of the indices, the matrix is block
diagonal with more than one block. Otherwise the abstract Cartan matrix
is said to bearreducible.

If we have several abstract Cartan matrices, we can arrange them as the
blocks of a block-diagonal matrix, and the result is a new abstract Cartan
matrix. The converse direction is addressed by the following proposition.

Proposition 2.55. After a suitable enumeration of the indices, any
abstract Cartan matrix may be written in block-diagonal form with each
block an irreducible abstract Cartan matrix.

ProoF. Call two indices and|j equivalent if there exists a sequence of
integers = Ko, Ky, ..., K_1,k = j suchthatA,_  #0forl<s<r.
Enumerate the indices so that the members of each equivalence class appear
together, and then the abstract Cartan matrix will be in block-diagonal form
with each block irreducible.

To our setlT of simple roots for the reduced abstract root systentet
us associate a kind of graph known as a “Dynkin diagram.” We associate to
each simple roat; a vertex of a graph, and we attach to that vertex a weight
proportional tolo; |2. The vertices of the graph are connected by edges as
follows. If two vertices are given, say corresponding to distinct simple
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rootsa; ande;j, we connect those vertices ldy; A;; edges. The resulting
graph is called thé®ynkin diagram of I1. It follows from Proposition
2.54 thatA is irreducible if and only if the Dynkin diagram is connected.
Figure 2.3 gives the Dynkin diagrams for the root systésmsB,,, C,, and
D, when the simple roots are chosen as in (2.50). Figure 2.3 shows also
the Dynkin diagram for the root syste@, of Figure 2.1 when the two
simple roots are chosen so that| < |as|.

Let us indicate how we can determine the Dynkin diagram almost com-
pletely from the Cartan matrix. The key is the following lemma.

Lemma 2.56.Let Abe an abstract Cartan matrix in block-diagonal form
with each block an irreducible abstract Cartan matrix. Then the associated
diagonal matrixD given in the defining property (e) of an abstract Cartan
matrix is unique up to a multiplicative scalar on each block.

PROOF. Suppose thaD andD’ are two diagonal matrices with positive
diagonal entries such th& = DAD~! andP’ = D’AD’~! are symmet-
ric positive definite. TherP and P’ = (D’'D-1)P(D’'D~!)~! are both
symmetric. WriteD'D~! = diag(b;, ..., by). For anyi andj, we have

biPib* = Pj =P =bPib™ =bRb™
Thus eitherP; = 0 orby = by, i.e.,
(257) Aij =0 or b= bj.

If i andj are inthe same block &, then there exists a sequence of integers
i = Ko, K, ..., K_1,k = J such thatA,_ # Oforl<s <r. From
(2.57) we obtain

b=b,=b,=-=b_ =b, =h.

Thus the diagonal entries & are proportional to the diagonal entries of
D within each block forA.

Returning to a Cartan matrix arising from the abstract reduced root
systemA and the sefl of simple roots, we note that the numbe¥sA;;
available from the Cartan matrix determine the numbers of edges between
vertices in the Dynkin diagram. But the Cartan matrix also almost com-
pletely determines the weights in the Dynkin diagram. In fact, (2.53) says
that the square roots of the weights are the diagonal entries of the matrix
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D of Proposition 2.52e. Lemma 2.56 says tltais determined by the
properties ofA up to a multiplicative scalar on each irreducible block,
and irreducible blocks correspond to connected components of the Dynkin
diagram. Thus by usiné, we can determine the weights in the Dynkin
diagram up to a proportionality constant on each connected component.
These proportionality constants are the only ambiguity in obtaining the
Dynkin diagram from the Cartan matrix.

An
1 1 1 1
O O O—---—0
G- -6 &—-§& € — €1
By
2 2 2 2 1
O O O - —C—0O
-6 6—-6 &6 €1~ €n €n
Cs
1 1 1 1 2
O O O—---—C—20
G- -6 &—-& €h-1— & 2e,
D, 1
1 1 1
O O O—---
-6 -6 &—-&
G2 €1 — &
1 3
c—0

FIGURE 2.3. Dynkin diagrams foA,, By, C,,, Dy, G»
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The same considerations allow us to associate an “abstract Dynkin di-
agram” to an abstract Cartan matx If A has sizd-by-, theabstract
Dynkin diagram is a graph with vertices, thé" and j" vertices being
connected byA;; A;i edges. ID is the matrix given in defining property (e)
of an abstract Cartan matrix in Proposition 2.52, then we assign a weight
to the vertex equal to the square of thé& diagonal entry ofD. ThenA
by itself determines the abstract Dynkin diagram up to a proportionality
constant for the weights on each connected component.

Finally let us observe that we can recover an abstract Cartan matrix
A from its abstract Dynkin diagram. Let the system of weightgbg.

First suppose there are no edges fromitheertex to thej ™ vertex. Then
Aj A = 0. SinceAj; = Oifand only if A;; = 0, we obtainAj; = A;; = 0.

Next suppose there exist edges between theertex and thg ™ vertex.
Then the number of edges tells Ag A;;, while the symmetry oD AD*

says that

wi? A wfl/z = wjl/ZAjiwfl/Z,

i.e., that

A _w

Aj' N Wi '
Since Ajj and Aj; are < 0, the number of edges and the ratio of weights
together determindy; and A;;.

6. Weyl Group

Schematically we can summarize our work so far in this chapter as
constructing a two-step passage

(2.58)
complex abstract
. p choice of abstract reduced choice of
semisimple root svstem - Cartan
Lie algebra Cartan subalgebra y ordering matrix.

Each step of the passage relies on a certain choice, and that choice is listed
as part of the arrow. For this two-step passage to be especially useful,

we should show that each step is independent of its choice, at least up to
isomorphism. Then we will have a well defined way of passing from a
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complex semisimple Lie algebra first to an abstract reduced root system
and then to an abstract Cartan matrix.

We can ask for even more. Once (2.58) is shown to be well defined
independently of the choices, we can try to show that each step is one-one,
up to isomorphism. In other words, two complex semisimple Lie algebras
with isomorphic abstract reduced root systems are to be isomorphic, and
two abstract reduced root systems leading to isomorphic abstract Cartan
matrices are to be isomorphic. Then we can detect isomorphisms of com-
plex semisimple Lie algebras by using Dynkin diagrams.

Finally we can ask that each step of the two-step passage be onto.
In other words, every abstract reduced root system, up to isomorphism,
is to come from a complex semisimple Lie algebra, and every abstract
Cartan matrix is to come from an abstract reduced root system. Then a
classification of abstract Cartan matrices will achieve a classification of
complex semisimple Lie algebras.

We begin these steps in this section, starting by showing that each step
in (2.58) is well defined, independently of the choices, up to isomorphism.
For the first step, from the complex semisimple Lie algebra to the abstract
reduced root system, the tool is Theorem 2.15, which says that any two
Cartan subalgebras of our complex semisimple Lie algghra conjugate
via Intg. It is clear that we can follow the effect of this conjugating
automorphism through to its effect on roots and obtain an isomorphism
of the associated root systems.

For the second step, from the abstract reduced root system to the abstract
Cartan matrix up to isomorphism (or equivalently to the Bedf simple
roots), the tool is the “Weyl group,” which we study in this section.

Thus let A be an abstract root system in a finite-dimensional inner
product spac® . It will not be necessary to assume tiats reduced. We
letW = W(A) be the subgroup of the orthogonal groupsogenerated by
the reflections, for @« € A. This is theWeyl group of A. In the special
case thaiA is the root system of a complex semisimple Lie algghwath
respect to a Cartan subalgebrave sometimes writéV/ (g, §) for the Weyl
group.

We immediately see thaW is a finite group of orthogonal transforma-
tions of V. In fact, anyw in W maps the finite seA to itself. If w fixes
each element oA\, thenw fixes a spanning set &f and hence fixe¥ .

The assertion follows.
In addition, we have the formula

(2.59) S =rsrt
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for any orthogonal transformationof V. In fact,
20ro, ra) 2, a)
Sef@) =19 — =2 Era=rp - “8 B ra =r(s,0).
Ir e ||

As a consequence of (2.59)rifs in W andra = 8, then

(2.60) Sg=rs,r

EXAMPLES.

1) The root systems of types,, B, C,,, andD, are described in (2.43).
For A,, W(A) consists of all permutations &, ..., e,;. ForB, and
C., W(A) is generated by all permutations ef, ..., e, and all sign
changes (of the coefficients ef, ..., e,). For D,, W(A) is generated
by all permutations oé, ..., €, and all even sign changes.

2) The nonreduced abstract root systéI), is pictured in Figure 2.2.
For it, W(A) has order 8 and is the same group asBerandC,. The
group contains the 4 rotations through multiples of anglg®, together
with the 4 reflections defined by sending a root to its negative and leaving
the orthogonal complement fixed.

3) The reduced abstract root syst@&n is pictured in Figure 2.2. For
it, W(A) has order 12 and consists of the 6 rotations through multiples of
anglesr /3, together with the 6 reflections defined by sending a root to its
negative and leaving the orthogonal complement fixed.

Introduce a notion of positivity withi®v, such as from a lexicographic
ordering, and len" be the set of positive roots. The g&t determines a
setll = {«q, ..., o} of simple roots, and in turfil can be used to pick out
the members oA* from A, since Proposition 2.49 says that the positive
roots are those of the form= ), njo; with all n; > 0.

Now suppose thdll = {«q, ..., o} is any set of independent reduced
elementsy; such that every expression of a membeof A as) . G
has all nonzera; of the same sign. We calll a simple system Given
a simple systenil, we can defineA" to be all roots of the forn} . ciw
with all ¢ = 0. The claim is thaiA" is the set of positive roots in some
lexicographic ordering. In fact, we can use the dual basigpto get
such an ordering. In more detail{;, ;) = & and if j is the first index
with (o, w;) nonzero, then the fact théat, w;) = ¢; is positive implies that
« is positive.

Thus we have an abstract characterization of the posHilsi¢hat can
arise as sets of simple roots: they are all possible simple systems.
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Lemma 2.61.LetIT = {«a, ..., o} be a simple system, and let> O
beinA. Then
()is{:_a if 0 =a; Ora = 2¢;
(O
S >0 otherwise.

PROOF. If @ =} ¢, then
|
2{a, o)
S (O[) = ;Cjaj — —Iai|2 .

If at least oneg; is > O for j # i, thens, («) has the same coefficient for
o thata does, and,, () must be positive. The only remaining case is that
a is a multiple ofe;, and thenx must bey; or 2x;, by Proposition 2.48b.

Proposition 2.62. Let IT = {ay, ..., o} be a simple system. Then
W(A) is generated by the root reflectiogs for «; in I1. If « is any
reduced root, then there exigt € IT ands € W(A) such thase; = «.

PrROOF. We begin by proving a seemingly sharper form of the second
assertion. LeWW’ € W be the group generated by tye for «; € I1. We
prove that any reduced roet> 0 is of the formse; with s € W’. Writing
« = ) njo;, we proceed by induction on level) = )" n;. The case of
level one is the case of = «; in I1, and we can take = 1. Assume the
assertion for levek level(«), let levelo) be> 1, and writew = ) nj«;.
Since

0<|x®>= Zn,— (o, o),
we must havéy, «;) > 0forsomé = i,. By our assumptions is neither
aj, Nor ;. Theng = s, («) is > 0 by Lemma 2.61 and has

2(c, i)
B = ;;n,aj + (CIO PAE )a,o.
Since(w, a;,) > 0, level ) < level(a). By inductive hypothesigi = S'g;
for somes’ € W’ and some index. Thena = s, = 5, So; with s, S
in W'. This completes the induction.

If « < 0, then we can write-a = so;j, and it follows thar = ss,, «;.
Thus each reduced membewof A is of the forms'«; for somes’ € W’
and somey; € II.

To complete the proof, we show that eaghforo € A, isinW’. There
is no loss of generality in assuming thats reduced. Writex = so; with
s € W'. Then (2.60) shows that = ss, s*, which is inW'. SinceW is
generated by the reflectiogsfor« € A, W C W andW = W',
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Theorem 2.63.If IT andIT’ are two simple systems fak, then there
exists one and only one elemen¢ W such thasIT = IT'.

PROOF OF EXISTENCE Let AT and A™’ be the sets of positive roots in
question. We haveéA™| = |AT| = %|A|, which we write agy. Also
At = A" ifand only if IT = IT', andA* # A" impliesIT ¢ A" and
I ¢ A*. Letr = |AT N A*™|. We induct downward on, the case = q
being handled by using= 1. Letr < q. Choosey; € IT with o; ¢ AT,
sothat-«; € A", If Bisin AT N A, thens, Bisin A* by Lemma 2.61.
Thuss, Bisin At Ns, A™. Alsoo; = s, (—) ISin AT Ns, A*. Hence
IAT Ns, AT > 1 + 1. Nows, A" corresponds to the simple system
s, IT’, and by inductive hypothesis we can find W with tIT = s, IT'.
Thens, tIT = IT’, and the induction is complete.

PROOF OF UNIQUENESS We may assume thall = II, and we are to
prove thats = 1. Write IT = {a3, ..., o}, and abbreviatg, ass;. For
s=s5,-S,, we prove by induction om thatsIT = IT impliess = 1.
If m =1, thens = s, andsw;, < 0. If m = 2, we obtains,IT = §,II,
whence—q;, is in§,IT and so—«j, = —«;,, by Lemma 2.61; hence= 1.
Thus assume inductively that

(2.64) tlI=Mwitht=s, ---5,andr <m implies t=1,

andlets =g, ---s, satisfysIT = IT with m > 2.

Puts =s, ,---s,,sothats =15, s. Thens # 1 by (2.64) fort =5,,.
Also So; < 0 for somej by (2.64) applied td = s'. The latter fact,
together with

S,Sao; =sa; > 0.
says that-«;, = S«oj, by Lemma 2.61. Also if > 0 ands'8 < 0, then
S8 = —Ca;, = S'(Ce;), SO thatp = ca; with ¢ = 1 or 2. Thuss' satisfies
() Soj = —a,

(i) s'B > 0 for every positives € A other tharny; and 2y;.

Nows, ,---S,f = —aj, < 0 by (i). Choosek so thatt = s, -5,
satisfiesto; > 0 ands,te; < 0. Thente; = «;,. By (2.60),tst™ = 5,.
Hencets; = s, t.

Putt’' =s_ ,---S,,,, sSothats’ = t's,t = t'ts. Thent't = s's;. Now

o > 0 anda # coj imply S = g > 0 with 8 # co;. Thus

t'ta =Ssa =58>0 by (ii)
and t'to; =S(—o) =, >0 by (i).
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Hencet'tIT = II. Now t't is a product ofm — 2 5’s. By inductive
hypothesist't = 1. Thens's = 1,8 =5, ands =5,S = §,5. Since
(2.64) has been proved for= 2, we conclude that = 1. This completes
the proof.

Corollary 2.65. In the second step of the two-step passage (2.58), the
resulting Cartan matrix is independent of the choice of positive system, up
to permutation of indices.

PrROOF. LetITandIT’ be the simple systems that result from two different
positive systems. By Theorem 2.G3, = sI1 for somes € W(A). Then
we can choose enumeratiofis= {ay, ..., } andIl’ = {B4,..., B} SO
thatg; = sej, and we have

2(B:, B;) _ 2(sa;, Sarj) _ 2w, aj)
1B |2 |Sei |2 lox; |2

sinces is orthogonal. Hence the resulting Cartan matrices match.

Consequently our use of the root-system namgsB,, etc., with the
Dynkin diagrams in Figure 2.3 was legitimate. The Dynkin diagram is not
changed by changing the positive system (except that the names of roots
attached to vertices change).

This completes our discussion of the fact that the steps in the passages
(2.58) are well defined independently of the choices.

Letus take afirstlook at the uniqueness questions associated with (2.58).
We want to see that each step in (2.58) is one-one, up to isomorphism. The
following proposition handles the second step.

Proposition 2.66. The second step in the passage (2.58) is one-one, up
to isomorphism. That is, the Cartan matrix determines the reduced root
system up to isomorphism.

PROOF. Firstletus see thatthe Cartan matrix determines the set of simple
roots, up to a linear transformation df that is a scalar multiple of an
orthogonal transformation on each irreducible component. In fact, we may

assume thai is already irreducible, and we let, ..., o be the simple
roots. Lemma 2.56 and (2.53) show that the Cartan matrix determines
laa], ..., ly| Up to a single proportionality constant. Supp@se. .., §

is another simple system for the same Cartan matrix. Normalizing, we
may assume that;| = |g;| for all j. From the Cartan matrix we obtain
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2es) = 208 forall i andj and hencéa;, o)) = (B, ;) for alli andj.
In other words the linear transformatidndefined byL«; = §; preserves
inner products on a basis; it is therefore orthogonal.

To complete the proof, we want to see that theaet. . ., o, } of simple
roots determines the set of roots. Wt be the group generated by the
root reflections in the simple roots, and It = U;zl W'a;. Proposition
2.62 shows tha\’ = A and thatW’ = W(A). The result follows.

Before leaving the subject of Weyl groups, we prove some further handy
results. For the first result let us fix a systemi of positive roots and the
corresponding simple systeih We say that a memberof V isdominant
if (A\,) >0foralla € A*. Itis enough thati, «;) > O for all o; € 1.

Proposition 2.67.1f A is in V, then there exists a simple systémfor
which A is dominant.

PROOF. We may assumg =£ 0. Puty; = A and extend to an orthogonal
basisy,, ..., ¢ of V. Use this basis to define a lexicographic ordering and
thereby to determine a simple syst€m Thena is dominant relative t®l.

Corollary 2.68. If A isinV and if a positive system™ is specified,
then there is some elementof the Weyl group such that is dominant.
PrOOF. This follows from Proposition 2.67 and Theorem 2.63.

For the remaining results we assume thais reduced. Fix a positive
systemA ™, and lets be half the sum of the members af".

Proposition 2.69.Fix a positive system* for the reduced abstract root
systemA. If « is a simple root, theg,(§) = § — o and 24, a)/|a|? = 1.

PrROOF. By Lemma 2.61s, permutes the positive roots other thaand
sendsy to —«. Therefore

() =%(2 —a) + (@) = (W —a) —a =2(§ — ),
ands,(§) = § — a. Using the definition o§,, we then see that
2(8, ) /|eef* = 1.

Forwin W(A), letl (w) be the number of roots > 0 such thatva: < 0;
I (w) is called thelength of the Weyl group element relative toIl. In
terms of a simple systefl = {1, ..., o} and its associated positive
systemA™, let us abbreviatg, ass;.
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Proposition 2.70.Fix asimple systemll = {«;, ..., o} forthe reduced
abstract root systemfi. Thenl (w) is the smallest integdrsuch thatv can
be written as a produet = s, - - - §, of k reflections in simple roots.

REMARKS. Proposition 2.62 tells us thathas at least one expansion as
a product of reflections in simple roots. Therefore the smallest integer
cited in the proposition exists. We prove Proposition 2.70 after first giving
alemma.

Lemma 2.71. Fix a simple systenll = {«4, ..., o} for the reduced
abstract root system. If y is a simple root ana is in W(A), then

[(w) —1 ifwy <0

I(wsy):{l(w)+1 if wy > 0.

PROOF. If « is a positive root other thap, then Lemma 2.61 shows that
s,a > 0, and hence the correspondesge < « gives

#pB>0|p#yandws,p <0} =#a > 0| a # y andwa < 0}.

To obtainl (ws, ), we add 1 to the left side iby > 0 and leave the left side
alone ifwy < 0. To obtain (w), we add 1 to the right side ifiyy < 0 and
leave the right side alone iy > 0. The lemma follows.

PROOF OF PROPOSITION2.70. Writew = s, ---§, as a product ok
reflections in simple roots. Then Lemma 2.71 implies tkat < k.

To get the equality asserted by the proposition, we need to show that
if w sends exacthk positive roots into negative roots, themn can be
expressed as a productlofactorsw = s, - - - 5,. We do so by induction
onk. Fork = 0, this follows from the uniqueness in Theorem 2.63.
Inductively assume the result far— 1. If k > 0 andl(w) = k, thenw
must send some simple roef into a negative root. Set’ = ws;. By
Lemma 2.71l(w") = k— 1. By inductive hypothesigy’ has an expansion
w =8§,,---S,. Thenw =5, ---5,5, and the induction is complete.

Proposition 2.72(Chevalley’s Lemma). Let the abstract root systam
be reduced. Fix in V, and letW, = {w € W | wv = v}. ThenWj is
generated by the root reflectiogssuch thatv, o) = 0.

PrROOF. Choose an ordering with first, so that(8, v) > 0 implies
B > 0. Arguing by contradiction, choose € W, with | (w) as small as
possible so thai is not a product of elements with (v, ) = 0. Then
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I (w) > 0 by the uniqueness in Theorem 2.63. ket 0 be a simple root
such thatwy < 0. If (v, ) > 0, then

(v, wy) = (wv, wy) = (v, y) >0,

in contradiction with the conditiomwy < 0. Hence(v, y) = 0. Thatiss,

is in Wp. But thenws, is in W with [ (ws,) < I (w), by Lemma 2.71. By
assumptiorws, is a product of the required root reflections, and therefore
SO isw.

Corollary 2.73. Let the abstract root systera be reduced. Fix in V,
and suppose that some elementt 1 of W(A) fixesv. Then some root
is orthogonal ta.

PROOF. By Proposition 2.72y is the product of root reflectiorss such
that (v, @) = 0. Sincew # 1, there must be such a root reflection.

7. Classification of Abstract Cartan Matrices

In this section we shall classify abstract Cartan matrices, and then we
shall show that every abstract Cartan matrix arises from a reduced abstract
root system. These results both contribute toward an understanding of the
two-step passage (2.58), the second result showing that the second step of
the passage is onto.

Recall that an abstract Cartan matrix is a square matrix satisfying prop-
erties (a) through (e) in Proposition 2.52. We continue to regard two such
matrices as isomorphic if one can be obtained from the other by permuting
the indices.

To each abstract Cartan matrix, we saw in 85 how to associate an abstract
Dynkin diagram, the only ambiguity being a proportionality constant for the
weights on each component of the diagram. We shall work simultaneously
with a given abstract Cartan matrix and its associated abstract Dynkin
diagram. Operations on the abstract Cartan matrix will correspond to
operations on the abstract Dynkin diagram, and the diagram will thereby
give us a way of visualizing what is happening. Our objective is to classify
irreducible abstract Cartan matrices, since general abstract Cartan matrices
can be obtaining by using irreducible such matrices as blocks. But we do
not assume irreducibility yet.

We first introduce two operations on abstract Dynkin diagrams. Each
operation will have a counterpart for abstract Cartan matrices, and we shall
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see that the counterpart carries abstract Cartan matrices to abstract Cartan
matrices. Therefore each of our operations sends abstract Dynkin diagrams
to abstract Dynkin diagrams:

1) Remove thé™" vertex from the abstract Dynkin diagram, and remove
all edges attached to that vertex.

2) Suppose that thid" and j" vertices are connected by a single edge.
Then the weights attached to the two vertices are equal. Collapse the two
vertices to a single vertex and give it the common weight, remove the edge
that joins the two vertices, and retain all other edges issuing from either
vertex.

For Operation #1, the corresponding operation on a Cartan maitrix
is to remove thé™ row and column fromA. It is clear that the new
matrix satisfies the defining properties of an abstract Cartan matrix given
in Proposition 2.52. This fact allows us to prove the following proposition.

Proposition 2.74.Let A be an abstract Cartan matrix.ilg j, then
(@) AjA; <4,
(b) AjjisOor—1or—2or—3.

PROOF

(a) Let the diagonal matri® of defining property (e) be given by =
diag(dy, ..., d). Using Operation #1, remove all but ti¢ and j rows
and columns from the abstract Cartan ma#ixThen

d O 2 A difl 0
0 dj Aji 2 0 dj_l

is positive definite. So its determinantisO, andAj; A;i < 4.
(b) If Aj # 0, thenA;; # 0, by defining property (d) in Proposition
2.52. SinceAj; and A;; are integers< 0, the result follows from (a).

We shall return presently to the verification that Operation #2 is a legit-
imate one on abstract Dynkin diagrams. First we derive some more subtle
consequences of the use of Operation #1.

Let A be anl-by-l abstract Cartan matrix, and IBt = diag(d,, ..., d)
be a diagonal matrix of the kind in defining condition (e) of Proposition
2.52. We shall define vectoss € R' for 1 < i < | thatwill play the role of
simple roots. Let us writ® AD~! = 2Q. HereQ = (Qj) is symmetric
positive definite with 1's on the diagonal. LEX/? be its positive-definite
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square root. Define vectogse R' for 1 <i < | by ¢ = Q¥2g, whereg
is thei ™" standard basis vector & . Then

(9i, i) = (QY%e, QY%e) = (Qg, &) = Qij,
and in particulag; is a unit vector. Put

(2-75) o = difﬂi,
so that

(276) di = |O[i |
Then

Aj =2(D7'QD);j = 247 Qj;d|
= 2d7'd; (¢, ¢i) = 2d7dj(d ey, d7Mer)
20, 0lj>
g2
The vectorsy; are linearly independent since det£ 0.
We shall find it convenient to refer to a vertex of the abstract Dynkin
diagram either by its indexor by the associated vectay, depending on

the context. We may writéy; or A, ,,., for an entry of the abstract Cartan
matrix.

2.77)

[RCIESE

Proposition 2.78.The abstract Dynkin diagram associated tol thg-|
abstract Cartan matrik has the following properties:

(a) there are at mostpairs of vertices < j with at least one edge
connecting them,

(b) there are no loops,

(c) at most three edges issue from any point of the diagram.

PROOF.
. . |
(a) Withe; as in (2.75), putv = >,

(04 Qj
0<laf?= <——>
Z loi | Je
o o O
i <|Oli| |Oli|> .ZJ: logi | ey |
2(05i,0lj)
=+
Z |oti e |

i<]j

(2.79) =1->"J/AA;.

i<j

ﬂ. Then
o
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By Proposition 2.74,/A; A;; is 0 or 1 orv/2 or+/3. When nonzero, it is
therefore> 1. Therefore the right side of (2.79) is

<l - Z 1.

connected
Hence the number of connected pairs of vertices Is

(b) If there were a loop, we could use Operation #1 to remove all vertices
except those in a loop. Then (a) would be violated for the loop.

(c) Fixax = «o; as in (2.75). Consider the vertices that are connected
by edges to th&" vertex. Writep, ..., B, for theq;’s associated to these
vertices, and let there He, ..., |, edges to thé™ vertex. LetU be the
(r +1)-dimensional vector subspacel®fspanned by, .. ., B, «. Then
(Bi, By) = 0fori # j by (b), and henc¢p,/|B«l}i_, is an orthonormal
set. Adjoin§ € U to this set to make an orthonormal basid.af Then
(a,8) # 0 since{B, ..., B, a} is linearly independent. By Parseval’s
equality,

Bx 2 Bx
2 _ i 5)2
! ;<“ |ﬂk|> ) >Z< |ﬁk|>

and hence
1
> = =
Z Ial Iﬁ |2 “XK:

Thus)_, Ik < 4. This completes the proof.

We turn to Operation #2, which we have described in terms of abstract
Dynkin diagrams. Let us describe the operation in terms of abstract Cartan
matrices. We assume that; = A;; = —1, and we have asserted that the
weights attached to thé and j™ vertices, sayw; andw;, are equal. The
weights are given by, = d* andw; = d?. The symmetry oD AD~*
implies that

d Aijdjil =d Ajidiil,
hence thati* = d* andw; = w;. Thus
(2.80) Aj=Ai=-1 implies wi = wj.

Under the assumption th&; = A;; = —1, Operation #2 replaces the
abstract Cartan matri& of sizel by a square matrix of side- 1, collapsing
thei™ and j™" indices. The replacement row is the sum of ifieand j
rows of Ain entriesk ¢ {i, j}, and similarly for the replacement column.

The 2-by-2 matrix from thé" and ™" indices is( 31 ’21) within Aand gets
replaced by the 1-by-1 matri®).
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Proposition 2.81. Operation #2 replaces the abstract Cartan marix
by another abstract Cartan matrix.

PrROOF Without loss of generality, let the indicesand j bel — 1 and
|. DefineE to be the(l — 1)-by- matrix

10 ... 00O
01 .- 0 0 O
E=]|: .. : _(L2 00
I : o 0O 1 1
00 1 00
00 0 1 1

The candidate for a new Cartan matrixBAE', and we are to verify the
five axioms in Proposition 2.52. The first four are clear, and we have to
check (e). LetP be the positive-definite matrik = D AD?, and define

D' = EDE'diag1, ..., 1, %),
which is square of size— 1. Remembering from (2.80) that the weights

w; satisfyw; = d? and thatw,_; = w,, we see thatl_; = d,. Writed for
the common value ad,_; andd,. In block form, D is then of the form

Do 0 O
D:(o d o).
0O od
ThereforeD’ in block form is given by
Do 0 O 2 0
(1, 0 0" Lz 1,
D' = 0 1 1 0O d O 0 1 0
0O o0od 0 1
(Do O
-\ 0 d)’

NIk O
N—

Meanwhile
., O
E'diagl,...,L. HE=| 0 1)(14—2 8)(152 2 (1))
0 1 2
3., 0 O
0 3 3



7. Classification of Abstract Cartan Matrices 175

and it follows thatE'diag(l, . .., 1, ) E commutes withD. Since
EE'diagd,...,1,3) =1,

we therefore have

D'E = EDE'diagd, ..., 1, })E = EE'diag{1, ...,1, })ED = ED.
The same computation gives alf*E = ED™!, whose transpose is
E'D'"! = D-1E! Thus

D'(EAEYD' ! = (D'E)A(E'D'"}) = EDAD'E' = EPE!,

and the right side is symmetric and positive semidefinite. To see that it is
definite, let{EPE'v, v) = 0. Then(PE'v, E'v) = 0. SinceP is positive
definite, E'v = 0. But E' is one-one, and therefore= 0. We conclude
that EPE! is definite.

Now we specialize to irreducible abstract Cartan matrices, which corre-

spond to connected abstract Dynkin diagrams. In five steps, we can obtain
the desired classification.

1) No abstract Dynkin diagram contains a configuration

or O—0O -—- O—O

or R

In fact, otherwise Operation #2 would allow us to collapse all the single-line
part in the center to a single vertex, in violation of Proposition 2.78c.
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2) The following are the only possibilities left for a connected abstract
Dynkin diagram:

2a) There is a triple line. By Proposition 2.78c¢ the only possibility is

(G2) 0=—=0)

2b) There is a double line, but there is no triple line. Then Step 1 shows
that the diagram is

(B,C,F)O— --- —O—0— --- —0O

ay ap Baq B1

2c¢) There are only single lines. Call

5
O O O

atriple point. If there is no triple point, then the absence of loops implies
that the diagram is

(A O O - O

ag a2 Q)

If there is a triple point, then there is only one, by Step 1, and the diagram
is

---—o0
B

(b.E) O— ---

ag
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3) The following are the possibilities for weights:

3a) If thei™™ and j™ vertices are connected by a single line, thep=
Aji = —1. By (2.80) the weights satisfy; = w;. Thus in the casegA)
and(D, E) of Step 2, all the weights are equal, and we may take them to
be 1. In this situation we shall omit the weights from the diagram.

3b) In the cas€B, C, F) of Step 2, letx = ap andp = B,. Also let us
usea andp to denote the corresponding vertices. Possibly reversing the
roles ofe andg, we may assume tha#,; = —2 andAz, = —1. Then

(3 @) (5 2% )

is symmetric, so that-2|« |||~ = —1|B8]||«|~t and|B|? = 2|«|?. Apart
from a proportionality constant, we obtain the diagram

1 1 2 2
o—---—C—0—---—20
oy Op ,Bq B1

3c¢) In the cas€G,) of Step 2, similar reasoning leads us to the diagram

1 3
>0

4) In caseg(B, C, F) of Step 2, the only possibilities are

1 2 2
B O—O0O—---—=0
1 1 2
© O—---—0—0
1 1 2 2

(Fa) O——C—O0——=O0

Let us prove this assertion. In the notation of Step 3b, it is enough to show
that

(2.82) p—D-21 <2
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This inequality will follow by applying the Schwarz inequality to

OlIXp:iOli and ,BIXq:jﬂJ
i=1 =1

Since|a;|? = - - - = |ap|?, we have
1A, = 2(a;, aiy1) _ 2(ai, aiy1)
log; |2 |oepl?
Thus
2ai, ajp1) = —|Olp|2-
Similarly 2(B;, Bi+1) = —IBql*
Also My Bo)?
o
2="~A 5 As 0 = e Far
p:Bg By ap |Olp|2|,3q|2
and hence
(ap, ﬁq)z = %|05p|2|,3q|2-
Then
(o, B) =D (iei, jBj) = pa{erp. Ba),
¥
while
p p-1
e = "ion, jog) =Y i%ou o) + 2 i + D)o, i)
i i=1 i=1
p p—1 p-1
=lapl( Y 1= ) i(+D)=lapl’(p*—) i
(2%~ L0+ 0) = a6 2 1)
= Jap? (P — 3(P — D P) = lop|*GGP(P + 1)).
Similarly

1BI7 = 1B41*(30(@ + 1)).

Sincex andp are nonproportional, the Schwarz inequality giyess)? <
||| 8|2, Thus

1p%0%|opl?1Bq)? = P*A%(atp, Ba)® < lepl’1Bq PG (P + Da(g + 1)).
Hence g < (p+ 1)(g+ 1) andpq < p+ g+ 1, and (2.82) follows.
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5) In caseg(D, E) of Step 2, we may take > g > r, and then the only
possibilities are

(D) r=2 q=2, parbitrary> 2

(E) r=2,q=3 p=3ordors
Let us prove this assertion. In the notation of Step 2c, it is enough to show
that

1

1 1
(2.83) —+—-+->1
p q T
This inequality will follow by applying Parseval’s equality to

—1 -1 r—1

o= pX:iai, B = ‘12: iBi. v= Zkyk, and §.

i=1 j=1 k=1

As in Step 4 (but withp replaiced byp — 1), we have

2w, i) =—[87  and  af> =[5 p(P— 1),
and similarly forg andy. Also

(@, 8) = ((p— Dap-1,8) = (p— D(—3181°) = —3(p — DISI?

and similarly forg andy . The spat of {«, 8, v, 8} is 4-dimensional since

these four vectors are linear combinations of disjoint subsets of members
of a basis. Within this span the set

{i B L}
| 181 1y

is orthonormal. Adjoire to this set to obtain an orthonormal basidubf
Sinces is independent ofa, 8, v}, we have(s, ¢) # 0. By the Bessel
inequality

o 2 ,B 2 )/ 2
sz<&——>+<&——>+(&——>+%&@{
ot 18] Iyl
with the last term> 0. Thus
(@, 8)\ (</3,6>>2 (<y,6>>2
><|a||8|> smer) T

__(p—1>2 1 +(q—1>2 1 _+<r—1>2 1
~\ 2 ) Ip(p-1 2 ) lq(q-1 2 ) frar-1

1p-1 1g-1 1r-1
- T . :
2 p 2 q 2 r
Thus 2> 3 — (% + é + ), and (2.83) follows.
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Theorem 2.84(classification). Up to isomorphism the connected ab-
stract Dynkin diagrams are exactly those in Figure 2.4, specifiéglfpr
n>1,B,forn>2,C,forn> 3, D, forn > 4, Eg, E;, Eg, Fs, andG.,.

REMARKS.

1) The subscripts refer to the numbers of vertices in the various diagrams.

2) The name&,, B,, C,, D,, andG, are names of root systems, and
Corollary 2.65 shows that the associated Dynkin diagrams are independent
of the ordering. As yet, the namé&s, E;, Eg, andF, are attached only
to abstract Dynkin diagrams. At the end of this section, we show that
these diagrams come from root systems, and then we may use these names
unambiguously for the root systems.

PrROOF. We have seen that any connected abstract Dynkin diagram has
to be one of the ones in this list, up to isomorphism. Also we know that
A, B,, C,, D,, andG, come from abstract reduced root systems and are
therefore legitimate Dynkin diagrams. To check tBatE;, Eg, andF,
are legitimate Dynkin diagrams, we write down the candidates for abstract
Cartan matrices and observe the first four defining properties of an abstract

Cartan matrix by inspection. For property (e) we exhibit vectar$ for
2(ai, )

each case such that the matrix in question has en¥jes , and

o 2
then property (e) follows. a
For F,, the matrix is
2 -1 0 O
-1 2 -2 0
o -1 2 -1}
o 0 -1 2

and the vectors are the following membersRsf

a1=%(e1_e2_83_e4)

(2.85a)

Oy = €4
(2.85b)

o3 =6 — €

0y =€ — 6.

For reference we note that these vectors are attached to the vertices of the
Dynkin diagram as follows:

1 1 2 2
(2.85¢) O—C—O—O

o (0% o3 Oy
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For Eg, the matrix is

2 0-1 0 0 0 0 0
0O 2 0-1 0 0 0 0
1 0 2 -1 0 0 0 0
0 -1 -1 2 -1 0 0 0
(2.86a) O 0 0 -1 2 -1 0 ol
O 0 0 0-1 2 -1 0
O 0 0 0 0 -1 2 -1
O 0 0 0O 0 0-1 2

and the vectors are the following membersRsf

u =566 &—6—6&—6&+6)

=6+
03 =6 —86
(2.86b) =S
05 = € — €3
o =6 — €
07 =6 —6
g = €7 — €.

For reference we note that these vectors are attached to the vertices of the
Dynkin diagram as follows:

(2.86c) O O O O O

Og (644 673 05 Oy o3 o1

C
O

For E; or Eg, the matrix is the first 7 or 6 rows and columns of (2.86a),
and the vectors are the first 7 or 6 of the vectors (2.86b).

This completes the classification of abstract Cartan matrices. The cor-
responding Dynkin diagrams are tabulated in Figure 2.4.
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A, O O -—- O O
1 2 2 2
B, O—O -— - O O
1 1 1 2
Gy O O -—- O—0O
Dn O O ---
Es O O O O O
= O O O I O O

O
O
@)
Oo——=0O
O

Es O

G, —=

FIGURE 2.4. Classification of Dynkin diagrams
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Actually we can see without difficulty thdfg, E;, Eg, andF4 are not
just abstract Cartan matrices but actually come from abstract reduced root
systems. As we remarked in connection with Theorem 2.84, we can then
use the same names for the abstract root systems as for the Cartan matrices.
The fact thatgg, E7, Eg, andF, come from abstract reduced root systems
enables us to complete our examination of the second step of the passage
(2.58) from complex semisimple Lie algebras to abstract Cartan matrices.

Proposition 2.87. The second step in the passage (2.58) is onto. That
is, every abstract Cartan matrix comes from a reduced root system.
Proof. In the case of,, we takeV = R*, and we let
+e
+e t ¢ fori # j
e tetete)

(2.88) A

with all possible signs allowed. We have to check the axioms for an abstract
root system. Certainly the roots sp&f, and it is a simple matter to check
that 28, a) /|« |? is always an integer. The problem is to check that the root
reflections carry roots to roots. The case that needs attent®p iwith

« of the third kind. Ifg is of the first kind, thers, 8 = +s;«, and there

is no difficulty. If g is of the second kind, there is no loss of generality in
assuming thgé = e, + e,. Thens,8 = B unless the coefficients ef and

& in o are equal. In this casg B gives plus or minus thes, e, part of 8,

but without the factor of.

Now suppose that andg are both of the third kind. We need to consider
s, when one or three of the signsarandg match. In either case there is
one exceptional sign, say as coefficiengofThens, = +g, and hence
the root reflections carra to itself.

ThereforeA is an abstract reduced root system. The veciors(2.85b)
are the simple roots relative to the lexicographic ordering obtained from
the ordered basig, e,, e;, &4, and then (2.85a) is the Cartan matrix.

In the case oEg, we takeV = R8, and we let

A:{ia:l:eJ fori # |

2.89 _ |
o Iy (=D"e  with Y0, (=)™ even

For the first kind of root, all possible signs are allowed. Again we have
to check the axioms for an abstract root system, and again the problem
is to check that the root reflections carry roots to roots. This time all
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roots have the same length. Thus wheand g are nonorthogonal and
nonproportional, we haveg,f = +ss. Hence matters come down to
checking the case thatandg are both of the second kind.

In this case we need to considgp when two or six of the signs imand
B match. In either case there are two exceptional signs, say as coefficients
of & ande,. We readily check thad,8 = 6 + ¢ for a suitable choice of
signs, and hence the root reflections cakrjo itself.

ThereforeA is an abstractreduced root system. The vecetars(2.86b)
are the simple roots relative to the lexicographic ordering obtained from
the ordered basis, e/, &, &, €4, &, &, €, and then (2.86a) is the Cartan
matrix.

In the case ofE;, we takeV to be the subspace of the space Ky
orthogonal tas; + €;, and we letA be the set of roots fdEg that are in this
space. Sincé&gis a root system, it follows thdi- is a root system. All the
a; for Eg exceplag are roots fork,, and they must remain simple. Since
there are 7 such roots, we see that. . ., «; must be all of the simple roots.
The associated Cartan matrix is then the part of (2.86a) that exakgdes

In the case ofEg, we takeV to be the subspace of the space Ey
orthogonal toeg + €; andes + €, and we letA be the set of roots foEg
that are in this space. Sinég is a root system, it follows thd is a root
system. All they; for Eg excepto; andag are roots forkg, and they must
remain simple. Since there are 6 such roots, we seaxthat. , ag must
be all of the simple roots. The associated Cartan matrix is then the part of
(2.86a) that excludes; andas.

8. Classification of Nonreduced Abstract Root Systems

In this section we digress from considering the two-step passage (2.58)
from complex semisimple Lie algebras to abstract Cartan matrices. Our
topic will be nonreduced abstract root systems. Abstract root systems that
are not necessarily reduced arise in the structure theory of real semisimple
Lie algebras, as presented in Chapter VI; the root systemsin question are the
systems of “restricted roots” of the Lie algebra. In order notto attach special
significance later to those real semisimple Lie algebras whose systems of
restricted roots turn out to be reduced, we shall give a classification now
of nonreduced abstract root systems. There is no loss of generality in
assuming that such a system is irreducible.

An example arises by forming the union of the root syst@&nandC,
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given in (2.43). The union is calledBC), and is given as follows:

(2.90)
(BC)» V={Yl,ae} A={te+q]i#]}u{ta}u(+2e).

A diagram of all of the roots ofBC), appears in Figure 2.2.

In contrast with Proposition 2.66, the simple roots of an abstract root
system that is not necessarily reduced do not determine the root system.
For example, iB, and(BC), are taken to have the sets of positive roots as
in (2.50), then they have the same sets of simple roots. Thus itis not helpful
to associate an unadorned abstract Cartan matrix and Dynkin diagram to
such a system. Butwe can associate the slightly more complicated diagram
in Figure 2.5 ta(BC),,, and it conveys useful unambiguous information.

(BC)n
2 2 2 2 14
O O o—---—""0C—90
-6 &-& &—-& €-1—€ &, 26

FIGURE 2.5. Substitute Dynkin diagram f@gBC),

Now let A be any abstract root system in an inner product space
Recall that ifx is a root anc%oz is not a root, we say that is reduced

Lemma 2.91. The reduced roots € A form a reduced abstract root
systemAqinV. Therootsy € A suchthat2 ¢ A formareduced abstract
root systemA, in V. The Weyl groups of\, A, andA, coincide.

ProoF. It follows immediately from the definitions thaks and A,
are abstract root systems. Also it is clear thatand A, are reduced. The
reflections forA, Ag, andA, coincide, and hence the Weyl groups coincide.

Proposition 2.92.Up to isomorphism the only irreducible abstract root
systemsA that are not reduced are of the fof8C), forn > 1.

PrROOF. We impose a lexicographic ordering, thereby fixing a system
of simple roots. Also we form\s as in Lemma 2.91. Sinca is not
reduced, there exists a ragtsuch that 2 is a root. By Proposition 2.62,

« IS conjugate via the Weyl group to a simple root. Thus there exists a
simple rootg such that 3 is a root. Evidentlys is simple inAg, andAg
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is irreducible. Lety # B8 be any simple root oA such that(s, y) # 0.

Th
T 2, 228 _120.p)
BF 26 2 IBP

are negative integers, and it follows thdy28)/|8|?> = —2. Referring to
the classification in Theorem 2.84, we see thais of type B, with 8 as
the unique short simple root. Any Weyl group conjuggtef g has 25’

in A, and the rootg’ with 28’ in A are exactly those withs’| = |8]. The
result follows.

9. Serre Relations

We return to our investigation of the two-step passage (2.58), first from
complex semisimple Lie algebras to reduced abstract root systems and then
from reduced abstract root systems to abstract Cartan matrices. We have
completed our investigation of the second step, showing that that step is
independent of the choice of ordering up to isomorphism, is one-one up
to isomorphism, and is onto. Moreover, we have classified the abstract
Cartan matrices.

For the remainder of this chapter we concentrate on the first step. Theo-
rem 2.15 enabled us to see that the passage from complex semisimple Lie
algebras to reduced abstract root systems is well defined up to isomorphism,
and we now want to see thatitis one-one and onto, up to isomorphism. First
we show that it is one-one. Specifically we shall show that an isomorphism
between the root systems of two complex semisimple Lie algebras lifts to
an isomorphism between the Lie algebras themselves. More than one
such isomorphism of Lie algebras exists, and we shall impose additional
conditions so that the isomorphism exists and is unique. The result, known
as the Isomorphism Theorem, will be the main result of the next section
and will be the cornerstone of our development of structure theory for real
semisimple Lie algebras and Lie groups in Chapter VI. The technique will
be to use generators and relations, realizing any complex semisimple Lie
algebra as the quotient of a “free Lie algebra” by an ideal generated by
some “relations.”

Thus letg be a complex semisimple Lie algebra, fix a Cartan subalgebra
b, let A be the set of roots, |d8 be a nondegenerate symmetric invariant
bilinear form ong that is positive definite on the real form gfwhere
the roots are real, Idl = {«a4, ..., o} be a simple system, and Iét =
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(Ai})} j_, be the Cartan matrix. Forz i <I, let

2
hi = Hai

log; |2

(293) & — nonzero root vector fax;

f, = nonzero root vector foro; with B(g, ) = 2/|a;i|.

Proposition 2.94. The setX = {h;, e, f;}l_, generateg as a Lie
algebra.

REMARK. We call X a set ofstandard generatorsof g relative toh, A,
B, IT, andA = (Aj); j_;-

PrROOF. The linear span of th;’s is all of h since thex; form a basis
of h*. Let« be a positive root, and led, be a nonzero root vector. If
o = Y, nja;, we show by induction on the lev®l, n; thate, is a multiple
of an iterated bracket of the's. If the level is 1, themx = «; for somej,
ande, is a multiple ofg;. Assume the result for levet n and let the level
of « ben > 1. Since

0< af*= Zni<asai>,

we must havée, o) > 0 for somej. By Proposition 2.48ef = o — «;
is a root, and Proposition 2.49 shows tjgat positive. Ife; is a nonzero
root vector forg, then the induction hypothesis shows thais a multiple
of an iterated bracket of the’s. Corollary 2.35 shows tha, is a multiple
of [e4, g], and the induction is complete.

Thus all the root spaces for positive roots are in the Lie subalgebra of
g generated by. A similar argument with negative roots, using thés,
shows that the root spaces for the negative roots are in this Lie subalgebra,
too. ThereforeX generates all of.

Proposition 2.95. The setX = {h;, e, f}|_; satisfies the following
properties withing:

(@) [hi,h] =0,

() [&, fj] = &jhi,
©) [hi,g] = Aje,
(d) [hi, ;] =—A;fj,

(e) (ade) "i*'g =0 wheni # |,
(f) (adf)~M*f; = 0O wheni # j.
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REMARK. Relations (a) through (f) are called tBerre relationsfor g.
We shall refer to them by letter.

PROOF.
(a) The subalgebriis abelian.
(b) Fori = j, we use Lemma 2.18a. Whenr# j, o — o cannot be a

root, by Proposition 2.49.

(c,d) We observe thah[, g] = «;(h)g = ﬁ aj(Hy,)g = Ajeg, and
we argue similarly forlf, f;].

(e,f) Wheni # j, theq; string containingy; is

o, o + o, .., 0 + (o SinCGO{j—Oti¢A.
Thus p = 0 for the root string, and

2aj, a
_q:p—q: <aja>=Aij.

|ot; 2

Hence - Ajj = q+1, andy; + (1— Ajj)a; isnotaroot. Then (e) follows,
and (f) is proved similarly.

Now we look at (infinite-dimensional) complex Lie algebras with no
relations. Afree Lie algebra on a setX is a pair(g, ) consisting of a
Lie algebrag and a functionn : X — § with the following universal
mapping property: Wheneveérs a complex Lie algebra and: X — [is
a function, then there exists a unique Lie algebra homomorpfisoch
that the diagram

commutes.

Proposition 2.96. If X is a nonempty set, then there exists a free Lie
algebrag on X, and the image oK in § generateg. Any two free Lie
algebras orX are canonically isomorphic.

REMARK. The proof is elementary but uses the Poise&@irkhoff—\Witt
Theorem, which will be not be proved until Chapter Ill. We therefore
postpone the proof of Proposition 2.96 until that time.
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Now we can express our Lie algebra in terms of generators and relations.
With g, b, A, B, IT, andA = (A”-)},j:l as before, lefs be the free Lie
algebraonthe seét = {h;, g, fi}l_;, and letr be the ideal ir§ generated
by the Serre relations (a) through (f), i.e., generated by the differences of
the left sides and right sides of all equalities (a) through (f) in Proposition
2.95. We set up the diagram

(2.97) /

X g

and obtain a Lie algebra homomorphisnfiahto g. This homomorphism
carriesR to 0 as a consequence of Proposition 2.95, and therefore it
descends to a Lie algebra homomorphism

S/R— g

that is ontog by Proposition 2.94 and is one-one on the linear span of
X = {h;,e, fi}l_;. We call this map theanonical homomorphismof
5/ ontog relative tofh;, e, fi}l_,.

Theorem 2.98(Serre). Lefg be a complex semisimple Lie algebra, and
let X = {h;, g, fi}l_, be a set of standard generators. dte the free Lie
algebra on Bgeneratord;, ¢, fi with 1 <i < |, and letR be the ideal
generated ir§ by the Serre relations (a) through (f). Then the canonical
homomorphism off /9% ontog is an isomorphism.

REMARK. The proof will be preceded by two lemmas that will play a
role both here and in §11.

Lemma 2.99.Let A= A = (A)); ;_, be an abstract Cartan matrix, let
gbe the free Lie algebra on §eneratord;, g, f, with1 <i <1, and let
R be the ideal generated $by the Serre relations (a) through (d). Define
g = /R, and writeh;, e, f; also for the images of the generatorginin
g, put

E: sparfh;}, an abelian Lie subalgebra
‘¢ = Lie subalgebra generated by gl
?: Lie subalgebra generated by &l
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Then _ _
g=hdedr

PROOF Proposition 2.96 shows that generateg, and consequently
the image ofX in'g generateg. Thereforgy is spanned by iterated brackets
of elements fromX. Ing, each generator froX is an eigenvector under
adh;, by Serre relations (a), (c), and (d). Hence so is any iterated bracket,
the eigenvalue for an iterated bracket being the sum of the eigenvalues from
the factors.

To see that

(2.100) T=h+F+T,

we observe thaX is contained in the right side of (2.100). Thusitis enough
to see thatthe right side is invariant under the operationfadeachx € X.
Each offy, %, f is invariant under a;, from the previous paragraph Also
f) + ¢ is invariant under ad. We prove thatad f;)¢ € b +'¢. We do so

by treating the iterated brackets that spaproceeding inductively on the
number of factors. When we have one factor, Serre relation (b) gives us

(adf.)eJ = _aijhi EE—F?

When we have more than one factor, let the iterated brackefdtmnfx, y]
with n factors, wherex andy have< n factors. Ther(ad f;)x and(ad f;)y
are inh +¢ by inductive hypothesis, and hence

(@df)[x, yl = [(ad f)x, y] + [x, @d f)y] € [h +%,3] + [5, 5 +7] <.

Thereforeadx)e € h+%+1 for eachx e X. Similarly (adx)§ € §+7+F
for eachx € X, and we obtain (2.100).

Now let us prove that the sum (2.100) is direct. As we have seen, each
term on the right side of (2.100) is spanned by simultaneous eigenvectors
for adh. Let us be more specific. As a result of Serre relation (c), an
iterated bracket i@ involving e, . . ., g, has eigenvalue under adgiven

by |
Aj 4+ A=Y mA;  with m; > 0 an integer
=1

If an eigenvalue fo¥ coincides for ali with an eigenvalue foﬁ +?, we
obtain an equatio},_, mA; = — Y. mA; for all i with m; > 0,
n, > 0, and not alin; equal to 0. Consequent}y,_,(m; +n;,)A; = O for
alli. Since(A;;) is nonsingularm; +n; = Oforall j. Thenm; =n; =0
for all j, contradiction. Therefore the sum (2.100) is direct.
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Lemma 2.101.Let A = (A;); ;_, be an abstract Cartan matrix, gt
be the free Lie algebra on generatord;, g, fi with 1 <i <, and let
R be the ideal generated by the Serre relations (a) through (f). Define
g = §/R, and suppose that spdm}l_, maps one-one fror§ into g'.
Write h; also for the images of the generatbrsn g'. Theng' is a (finite-
dimensional) complex semisimple Lie algebra, the subsfyacesparih; }
is a Cartan subalgebra, the linear functiongls ™ given byw; (h)) = Ajj
form a simple system within the root system, and the Cartan matrix relative
to this simple system is exactiy.

ProOF. Use the notatior, and f; also for the images of the generators
e and f; in g’. Let us observe that under the quotient map frpio g’,
all theg’s and f;’s map to nonzero elements g In fact, {h;} maps to
a linearly independent set by hypothesis, and hence the imagestpfsthe
are nonzero. Then Serre relation (b) shows teatff] = h; £ 0ing’, and
henceg and f; are nonzero irgy’, as asserted..

Because thé; are linearly independent ign we can define; € b by
a;(hj) = Ajj. These linear functionals are a basig)6f Fory € b, put

g, ={xeg | (adh)x = gp(h)xforallh e b}.

We callg aroot if ¢ # 0 andg;, # 0, and we cally;, the corresponding
root space The Lie algebra’ is a quotient of the Lie algebigof Lemma
2.99, and it follows from Lemma 2.99 that

g=bveo Py,

@=root

and that all roots are of the form= ) n;«; with all nonzeron; given as
integers of the same sign. Lat be the set of all rootsA’* the set of all
roots with alln; > 0, andA’~ the set of all roots with alh; < 0. We have
just established that

(2.102) AN =A*UA".

Let us show thag;, is finite dimensional for each rogt First consider
@ =Y Njaj in A’". Lemma 2.99 shows thaf is spanned by the images
of all iterated brackets @&’s in g involving n; instances o, and there are
onlyfinitely many such iterated brackets. Therefglyés finite dimensional
wheng isin A", Similarly g/ is finite dimensional when is in A", and
it follows from (2.102) thay;, is finite dimensional for each rogt
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The vectorse and f;, which we have seen are nonzero, are in the
respective spacegg, andg’,, and hence eaals and—c; is a root. For
these roots the root spaces have dimension 1.

Next let us show for each € h'* that

(2.103) dimg, = dimg’, andhence A"™ = —-A"".
In fact, we set up the diagram
§
L/ RN
Ny
X §
n

wherey, is the functionp(e) = f, n(f;) = g, andn(h;) = —h;. By the
universal mapping property &f n extends to a Lie algebra homomorphism
7 of § into itself. If we next observe thjt is an extension of the inclusion
¢ of X into § in the diagram

X §
then we conclude from the uniqueness of the extensiorijthat 1. We
readily check thafj(JR) C R, and hencé] descends to a homomorphism
n: g — ¢ thatis—1 onh’ and interchanges with f; for alli. Moreover
7? = 1. Sincey is —1 onh’ and is invertible, we see thatg;,) = g’ for
all ¢ € h'*, and then (2.103) follows.
We shall introduce an inner product on the real formhofgiven by

o = > Re. We saw in (2.75) and (2.77) how to construct vectors
B R forl<i <| suchthat

(2.104) A =28, B) /1B

We define a linear ma' — h;* by g — «;, and we carry the inner

product fromR' to h,*. Then we have

208, b)) Aeiyop) <2Hai>
|

1Bi 12 lot; |2 |og; |2

aj(h) = Aj =
for all j, and it follows that

2H,
(2.105) h = =2

lox; |2
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in this inner product.
Next we define a Weyl group. Fordi <1, lets, : hy* — bhy* be the
linear transformation given by

2 s Ui
S (@) =9 —p(h)a =¢ — (lz_l(;[)ai.

This is an orthogonal transformation dg*. Let W' be the group of
orthogonal transformations generated byshel <i <|I.

Let us prove thatV’' is a finite group. From the correspondence of
reduced abstract root systems to abstract Cartan matrices established in §7,
we know that the membegd € R' in (2.104) have reflections generating
a finite groupW such thatA = [ J_, Wp; is the reduced abstract root
system associated to the abstract Cartan matrinder the isomorphism
B — «a;, W is identified withW’, and A is identified with the subset
Ui_, Way of bj,*. SinceW = W', W' is finite.

We now work toward the conclusion thgitis finite dimensional. Fix,
and letsl; be the span ofh;, e, f;} within g’. This is a Lie subalgebra of
g’ isomorphic tos((2, C). We shall first show that every elementgfies
in a finite-dimensional subspace invariant ungler

If j 1, consider the subspace gfspanned by

fj, (ad f;) fj, ..., (ad fi)_A“j fj .
These vectors are eigenvectors fohawith respective eigenvalues
Olj(hi), oj hh)y—-2, ..., oj (h) + 2A@j,

and hence the subspace is invariant under; att is invariant under ad;
since (ad fj))~#i™1f, = 0 by Serre relation (f). Finally it is invariant
under ade by induction, starting from the fact thaade ) f; = 0 (Serre
relation (b)). Thus the subspace is invariant ureder

Similarly for j # i, the subspace @f spanned by

e, (ade)s, ..., (ade) Mg

isinvariantundesl;, by Serre relations (e) and (b). And also sfgane, f;}
is invariant undesl;. Therefore a generating subsetgblies in a finite-
dimensional subspace invariant undgr

Now consider the set of all elements g that lie in some finite-
dimensional space invariant undgr. Sayr ands are two such elements,
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lying in spacesk and S. Form the finite-dimensional subspade, [§
generated by all brackets fromandS. If x is insl;, then

(@dx)[R, §] <€ [(@dx)R, § +[R, (@adx)§] < [R, 9],

and hencer| s] is such an element gf. We conclude that every element
of g’ lies in a finite-dimensional subspace invariant under

Continuing toward the conclusion thgtis finite dimensional, let us
introduce an analog of the root string analysis done in 84.i Hixt ¢ be
in A"U {0}, and consider the subspa@g, , g,,,,,, Of g’ This is invariant
undersl;, and what we have just shown implies that every member of it lies
in a finite-dimensional subspace invariant ungler By Corollary 1.73 it
is the direct sum of irreducible invariant subspaces. ULdie one of the
irreducible summands. Sintgis invariant under at;, we have

q
U= @ (U m‘géﬂJrnoti)

n=—p

withUng, . #0andUng ., # 0. By Corollary 1.72,
(¢ + o) () = —(¢ — pes)(hi)

and hence

(2.106) p—q=g().

Moreover Theorem 1.66 shows that N g, ., has dimension 1 for
—p < n < g and has dimension 0 otherwise.

In our direct sum decomposition €p,, g,,,,,, into irreducible sub-
spacedJ, suppose that the root spagg,,, has dimensiom. Then it

meets a collection of exactiy suchU’s, sayUy, ..., U,. The root space
g/Sai (p+na) — g:p*(ner(h\))a\
must meet the samé;, . .., U, since (2.106) shows that

—p<n<q implies—p<-n—g¢h)=-n+gq-—p=<aq.
We conclude that

(2.107) dimg, = dimg_, ,.
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From (2.107), we see th&f'A” € A’. SinceW’ mirrors for h,* the
action of W onR', the linear extension of the map — «; carriesA into
A’. Since dimg;, = 1 for alli, we see that dirg, = 1 for every roofp in
the finite set J|_, W'o;..

To complete the proof of finite dimensionality gif we show that every
rootliesinl J|_, W'e;. Certainlyl J_, W'e; is closed under negatives, since
itis generated by the 's and contains the-¢;'s. Arguing by contradiction,
assume thaU!:1 W'; does not exhausdh’. By (2.103) there is some
o =Y Majin A notin{J;_, Wi, and we may assume thgt,_, n;
is as small as possible. From

|
0<laf* =) na ),
j=1

we see that there is sorkesuch than, > 0 and{«, ) > 0. Then

2(a, o) 2{a, o)
Slk(O[) =o — |O{k|2 o = anaj + <nk — |O[k|2 )O{k.

We must haven; > 0 for somej # k since otherwiser = nyay, from
which we obtaim, = 1 since g, &] = 0. Thuss,, (@) isin A"*. Since
the sum of coefficients fos,, («) is less thanZ'j:l n;, we conclude by
minimality thats,, («) isin U:zl W'e;. Butthen so isr, contradiction. We
conclude thath’ = | Ji_, We; and hence thad’ is finite andg’ is finite
dimensional.

Now thatg’ is finite dimensional, we prove that it is semisimple and has
the required structure. In fact, rgds adh’ invariant and therefore satisfies

radg’ = (h' Nradg) & EP (g, Nradg).

peA’

Supposéh # 0 is inh Nradg. Choosej with «;(h) # 0. Since rag’ is
an idealg = «;(h)7'[h,e] and f; = —¢;(h)~[h, f;] are in rady’, and
so ish; = [g, f;]. Thus rady’ contains the semisimple subalgebig
contradiction. We conclude thgtN radg’ = 0.

Since the root spaces are 1-dimensional, we obtain

radg’ = @ g,

peA,
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for some subsetj of A’. The Lie algebra’/radg’ is semisimple, accord-
ing to Proposition 1.14, and we can write it as

g/radg =h® O g, mod (radg).

peN —A

From this decomposition we see tlais a Cartan subalgebra gf/radg’
and that the root system i8" — Aj. On the other hand, ne; is in A
sincesl; is semisimple. Thug\’ — Aj contains eacly;, and these are
the simple roots. We have seen that the simple roots deterstiias the
corresponding abstract root system. TiAjds empty. It follows that' is
semisimple, and then the structural conclusions afyaare obvious. This
completes the proof of Lemma 2.101.

PROOF OFTHEOREM 2.98. In the diagram (2.97X maps to a linearly
independent subset @f and hence the embedded subXetf § maps to
a linearly independent subset@f Since the mag — g factors through
g’ = §/R, sparth;}I_, maps one-one frorgito g’ and one-one frory' to g.
Since spath;}l_; maps one-one fror§ to g/, Lemma 2.101 is applicable
and shows that is finite-dimensional semisimple and thyat= sparih; }i_;
is a Cartan subalgebra.

The map§ — g is onto by Proposition 2.94, and hence the igap> g
is onto. Thugy is isomorphic with a quotient of . If a is a simple ideal
in g, it follows from Proposition 2.13 thdf N a is a Cartan subalgebra of
g’. Sinceh’ maps one-one under the quotient map frgino g, h’ N a does
not map to 0. Thus does not map to 0. Hence the mapbbntog has 0
kernel and is an isomorphism.

10. Isomorphism Theorem

Theorem 2.98 enables us to liftisomorphisms of reduced root systems to
isomorphisms of complex semisimple Lie algebras with little effort. The
result is as follows.

Theorem 2.108(Isomorphism Theorem). Leaf andg’ be complex
semisimple Lie algebras with respective Cartan subalgdpeamlh’ and
respective root systemsandA’. Suppose that a vector space isomorphism
¢ . h — b is given with the property that its transpage: h’* — h* has
e'(A) = A. Fora in A, write o’ for the membei(p!)1(a) of A’. Fix
a simple systenil for A. For eachx in I1, select nonzero root vectors
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E, € gfor« andE, € g for o’. Then there exists one and only one Lie
algebra isomorphisra : g — ¢’ such thaty|, = ¢ andg(E,) = E, for
allx € I1.

PROOF OF UNIQUENESS If ¢, andg, are two such isomorphisms, then
@0 = @, '@ is an automorphism of fixing h and the root vectors for
the simple roots. Ith;, e, f;} is a triple associated to the simple ragt
by (2.93), therigy( f;) must be a root vector fora; and hence must be a
multiple of f;, sayc f;. Applying ¢, to the relation §, f;] = h;, we see
thatc; = 1. Therefordy, fixes allh;, g, and f;. By Proposition 2.94g; is
the identity ong.

PROOF OF EXISTENCE The linear mag")~t is given by(¢") (o) =
o' = a o ¢~ 1. By assumption this map carriésto A’, hence root strings
to root strings. Proposition 2.29a therefore gives

(2.109) 2. ) = 208 o) foralla, B € A.

|or|? |o'|?

Write 1T = {og, ..., o}, and letll’ = (¢") X(IT1) = {ef, ..., o}
Defineh; andh/ to be the respective memberstpandl’ with «;(h;) =
2(B, ) /lee|> andej (h)) = 2(’, ') /|’|>. These are the elements of the
Cartan subalgebras appearing in (2.93). By (2.183)) = «;(h;) and
hence(p") (o) (h)) = o;(h;) ande; (¢~ 1(h))) = «;j(h;). Therefore

(2.110) eh) =h foralli.

Takee in (2.93) to beE,,, and lete, = E,;. Define f; € g to be a root
vector for—e«; with [e, fi] = h;, and definef, € g’ to be a root vector for
—af with [€, f/] = h/. ThenX = {h;, e, fi}l_; andX' = {h, €, f/}_,
are standard sets of generators goand g’ as in (2.93) and Proposition
2.94.

Let § and3’ be the free Lie algebras a¥ and X', and lettR and R’
be the ideals iy andg’ generated by the Serre relations (a) through (f) in
Theorem 2.98. Letus defing: X — § by ¢ (hj)) = h/, ¥(e) = €, and
¥ (f) = f/. Setting up the diagram
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we see from the universal mapping propertygahat - extends to a Lie
algebra homomorphlsm F — §. By (2.109), W(SR) C R'. Therefore
¥ descends to Lie algebra homomorphigfi — §'/%’, and we denote
this homomorphism by as well.

Meanwhile the canonical magg : /%R — gandg, : §/R — ¢,
which are isomorphisms by Theorem 2.98, satisfy

i) =h; modR and @ (E,) =€ modNR,
@2(hf modR’) = h and  @,(¢ mod®R) = E,.

Thereforeg = 3 o ¥ o ;" is a Lie algebra homomorphism frogto g’
with ¢(h) = h{ andg(E,,) = E,, foralli. By (2.110),¢|, = ¢.

To see thafy is an isomorphism, we observe that: h — b’ is an
isomorphism. By the same argument as in the last paragraph of 89, it
follows thatg : g — ¢’ is one-one. Finally

dimg =dimb + |A| =dimbp’ + |A'| = dimg’,
and we conclude that is an isomorphism.

EXAMPLES.

1) One-oneness of first step in (2.58). We are to show thatiidg’
are two complex semisimple Lie algebras with isomorphic root systems,
theng andg’ are isomorphic. To do so, we apply Theorem 2.108, mapping
the root vectork, for each simple root to any nonzero root vector for
the corresponding simple root fgt. We conclude that the first step of the
two-step passage (2.58) is one-one, up to isomorphism.

2) Automorphisms of Dynkin diagram. Lgth, A, andll ={a;, ..., o}
be arbitrary. Suppose thais an automorphism ofthe Dynkin diagram, i.e.,
a permutation of the indices 1 ., such that the Cartan matrix satisfies
Aj = Asiy(. Definep : h — hto be the linear extension of the map
hi — h,), and apply Theorem 2.108. The result is an automorplism
of g that normalize$), maps the set of positive roots to itself, and has the
effecto on the Dynkin diagram.

3) An automorphism constructed earlier. WitH), andA given, define
@ = —1onh. ThenA gets carried toA, and hencep extends to an
automorphisniy of g. This automorphism has already been constructed
directly (asy in the course of the proof of Lemma 2.101).
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11. Existence Theorem

We have now shown that the first step in the passage (2.58), i.e., the step
from complex semisimple Lie algebras to abstract reduced root systems, is
well defined independently of the choice of Cartan subalgebra and is one-
one up to isomorphism. To complete our discussion of (2.58), we show
that this step is onto, i.e., that any reduced abstract root system is the root
system of a complex semisimple Lie algebra.

The Existence Theorem accomplishes this step, actually showing that
any abstract Cartan matrix comes via the two steps of (2.58) from a complex
semisimple Lie algebra. However, the theorem does not substitute for our
case-by-case argument in 87 that the second step of (2.58) is onto. The
fact that the second step is onto was used critically in the proof of Lemma
2.101 to show thatV’ is a finite group.

The consequence of the Existence Theorem is that there exist complex
simple Lie algebras with root systems of the five exceptional tfe&-,

Es, F4, andG,. We shall have occasion to use these complex Lie algebras
in Chapter VI and then shall refer to them as complex simple Lie algebras
of typeskEg, etc.

Theorem 2.111(Existence Theorem). IA = (A;)); ;_, is an abstract
Cartan matrix, then there exists a complex semisimple Lie algeblase
root system hag\ as Cartan matrix.

PROOF. Let§ be the free Lie algebra on the s¢t= {h;, e, fi}l_;, and
letR be the ideal ir§ generated by the Serre relations (a) through (f) given
in Proposition 2.95. Pus = §/R. According to Lemma 2.10, will be
the required Lie algebra if it is shown that span!_, maps one-one from
§ to its image in§/9A.

We shall establish this one-one behavior by factoring the quotient map
into two separate maps and showing that $~bah:l maps one-one in each
case. The first map is frogito §/9R, wherefR is the ideal in§ generated
by the Serre relations (a) through (d). Write g, f; also for the images
of the generators i /. Defineh, ¢, ande as in the statement of Lemma
2.99. The lemma says that

(2.112) F/R=haTaf,

but it does not tell us how Iarg}ais.
To get at the properties of the first map, we introducé-dimensional
complex vector spac¥ with basis{vy, ..., v}, and we letT (V) be the
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tensor algebra oveV. (Appendix A gives the definition and elementary
properties ofl (V).) We drop tensor signs in writing products witHigV)
in order to simplify the notation. In view of the diagram

X s Enc(T(V))
v

we can construct a homomorphis,Tm: § — End-(T (V)) by telling how
x acts inT (V) for eachx in X. Dropping the notation from the action,
we define

hi(1) =0
hi(vjl"‘vjk) = _(Aijl 4+ 4 Aijk)vh"'vjk
fi(D) = v
fi(vj, -+~ vj,) = Vv, - - -,
e =
e(;) =0

& (v, -+ ) = Vi, & (v, -+ - v) = Sijy (A, + -+ AV, - - v

(The last three lines, defining the actionepfare made recursively on the
order of the tensor.)

We show that this homomorphism defined ®rlescends to a homo-
morphlsms/i)% — End-(T (V)) by showing that the generatorsiﬁfact
by 0. We check the generators of types (a), (d), (b), and (c) in turn.

For (a) the generator ifif, h;]. The span of thé;’s acts diagonally, and
thus

lhi, ] = [P (h), ¥ (] = 9 (v (hy) — ¥ (hy i (hi) = O.
For (d) the generator i, f;] + A; fj, and we have
v, i1+ A ) = v (f) = (§F () + Ajd(f).
On 1, the right side gives

F (v, — 0+ Ajy; =0,
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Onvj, - - - v;,, the right side gives

— (A + A+ A, -

+ (A 4 AU -+ A, - v = 0.
For (b) the generator i®[, f;] — &;h;, and we have
ve. fil = 8ih) = v @P () — d (@) — & (h).

On 1, each term on the right side acts as 0. On a monamial- v, the
right side gives

& (Vj v, - -+ V) — V-8 (V) - - V) + 8 (A, + - A A v, - v,

and this is 0 by the recursive definition of the actioreof
For (c) the generator i$f, ] — Aj;g. Let us observe by induction on
k that

(2.113)  hig (- v) = =(Ai + -+ A — APg (v, -+ vj).

Formula(2.113)isvalid fok = 0 andk = 1 sinceg acts as 0 on monomials

of degrees 0 and 1. For genekathe recursive definition of the actiongf

and the inductive hypothesis combine to show that the left side of (2.113)
is

hig (vj, - - - vj,) = hi (v, € (v, - - - v3,)) =y, (Ajj ++ - -+ Ao i (v, -+ - V)
= _(Aih +oot Aijk - Aij)vh : eJ(sz T vjk)
+ 3 (Ajp, + -+ A (A, + -+ A, - v,
and that the right side of (2.113) is
- (Aijl + et Aijk - A|J)eJ (vh T vjk)
= _(Aijl +ot Aijk - Aii)vjl'eJ (sz T vjk)
+ (A, + -+ A — AP (A, + -+ A, - v,

Subtraction shows that the difference of the left side and the right side
of (2.113) is

= =&, (Aij, — APA, + -+ Ay, v, = 0.
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The induction is complete, and (2.113) is established. Returning to our
generator, we have

v ([hi, §] — Aje) = ¥ (h)v(g) — v(e)v(h) — AjU(e).

On 1, each term on the right side acts as 0. 1Qn- - v;,, (2.113) shows
that the effect of the right side is

=—(Aj+ -+ Aj — ADg Y, -+~ vy)
+ (A 4+ A (- - vj) — A (v, - - v) = 0.

Thusy descends t@/R. B
Now we can prove that spéim}!_, maps one-one fror§ to §/%R. If a
nontrivial ¢ h; maps to 0, then we have

0= (Zcihi)(vj) = —(ZciAaj)v,-

for all j. Hence) , ¢ Aj = 0 for all j, in contradiction with the linear
independence of the rows o0f\j). We conclude that spéin }l_, maps
one-one fronf to §/R.

Now we bring in Serre relations (e) and (f), effectively imposing them
directly ong/fR to obtaing as quotient. Defing = F/R. LetR’ be the
ideal ing generated by alll

(ade) M*e andall (adf) M f  fori # j.
Then indeedy = g/:R. _
We define subalgebrdg ¢, andf of g as in the statement of Lemma

2.99. Lete’ be the ideal ire generated by aade)*i*';, and letf’ be
the ideal inf generated by allad f;)=*i** f;. Then

(2.114) (generators o) ¥ +F ST+

We shall prove that' is actually an ideal irf5. We observe thaf is
invariant under all atl, (since the generators @f are eigenvectors) and
all g (sincee’ € %). Thus we are to show that

(ad fy)(ade) Aitte

isinif i # j. Infact, we show itis 0.
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If kK #£ i, then [fy, €] = 0 shows that ad, commutes with ad,. Thus
we are led to
(ade) [ fi, q].

If k # j, this is 0 by Serre relation (b). K= j, itis

If Aij < O, then the right side of (2.115) is O sinag,[e] = O; if A; =0,
then the right side of (2.115) is 0 because the coeffichgnts 0.
If k =i, we are to consider

(ad f;)(ade) Aitle.
Now
(ad f)(ade)"e = —(adh;)(ade )" 'e; + (ade)(ad f;)(ade )" 'g,.
Since(ad fj)g; = 0, an easy induction with this equation shows that
(adf)(ade)"e = —n(A;j + n — 1)(ade)" g

Forn = —Ajj + 1, theright side is 0, as asserted. This completes the proof
that?’ is an ideal ing. _

Similarly f is an ideal ing, and so is the sufé + f. From (2.114) we
therefore obtain _ _

R CT+f e+

In view of the direct sum decomposition (2.11%, ﬂH = 0. Therefore
sparih;}l_, maps one-one fromtog/?M’ = g, and the proof of the theorem
is complete.

12. Problems

1. According to Problem 13 in Chapter I, the trace form is a multiple of the
Killing form for si(n+ 1, C) if n > 1, forso(2n + 1, C) if n > 2,sp(n, C)
if n > 3, andso(2n, C) if n > 4. Find the multiple in each case.

2. Since the Dynkin diagrams &; & A; and D, are isomorphic, the Isomor-
phism Theorem predicts thalt(2, C) @ s[(2, C) is isomorphic withso(4, C).
Using the explicit root-space decomposition §ot4, C) found in §1, exhibit
two 3-dimensional ideals isw(4, C), proving that they are indeed ideals.
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3. Letgbe the 2-dimensional complex Lie algebra with a b&XisY} such that
[X,Y] =Y.
(a) Identify the regular elements.
(b) Prove thatCX is a Cartan subalgebra but tHaY is not.
(c) Find the weight-space decompositiomgatlative to the Cartan subalge-
braCX.

4. Letg = hdP, ., 9« be aroot-space decomposition fora complex semisimple
Lie algebra, and leh’ be a subset oA that forms a root system if.
(@) Show by example that=t @ @, 9. need not be a subalgebragf
(b) Suppose thah” € A is a root subsystem with the following property.
Whenever andg areinA’ anda + g isin A, thena + g isin A’. Prove
thats = h @ P, 9« iS a subalgebra of and that it is semisimple.

5. Exhibit complex semisimple Lie algebras of dimensions 8, 9, and 10. Deduce
that there are complex semisimple Lie algebras of every dimensi@n

6. Using results from §84-5 but not the classification, show that there are no
complex semisimple Lie algebras of dimensions 4, 5, or 7.

7. LetA be aroot system, and fix a simple systéim Show that any positive
root can be written in the form

o =aj +op, + -+ o

with eache;; in TT and with each partial summand from the left equal to a
positive root.

8. LetA be aroot system, and fix a lexicographic ordering. Show that the largest
rootag has(wo, «) > 0 for all positive rootsx. If A is of typeB, with n > 2,
find a positive roo, other tharnyy with (8o, «) > 0 for all positive roots.

9. Write down the Cartan matrices fég, By, C, andDy,.

10. The root systen®; is pictured in Figure 2.2. According to Theorem 2.63,
there are exactly 12 simple systems for this root system.
(a) Identify them in Figure 2.2.
(b) Fix one of them, letting the short simple root dend the long simple
root beB. Identify the positive roots, and express each of them as a linear
combination ofx and 3.

11. (a) Prove that two simple roots in a Dynkin diagram that are connected by a
single edge are in the same orbit under the Weyl group.
(b) For an irreducible root system, prove that all roots of a particular length
form a single orbit under the Weyl group.
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12. Inareduced root system with a positive system imposeaddieti be distinct
simple roots connected byedges (0< n < 3) in the Dynkin diagram, and
lets, andsg be the corresponding reflections in the Weyl group. Show that

2 ifn=0
(8) =1, wherek = 3 ifn=1
4 ifn=2
6 ifn=3.

13. (a) Prove that any element of order 2 in a Weyl group is the product of
commuting root reflections.
(b) Prove that the only reflections in a Weyl group are the root reflections.

14. LetA be an abstract root systemVfyand fix an ordering. Suppose thais
in V andw is in the Weyl group. Prove that if andwa are both dominant,
thenwi = A.

15. Verify the following table of values for the number of roots, the dimension of
g, and the order of the Weyl group for the classical irreducible reduced root

systems:
Type of A |A| dimg [W|
A nin+1) nn+ 2) n+ 1!
Bn 2n? n2n+ 1) ni2"
Cn 2n? n2n+1) ni2"
Dy, 2n(n — 1) nin—1) ni2n-t

16. Verify the following table of values for the number of roots and the dimension
of g for the exceptional irreducible reduced root systems. These systems are
described explicitly in Figure 2.2 and Proposition 2.87:

Type of A [A] dimg
Es 72 78
E; 126 133
Es 240 248
Fa 48 52
Gz 12 14

17. If A is an abstract root system andis in A, let o = 2|a|%«a. Define
A ={aV|a e A}
(a) Prove that\v is an abstract root system with the same Weyl group as
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(b) If ITis a simple system foh, prove thafll¥ = {«" | @ € 1} is a simple
system forAV.

(c) For any reduced irreducible root systexrother thanB, andC,, show
from the classification thak¥ = A. For B, andC,, show that B,)" =
Chand(Cp)Y = B,.

18. LetIT be a simple system in aroot systéxmand letA™ be the corresponding

set of positive roots.

(a) Provethatthe negatives of the membeid &drm another simple system,
and deduce that there is a unique membgof the Weyl group sending
AT to—AT.

(b) Prove that—wg gives an automorphism of the Dynkin diagram, and
conclude that-1 is in the Weyl group foB,, C,, E7, Eg, Fs4, andG,.

(c) Prove that-1is not in the Weyl group oA, forn > 2.

(d) Prove that-1is inthe Weyl group oD, if n > 2is even but not ifi > 3
is odd.

19. Using the classification theorems, show that Figure 2.2 exhibits all but two of

the root systems in 2-dimensional spaces, up to isomorphism. What are the

two that are missing?

20. Letg be a complex semisimple Lie algebra, lebe a Cartan subalgebra,
let A be the roots, leWW be the Weyl group, and lab be in W. Using
the Isomorphism Theorem, prove that there is a member of guthose
restriction toh is w.

Problems 21-24 concern the length functiow) on the Weyl groupVN. Fix a
reduced root system and an ordering, and létw) be defined as in 86 before
Proposition 2.70.

21. Prove that(w) =l (w™1).

22. (a) Definesgm = (—1)'™. Prove that the function sgn carryilgto {41}
is @ homomorphism.
(b) Prove that sgw = detw for all w € W.
(c) Prove that(s,) is odd for any root reflectios, .

23. Forw; andw; in W, prove that

l(wiwy) = (w1) +1(wp) —2#B € A| B >0, wif <0, w,*B <0}.
24. If a is aroot, prove thdt(ws,) < | (w) if wa < 0 and that (ws,) > [ (w) if
wo > 0.

Problems 25-30 compute the determinants of all irreducible Cartan matrices.
25. LetM, be anl-by- Cartan matrix whose first two rows and columns look like



26.

27.

28.

29.

30.
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2 -1 0
(_1 2 _1),
0 -1 *

the other entries in those rows and columns being 0.Myet be the Cartan
matrix obtained by deleting the first row and column frtip and letM, _, be
the Cartan matrix obtained by deleting the first row and column fk@ny.
Prove that

detM, = 2detM,_; — detM, _,.

Reinterpret the condition on the Cartan malfjxn Problem 25 as a condition
on the corresponding Dynkin diagram.

Calculate explicitly the determinants of the irreducible Cartan matrices of
typesAs, Az, By, Bz, C3, and Dy, showing that they are 2, 3, 2, 2, 2, and 4,
respectively.

Using the inductive formula in Problem 25 and the initial data in Problem 27,
show that the determinants of the irreducible Cartan matrices of #pé&sr
n>1B,forn>2C,forn> 3,andD, forn >4 aren+ 1, 2, 2, and 4,
respectively.

Using the inductive formula in Problem 25 and the initial dataXpand D5
computed in Problem 28, show that the determinants of the irreducible Cartan
matrices of type&s, E7, andEg are 3, 2, and 1, respectively.

Calculate explicitly the determinants of the Cartan matrice$fand G,
showing that they are both 1.

Problems 31-34 compute the order of the Weyl group for the root systgnis,

E;, andEg. In each case the idea is to identify a transitive group action by the
Weyl group, compute the number of elements in an orbit, compute the order of the
subgroup fixing an element, and multiply.

31.

The root systerf, is given explicitly in (2.88).

(&) Show that the long roots form a root system of tyje

(b) By (a) the Weyl grouplp of D4 is a subgroup of the Weyl groyyg
of F4. Show that every element Yk leaves the systerD, stable and
therefore carries an ordered system of simple rootsxXpto another
ordered simple system. Conclude that-/Wp| equals the number of
symmetries of the Dynkin diagram @, that can be implemented by
WE.

(c) Show that reflection ire, and reflection in% (e — & — 6835 — ) are
members ofVg that permute the standard simple rootfafas given in
(2.50), and deduce thtVe /Wp| = 6.

(d) Conclude thatwWg| = 27 - 32.
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32. The root system = Eg is given explicitly in the proof of Proposition 2.87.

Let W be the Weyl group.

(&) Why is the orbit of%(eg — € — 6+ 6+ 6+ 63+ 6+ e) underW
equal exactly toA?

(b) Show that the subset @ orthogonal to the root in (a) is a root system
of type As.

(c) The element-1is notin the Weyl group oAs. Why does it follow from
this fact and (b) that-1 is not in the Weyl group oEg?

(d) Deduce from (b) that the subgroupwffixing the rootin (a) isisomorphic
to the Weyl group ofAs.

(e) Conclude thaw| = 27.3%.5.

33. The root system = Ey is given explicitly in the proof of Proposition 2.87.
Let W be the Weyl group.
(&) Why is the orbit ok — e; underW equal exactly toA?
(b) Show that the subset @f orthogonal toeg — e; is a root system of type
De.
(c) Deduce from (b) that the subgroup\f fixing eg — e; is isomorphic to
the Weyl group ofDe.

(d) Conclude thafw| =219.3*.5.7.

34. The root systemh = Eg is given explicitly in (2.89). LetW be the Weyl
group.
(&) Why is the orbit okg + e; underW equal exactly taA?
(b) Show that the subset of orthogonal toeg + €7 is a root system of type
E-.
(c) Deduce from (b) that the subgroup\&f fixing eg + e; is isomorphic to
the Weyl group ofE;.

(d) Conclude thafw| = 2'4.3°.52.7,

Problems 35-37 exhibit an explicitisomorphisms g, C) with s0(6, C). Suchan
isomorphism is predicted by the Isomorphism Theorem since the Dynkin diagrams
of Az and D3 are isomorphic.

35. Letls 3 be the 6-by-6 diagonal matrix defined in Example 3 in §1.8, and define
g={X€gl6,C) | X'I33+ I33X = 0}. Let S = diag(i,i,i,1,1,1). For
X € g, letY = SXS™1. Prove that the maj — Y is an isomorphism o
ontoso(6, C).

36. Any member ofl(4, C) acts on the 6-dimensional complex vector space of
alternating tensors of rank 2 W (e A g) = Mg A g + & A Mg, where
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{&}_, is the standard basis 6f*. Using
@A)t (@B ey, (@A) E(@AQ), (B1AE&)E(E2AE6)

in some particular order as an ordered basis for the alternating tensors, show

thatthe action oM is given by an element of the Lie algebrgiah Problem 35.

37. The previous two problems combine to give a Lie algebra homomorphism of
sl(4, C) into s0(6, C). Show that no nonzero element«t4, C) acts as the
0 operator on alternating tensors, and deduce from the simplicity(4fC)
that the homomorphism is an isomorphism.

Problems 38-39 exhibit an explicit isomorphismspt2, C) with so(5, C). Such

an isomorphism is predicted by the Isomorphism Theorem since the Dynkin dia-

grams ofC, and B, are isomorphic.

38. The composition of the inclusiap (2, C) — sl(4, C) followed by the map-
ping of Problem 36 gives a homomorphismspt2, C) into the Lie algebra
of Problem 35. Show that there is some indeg < i < 6, such that the"
row and column of the image imare always 0.

39. Deduce that the composition of the homomorphism of Problem 38 followed
by the isomorphisnmyg = so0(6, C) of Problem 35 may be regarded as an
isomorphism ofp(2, C) with so(5, C).

Problems 40-42 give an explicit construction of a simple complex Lie algebra of
type G..
40. LetA be the root system of typs given in a spac¥ asin (2.43). Prove that
the orthogonal projection af on the subspace &f orthogonal tee; + e, + €3
is a root system of typ&..

41. Letgbeasimple complexLie algebraoftype. Leth be a Cartan subalgebra,
let the root system be as in Problem 40, anBéte the Killing form. Prove
that the centralizer ofle+e,+e, iS the direct sum o€Hg, 1e,+¢, and a simple
complex Lie algebra of typé, and dimension 8.

42. In Problem 41 normalize root vectoxs so thatB(X,, X_) = 1. From the
two vectors Ke,, Xe,] + 2X_g, and [X_g,, X_e,] — 2Xe,, Obtain four more
vectors by permuting the indices cyclically. Lgtbe the 14-dimensional
linear span of these six vectors and tAg Lie subalgebra of Problem 41.
Prove thaty' is a Lie subalgebra gf of type G..

Problems 43-48 give an alternative way of viewing the three classes of Lie algebras

so(2n+ 1, C), sp(n, C), andso(2n, C) that stresses their similarities. This point
of view is useful in the study of automorphic forms. With denoting the usual
transpose of a square matux define thebackwards transpos€e'A as transpose
about the opposite diagonal from usual or equivalentl¢&8; = Ani1_jn+1-i

if Ais ann-by-n matrix. The mappingA ~ ‘A is linear, reverses the order of

multiplication, leaves determinant unchanged, sends the identity to itself, maps
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inverses to inverses, and maps exponentials to exponentials1-Byr@ matrices
Al and'A are related byA = L A'L~1, whereL is 1 along the opposite diagonal
from usual (i.e., ha&i ,,1-i = 1for 1L <i < n)and is 0 otherwise.

43.

44,

45.

46.

Prove thdPrincipal-axis Theorem concerning symmetric matrices over any
field k of characteristic# 2, namely that ifA is a square matrix ovét with

Al = A, then there exists a nonsingular square matfijoverk such that
M!AM is diagonal. The proof is to proceed by induction on the size

replacing a matri><g 2) in block form witha of size(n — 1)-by-(n — 1)
andd of size 1-by-1 by(éi) (; g) (Xﬁ 2) if d # 0 and replacing(; g)
by(if) (; g) (;yl) if d = 0.

Prove a version of the result in Problem 43 for skew-symmetric matrices,
namely that ifA is a square matrix ovédsr with A' = —A, then there exists a
nonsingular square matriM overk such thatM! AM is block diagonal with
diagonal blocks that are 2-by-2 or 1-by-1 and are skew-symmetric. The proof
is to proceed by induction on the size as in Problem 43, excepttima
2-by-2 skew-symmetric matrix chosen to be nonzero after a permutation of
the coordinates.

Prove concerning square matrices dyer

(a) If Ais nonsingular withA! = A, then there exists a nonsingular square
matrix M such thatM!AM = 1.

(b) If Ais nonsingular withA! = — A, then the size is even and there exists
a nonsingular square matr such thatM'AM = J, whereJ is as in
§1.8.

Let A be ann-by-n nonsingular matrix that is symmetric or skew-symmetric,
and defingGa = {x € GL(n,C) | x ' = Ax!A~1 and dek = 1}.
(a) Prove that the linear Lie algebra®@fy is

ga={X egl(n,C) | AX'A™t 4+ X =0}.

(b) Prove that ifA and B are nonsingular symmetric-by-n matrices, then
there existg) € GL(n, C) such thalGg = gGag~.

(c) Prove that ifA and B are nonsingular skew-symmetrieby-n matrices,
thenn is even and there existse GL (n, C) such thailGg = gGag~2.

(d) LetSO'(n,C) = {x € GL(n,C) | x* =% and dex = 1}. Prove that
SO'(n, C) is isomorphic toSO(n, C) as a complex Lie group and that
the linear Lie algebra o80’(n, C) is

s0'(n,C) = {X e gl(n,C) | 'X + X = 0}.
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(e) Prove thaBp(n,C) = {x € GL(2n,C) | x 1 = InnXlnpn, detx = 1},
wherel, ,, is the diagonal matri><(1) _f) defined in 81.8, and that the
definition of the Lie algebrap(n, C) may be written as

sp(n, C) = {X € gl(2n, C) | tXln,n + InnX =0},

47. Letg beso’(n, C) orsp(n, C) as in Problem 46.
(&) Show that the diagonal subalgebragiéé a Cartan subalgebra.
(b) Using the formulall, E;;] = (& (H) — € (H))E;; valid in sl(N, C) for
diagonalH, compute the root spacesgrand show that the positive roots
may be taken to be those whose root vectors are upper triangular matrices.

48. Prove thatSO’(N,C) N GL(N, R) is isomorphic toSO(n + 1,n) if
N =2n+1,0rtoSO(n,n)if N =2n.








