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APPENDIX A

Tensors, Filtrations, and Gradings

Abstract. If E is a vector space, the tensor algelr&) of E is the direct sum over
n > 0 of then-fold tensor product o with itself. This is an associative algebra with a
universal mapping property relative to any linear mapping @fito an associative algebra
A with identity: the linear map extends to an algebra homomorphism(&) into A
carrying 1 into 1. Also any linear map & into T (E) extends to a derivation af (E).

The symmetric algebr&(E) is a quotient ofl (E) with the following universal mapping
property: any linear mapping & into a commutative associative algel¥avith identity
extends to an algebra homomorphismSgE) into A carrying 1 into 1. The symmetric
algebra is commutative.

Similarly the exterior algebra (E) is a quotient ofT (E) with this universal mapping
property: any linear mappingof E into an associative algebrawith identity such that
I(v)2 = 0 for all v € E extends to an algebra homomorphisnyafE) into A carrying 1
into 1.

The tensor algebra, the symmetric algebra, and the exterior algebra are all examples of
graded associative algebras. A more general notion than a graded algebra is that of a filtered
algebra. A filtered associative algebra has an associated graded algebra. The notions of
gradings and filtrations make sense in the context of vector spaces, and a linear map between
filtered vector spaces that respects the filtration induces an associated graded map between
the associated graded vector spaces. If the associated graded map is an isomorphism, then
the original map is an isomorphism.

A ring with identity is left Noetherian if its left ideals satisfy the ascending chain
condition. Ifafiltered algebrais given and if the associated graded algebra s left Noetherian,
then the filtered algebra itself is left Noetherian.

1. Tensor Algebra

Just as polynomial rings are often used in the construction of more
general commutative rings, so tensor algebras are often used in the con-
struction of more general rings that may not be commutative. In this
section we construct the tensor algebra of a vector space as a direct sum
of iterated tensor products of the vector space with itself, and we establish
its properties. We shall proceed with care, in order to provide a complete
proof of the associativity of the multiplication.
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640 A. Tensors, Filtrations, and Gradings

Fix a fieldk. Let E andF be vector spaces over the fiddd A tensor
product V of E andF is a pair(V, ) consisting of a vector spatéoverk
together with a bilinear map: E x F — V, with the following universal
mapping property: Whenevbiis a bilinear mapping o x F into a vector
spacel overk, then there exists a unique linear mappB@f V into U
such that the diagram

V (= tensor produgt

(A.1) 7/ \\B

ExF U
b

commutes. We calB thelinear extensionof b to the tensor product.

Itis well known that a tensor product & andF exists and is unique up
to canonical isomorphism, and we shall not repeat the proof. One feature
of the proof is that it gives an explicit construction of a vector space that
has the required property.

A tensor product ofE and F is denotedE ®;, F, and the associated
bilinear map: is written (e, f) — e® f. The elementg ® f generate
E ® F, as a consequence of a second feature of the proof of existence of
a tensor product.

There is a canonical isomorphism

(A.2) EQF=E=FQE

given by taking the linear extension@, f) — f ® easthe map from left
to right. The linear extension ¢ff, ) > e® f gives a two-sided inverse.
Another canonical isomorphism of interest is

(A.3) E®. k= E.

Here the map from left to right is the linear extension(efc) — ce,
while the map from right to left i€ — e ® 1. In view of (A.2) we have
k ®x E = E also.

Tensor product distributes over direct sums, even infinite direct sums:

(A.4) Ec. ((PF.) =P Ee:F).

The map from left to right is the linear extension of the bilinear map
(e f,) — > (e® f,). To define the inverse, we have only to define it
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on eachE ®, F,, where itis the linear extension , f,) — e® (i,(f));
herei, : F, — @ F; is the injection corresponding ta It follows from
(A.3) and (A.4) that if{x;} is a basis ofE and{y;} is a basis ofF, then
{x ® y;} is a basis oE ®, F. Consequently

(A.5) dim(E ®; F) = (dimE)(dimF).

Let Hom.(E, F) be the vector space &f linear maps fronEk into F.
One special case B = k, and we have

(A.6) Hom.(k, F) = F.

The map from left to right sendsinto ¢ (1), while the map from right to
left sendsf into ¢ with ¢(c) = cf. Another special case of interest occurs
whenF = k. Then Hom{E, k) = E* is just the vector spaadual of E.

We can use®, to construct new linear mappings. LEt, F;, E; and
F, be vector spaces, Suppose thatis in Hom.(E;, F;) and L, is in
Hom(E,, F,). Then we can define

(A.7) Li®L, in Hom(E; ® E,, FL®k F)

as follows: The mage;, &) — Li(e) ® La(e) is bilinear fromE; x E,
into F; ® F», and we letL; ® L, be its linear extension tB; ®y E,. The
uniqueness in the universal mapping property allows us to conclude that

(A.8) (Li® L) (M1 ® M) = L1M; ® LM,

when the domains and ranges match in the obvious way.

Let A, B, andC be vector spaces ovkr A triple tensor product V =
AR B®,C isavector space oviwith atrilinearmap : AxBxC — V
having the following universal mapping property: Whenaviera trilinear
mapping of A x B x C into a vector spactl overk, then there exists a
linear mappingr of V into U such that the diagram

V (= triple tensor produgt

(A.9) / T

AxBxC " U
commutes. It is clear that there is at most one triple tensor product up to
canonical isomorphism, and one can give an explicit construction just as
for ordinary tensor productt ®; F. We shall use triple tensor products
to establish an associativity formula for ordinary tensor products.




642 A. Tensors, Filtrations, and Gradings

Proposition A.10.

() (A®; B) ®, C andA ®; (B ®; C) are triple tensor products.
(b) There exists a unique isomorphisbrifrom left to right in

(A.11) (A®:B)®,C = A®, (B®,C)

suchthab((@®b)®c)=a® (b®c)forallae A, be B, andc € C.

PROOFR

(a) Considen A ®; B) ®, C. Lett : Ax B x C — U be trilinear.
Forc € C, definet. : Ax B — U byt.(a,b) = t(a, b,c). Thent; is
bilinear and hence extends to a lindar AQ, B — U. Sincet is trilinear,
te,r0, = e, + L, andty. = Xt. for scalarx; thus uniqueness of the linear
extension force3;, .., = T, + T, andT,. = xT.. Consequently

t': (A®, B)xC — U

given by t'(d,c) = T.(d) is bilinear and hence extends to a linear
T:(A® B)®,C — U. ThisT proves existence of the linear extension
of the givent. Uniquenessis trivial, since the eleme@d® b) ® c generate
(A®, B) ®, C. So(A® B) ® C is atriple tensor product. In a similar
fashion,A ® (B ®, C) is a triple tensor product.

(b) In (A.9) takeV = (A®: B) ®. C,U = AR, (B ®;C), and
t(a,b,c) = a® (b ®c). We have just seen in (a) that is a triple
tensor product with(a, b, ¢) = (a ® b) ® c. Thus there exists a linear
T :V — Uwith Ti(a,b,c) = t(a, b,c). This equation means that
T((@a®b)®c) =a® (b® c). Interchanging the roles ¢A ®, B) ®;, C
and A ®; (B ®; C), we obtain a two-sided inverse far. ThusT will
serve asb in (b), and existence is proved. Uniqueness is trivial, since the
elementga ® b) ® ¢ generatd A ®, B) ®, C.

When this proposition is used, it is often necessary to know that the
isomorphism® is compatible with map& — A', B — B’, andC — C'.
This property is callechaturality in the variablesA, B, andC, and we
make it precise in the next proposition.

Proposition A.12. Let A, B, C, A/, B’, andC’ be vector spaces ovir
andletL,: A— A, Lg: B — B, andLc : C — C’ be linear maps.
Then the isomorphisr® of Proposition A.10b is natural in the sense that
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the diagram
(A®,B)®,C —— A®,(B®.C)
(LA®LB)®LCl lLA®(LB®LC)
(A ®,B)®,C ——> A®, (B®C)
commutes.

ProoF. We have

(La®(Lg®Lc))odP)((@a®b)®0)
=(La®(Ls®Lc)(@a® (b®0))
=La® (Lg®Lc)(b®c)
=d((Laa® Lgh) ® Lco)
=d(La®Lp)(@®b)® Lco)
=(Po((La®Lp)®Lc)((@®Db) ®0),

and the proposition follows.

There is no difficulty in generalizing matters efold tensor products
by induction. Amn-fold tensor product is to be universal fon-multilinear
maps. Itis clearly unique up to canonical isomorphism. A direct construc-
tion is possible. Another such tensor product is the- 1)-fold tensor
product of the firsh — 1 spaces, tensored with th# space. Proposition
A.10b allows us to regroup parentheses (inductively) in any fashion we
choose, and iterated application of Proposition A.12 shows that we get a
well defined notion of the tensor productmfinear maps.

Fix a vector spac& overk, and letT"(E) be then-fold tensor product
of E with itself. In the casen = 0, we letT°(E) be the fieldk. Define,
initially as a vector spacd, (E) to be the direct sum

(A.13) T(E)=ET"E)
n=0

The elements that lie in one or anothEt(E) are calledhomogeneous
We define a bilinear multiplication on homogeneous elements

T™E) x T"(E) - T™™(E)
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to be the restriction of the above canonical isomorphism
T™E) @ T"(E) — T™"(E).
This multiplication is associative because the restriction of the isomorphism
T'(E) & (T™(E) ®: TN(E)) - (T'(E) ® T™(E)) ® T"(E)
to T'(E) x (T™(E) x T"(E)) factors through the map
T'(E) x (T™(E) x T"(E)) — (T'(E) x T™E)) x T"(E)
given by(r, (s,t)) — ((r, s),t). ThusT (E) becomes an associative alge-
bra with identity and is known as thensor algebraof E. The algebra

T(E) has the universal mapping properties given in the following two
propositions.

Proposition A.14. T (E) has the following universal mapping property:
Let . be the map that embedsasTY(E) € T(E). If | : E — Ais any
linear map ofE into an associative algebra with identity, then there exists a
unique associative algebra homomorphismT (E) -~ Awith L(1) =1
such that the diagram

T(E)

(A.15) / L

E A

commutes.

PrROOF. Unigueness is clear, sinéeand 1 generaté (E) as an algebra.
For existence we define™ on T"(E) to be the linear extension of the
n-multilinear map

(v:b U27 ceey Uﬂ) = I(Ul)l (UZ) e I (Uﬂ)’

and we let. = @ L™ in obvious notation. Let; ® - - - ® Uy, be inT™(E)
andv, ® --- ® v, be InT"(E). Then we have

L(m)(ul®...® Upn) =1 (Up) - -1 (um)

LPw® - ®vn) =l(v1) -+ (vn)
L™ @ @Un®v1 ® - @ vp) = (Uy) -+ - Ul (vy) - - - [ (wn).
Hence
L™ (U®- - QUn L™ (11®- - ®up) = L™ (U1 ®- - - QUn®@u1®- - -®p).
Taking linear combinations, we see thats a homomorphism.
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A derivation D : A — A of an associative algebra with identity is a
linear mapping such thdd (uv) = (Du)v + u(Dv) for all u andv in A.
A derivation automatically satisfid3(1) = 0.

Proposition A.16. T (E) has the following universal mapping property:
Let « be the map that embedsasTY(E) € T(E). Ifd : E — T(E)
is any linear map oE into T(E), then there exists a unique derivation
D : T(E) — T(E) such that the diagram

T(E)

(A.17) / D

E T(E)
d

commutes.

PrROOF. Unigueness is clear, sin€and 1 generat@ (E) as an algebra.
For existence we definB™ on T"(E) to be the linear extension of the
n-multilinear map

(vla v27 .. -,Un) =
dv) @ ® - QUp+v1® (dV) ® V3R - QUp+V1® -+ - @ Up_1 @ (dup),

and we letD = @ D™ in obvious notation. Then we argue in the same
way as in the proof of Proposition A.14 thBtis the required derivation
of T(E).

2. Symmetric Algebra

We continue to allovik to be an arbitrary field. LefE be a vector space
overk, and letT(E) be the tensor algebra. We begin by defining the
symmetric algebr&(E). The elements oB(E) are to be all the symmetric
tensors, and so we want to force® v = v ® u. Thus we define the
symmetric algebraby

(A.18a) S(E) =T(E)/I,

where
(A.18b) U® v —v ® u with uandv

(two-sided ideal generated by jll
| = .
in TY(E)
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ThenS(E) is an associative algebra with identity.
Since the generators dfare homogeneous elements (allliA(E)), it
is clear that the idedl satisfies

| = @(l NT"(E)).
n=0

An ideal with this property is said to b@omogeneous Sincel is homo-
geneous,

S(E) = T"(E)/(I NT"(E)).
n=0

We write S"(E) for then™ summand on the right side, so that
(A.19) S(E) =P S'(E).
n=0

Sincel N TYE) = 0, the map ofE into first-order elementS'(E) is
one-one onto. The product operationS¢E) is written without a product
sign, the image il8"(E) of v1 ® - - - ® v, in T"(E) being denoted; - - - vy,.
If aisin S"(E) andbisin S'(E), thenabis in S™"(E). MoreoverS'(E)
is generated by elements- - - v, with all v; in S'(E) = E, sinceT"(E) is
generated by corresponding elemant® - - - ® v,. The defining relations
for S(E) makev;v; = vjv; for v; andv; in S'(E), and it follows thatS(E)
is commutative.

Proposition A.20.

(a) S'(E) has the following universal mapping property: Ldte the
mapt(vy,...,v,) = vi---v, Of E x --- x E into SY(E). If | is any
symmetricn-multilinear map ofE x --- x E into a vector spac¥l, then
there exists a unique linear map: S"(E) — U such that the diagram

S'(E)

/ oL
.

Ex.---xE U
[

commutes.
(b) S(E) has the following universal mapping property: Lebe the
map that embedE asS'(E) € S(E). If | is any linear map of into a
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commutative associative algebfawvith identity, then there exists a unique
algebra homomorphisrh : S(E) — A with L(1) = 1 such that the
diagram

commutes.

PROOF. In both cases uniqueness is trivial. For existence we use the
universal mapping properties ®f'(E) andT (E) to produceL onT"(E)
or T(E). If we can show that. annihilates the appropriate subspace so
as to descend t&'(E) or S(E), then the resulting map can be taken as
L, and we are done. For (a) we halze: T"(E) — U, and we are to
show thatl (T"(E)N'1) =0, wherel is generated by all @ v — v ® u
with u andv in TY(E). A member of T"(E) N | is thus of the form
> a® U Qv — v ®U) ® b with each term inT"(E). Each term here
is a sum of pure tensors

(A.21)
X® QX% OUBVAYI® @Y~ X® % QU AUDY® - ®Ys

withr + 2+ s = n. Sincel by assumption takes equal values on
Xp X oo X X XU XU XY X0 XVYs
and Xp X oo X X XU X U XY X+ X VY,

L vanishes on (A.21), and it follows thh(T”(E) nl) =

For (b) we are to show that : T(E) — Avanishes 0r1 Since kel
is an ideal, it is enough to check thiatvanishes on the generators lof
But L(u Qv—veu =I1Wlw)—I1wIlu) =0 bythe commutativity of
A, and thud_(l) = 0.

Corollary A.22. If E andF are vector spaces ovir then the vector
space Hom(S"(E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector spaceffvalued symmetrio-multilinear functions
OnE x ... x E.

PROOF. Restriction is linear and one-one. It is onto by Proposition
A.20a.
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Next we shall identify a basis f&"(E) as a vector space. The union of
such bases asvaries will then be a basis &(E). Let{u;}ica be a basis
of E. A simple ordering on the index sef is a partial ordering in which
every pair of elements is comparable.

Proposition A.23. Let E be a vector space ovRr let {u; };ca be a basis
of E, and suppose that a simple ordering has been imposed on the index
setA. Then the set of all monomialg” - - - u’* with i; < --- < iy and
> im = nis abasis oS'(E).

REMARK. In particular if E is finite dimensional with ordered basis
Ug, ..., Uy, then the monomialg}* - - - u)' of total degreen form a basis
of S'(E).

PROOF SinceS(E) is commutative and since monomials spai{E),
the indicated set spanS'(E). Let us see independence. The map
> au = Y ¢ X of Eintothe polynomial algebria { X }ica] is linear into
a commutative algebra with identity. Its extension via Proposition A.20b
maps our spanning set f&f (E) to distinct monomials i&k[{ X; };ca], which
are necessarily linearly independent. Hence our spanning set is a basis.

The proof of Proposition A.23 may suggest tI®E) is just polyno-
mials in disguise, but this suggestion is misleading, eveh if finite
dimensional. The isomorphism wilt{{X; };c4] in the proof depended on
choosing a basis dE. The canonical isomorphism is betweSE*) and
polynomials onE. Part (b) of the corollary below goes in the direction of
establishing such an isomorphism.

Corollary A.24. Let E be a finite-dimensional vector space okeof
dimensionN. Then
n+N-1

(@) dimS'(E) = N 1
(b) S'(E*) is canonically isomorphic t&"(E)* by

for0 < n < oo,

(fr f) e, wa) = Y [T fiweqy),

e, j=1
where&,, is the symmetric group on letters.

PROOF.
(a) A basis has been described in Proposition A.23. To see its cardinality,
we recognize that picking ol — 1 objects froorn + N — 1 to label as
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dividers is a way of assigning exponents to th& in an ordered basis;
thus the cardinality of the indicated basi ig +N N_I l).

(b) Let fy, ..., f, beinE*, and define

n
lyo o was o w) = D0 T fiwey)-

€6, j=1

Thenly, ¢, is symmetricn-multilinear fromE x --- x E into k and
extends by Proposition A.20a to a liney, ¢, : S"(E) — k. Thus
[(fy, ..., fn) = L., defines a symmetrimm-multilinear map of
E* x --- x E* into S"(E*). Its linear extensiorL. maps S'(E*) into
S'(BE)*.

To complete the proof, we shall show thatarries basis to basis. Let
ui, ..., Uy be an ordered basis &, and letu, ..., uy be the dual basis.
Part (a) shows that the elemeitg)’ - - - (u)™™ with Y j, = nform a
basis ofS'(E*) and that the elementsi)* - - - (uy)* with > _kn = n
form a basis ofS"(E). We show that of the basis ofS"(E*) is the dual
basis of the basis d8"(E), except for nonzero scalar factors. Thus let
fi,..., f, allbeus, let fj .4, ..., f,4, all beus, and so on. Similarly let
wy, ..., Wy, allbeuy, letwy 1, ..., wy .k, all beu,, and so on. Then

LUy - ui) ™ up* - (un)*) = L(fy--- fo)(wy- - wp)
= 1(fay e, F) (Wi wp)

= Z l_[ f; (Wegiy))-

€S, i=1

For givent, the product on the right side is 0 unless, for each indem
inequality jm—1 + 1 < i < j, implies thatk,_; + 1 < (i) < Kyn. In

this case the product is 1; so the right side counts the number oft&ich
For givent, getting product nonzero forcé&g = |, for all m. And when

km = jm for all m, the choicer = 1 does lead to product 1. Hence the
members ofL of the basis are nonzero multiples of the members of the
dual basis, as asserted.

Now let us suppose thiathas characteristic 0. We defineramultilinear
function fromE x - .- x E into T"(E) by

1
(Ulv'~~7vn)}_)HZUT(1)®"'®U‘[(F1)7

"t 1e6,
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and leto : T"(E) — T"(E) be its linear extension. We cadl the
symmetrizeroperator. The image ofis denotedS"(E), and the members
of this subspace are callsgmmetrizedtensors.

Corollary A.25. Letk have characteristic 0, and IEtbe a vector space
overk. Then the symmetrizer operatorsatisfiess> = o. The kernel of
o isexactlyT"(E) N I, and therefore

T"E) =S (E)® (T(E)N ).

REMARK. In view of this corollary, the quotient map"(E) — S'(E)
carriesS"(E) one-one ont&"(E). ThusS'(E) can be viewed as a copy
of S"(E) embedded as a direct summandi6fE).

ProoFr. We have

1
02(U1®"-®Un)=m Z Vor) ® *++ ® Vpr(n)

0,7€6,

1

PeES, weBy,
(w=p7)

1
:HZG(W@”'@)U”)

" peG,

=01 ® - Qup).

Henceo? = o. ConsequentlyT"(E) is the direct sum of image and
kero. We thus are left with identifying ker asT"(E) N I .
The subspac&"(E) N | is spanned by elements

X® @ QUAOVBYI® ®Y:—X®  ®X RUAURYI® - ® Y

withr +2+4s = n, anditis clear that vanishes on such elements. Hence
T"(E)N1 C kero. Suppose that the inclusion is strict, say with kero
butt notinT"(E) N |. Letq be the quotient map"(E) — S'(E). The
kernel ofq is T"(E) N I, and thugy(t) # 0. From Proposition A.23 it is
clear thag carriesS"(E) = imageo onto S'(E). Thus choos¥ € S'(E)
with q(t’) = q(t). Thent’' —tisinkerg = T"(E)N | C kero. Since
o(t) = 0, we seethat(t’) = 0. Consequentlt/ isin kero Nimages = 0,
and we obtain’ = 0 andq(t) = q(t") = 0, contradiction.
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3. Exterior Algebra

We turn to a discussion of the exterior algebra. kdie an arbitrary
field, and letE be a vector space ovét The construction, results, and
proofs for the exterior algebra (E) are similar to those for the symmetric
algebraS(E). The elements of\ (E) are to be all the alternating tensors
(= skew-symmetric ik has characteristi¢z 2), and so we want to force
v ® v = 0. Thus we define thexterior algebra by

(A.26a) A(E) =T(E)/I",
where

, _ ( two-sided ideal generated by gll
(A.26b) = ( » ® v with v in TX(E) j :

Then A\ (E) is an associative algebra with identity.
It is clear thatl" is homogeneousl’ = @, (I' " T"(E)). Thus we
can write

AE) =B, T(E)/(I'NT(E)).
We write /\"(E) for then™ summand on the right side, so that

(A.27) AE) =B, N\ (E).

Sincel’ N TY(E) = 0, the map ofE into first-order elementg\'(E) is
one-one onto. The product operation/N(E) is denotedh rather tharg,
the image in/\"(E) of v; ® - - - v, in T"(E) being denoted; A - - - A v,.
If aisin A™(E) andbisin A\"(E), thena A bisin A™"(E). Moreover
/\"(E) is generated by elementg A - - - A v, with all v; in /\l(E) = E,
sinceT"(E) is generated by corresponding element® - - - ® v,. The
defining relations foy\ (E) makev; Av; = —v; Av; for v andu; in /\1(E),
and it follows that

(A28) anb=(-D)"bra ifae /A\"(E)andbe A\"(E).

Proposition A.29.

(@) A\"(E) has the following universal mapping property: Léie the
mapt(vy, ..., V) = V1 A---Av, Of E x --- x Eiinto A"(E). If | is any
alternatingn-multilinear map ofE x - .- x E into a vector spac¥, then
there exists a unique linear map: A\"(E) — U such that the diagram
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A" (E)

/ oL
.

Ex-.-xE | U

commutes.

(b) A\ (E) has the following universal mapping property: Léte the
map that embedg as \'(E) € A(E). If | is any linear map of into
an associative algebra with identity such that(v)?> = 0 for allv € E,
then there exists a unique algebra homomorphism/\ (E) — A with
L (1) = 1 such that the diagram

A(E)

/ oL
5

E I A

commutes.

PrROOF. The proof is completely analogous to the proof of Proposition
A.20.

Corollary A.30. If E andF are vector spaces ovir then the vector
space Hom(/\"(E), F) is canonically isomorphic (via restriction to pure
tensors) to the vector spacefvalued alternating-multilinear functions
OnE x--- x E.

PROOF. Restriction is linear and one-one. It is onto by Proposition
A.29a.

Next we shall identify a basis fof\"(E) as a vector space. The union
of such bases asvaries will then be a basis ¢f (E).

Proposition A.31. Let E be a vector space ovRr let {u; };ca be a basis
of E, and suppose that a simple ordering has been imposed on the index
setA. Then the set of all monomiais, A --- A u;, withi; <--- <iyisa
basis of \"(E).

PROOF. Since multiplication in/\ (E) satisfies (A.28) and since mono-
mials spariT "(E), the indicated set spap§' (E). Let us see independence.
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Fori € A, letu; be the member of* with u’(u;) equal to 1 forj =i and
equalto Oforj #1i. Fixry < --- < r,, and define

I (wy, ..., wy) = defu; (w;)} for wy, ..., wnin E.
Thenl is alternatingh-multilinear fromE x - - - x E intok and extends by
Proposition A.29atd : A\"(E) — k. If k; < --- < ky, then
LU A - Alg) =1 (U, ..., Uyg) = detu; (uy)},

and the right side is O unlesg = kg, ..., r, = k,, in which case it is 1.
This proves that the,, A - - - A u,, are linearly independent if\" (E).

Corollary A.32. Let E be a finite-dimensional vector space okeof
dimensionN. Then

(@) dimA"(E) = <':) forO<n< Nand=0forn> N,
(b) A\"(E*) is canonically isomorphic tg\"(E)* by
(oA A ) (wy, ..., wy) = det f (w))).

PROOF. Part (a) is an immediate consequence of Proposition A.31, and
(b) is proved in the same way as Corollary A.24b, using Proposition A.29a
as a tool.

Now let us suppose thiathas characteristic 0. We defineramultilinear
function fromE x --- x E into T"(E) by

(Ul, .. Un) = — Z (Sgnf)v‘[(l) R Q Uz(ny,
' €S,
and leto’ : T"(E) — T"(E) be its linear extension. We call’ the
antlsymmetrlzer operator. The image af’ is denoted/\ (E), and the
members of this subspace are cabedisymmetrized tensors.

Corollary A.33. Letk have characteristic 0, and [Etbe a vector space
overk. Then the antisymmetrizer operatof satisfiess’> = o’. The
kernel ofo’ is exactlyT"(E) N I/, and therefore

TE) = A (E)® (T"(E) N 1").

REMARK In view of this corollary, the quotlent map"(E) — A"(E)

carrles/\ (E) one-one ontg\"(E). Thus/\ (E) can be viewed as a copy
of A\"(E) embedded as a direct summandié{E).
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ProoFr. We have
, 1
1@ @) = > (ST Vpey @+ ® Ve
) 0,7€6,
. 1
—(nh?

Z (SIND) V1) @« + + @ Vyy(my
peES, weS,,
(w=pT)

1
=— (V1 ® - ® vp)
n!
p€Gy

=1 ® - Quvp).

Henceos'? = ¢’. Consequentlyf "(E) is the direct sum of image’ and
kero’. We thus are left with identifying ker’ asT"(E) N I".
The subspac&"(E) N |’ is spanned by elements

X QX% QU Y1IQ---QYs

withr +24s = n, and itis clear that’ vanishes on such elements. Hence
T"(E)NI’ C kero’. Suppose that the inclusion is strict, say with kero’
butt notinT"(E) N I". Letq be the quotient map"(E) — A"(E). The
kernel ofq is T"(E) N 1/, and thusq(t) # 0. From Proposition A.31

it is (Jear thatq carries/\n(E) = images’ onto A\"(E). Thus choose

t' e /\n(E) with q(t’) = q(t). Thent’' —tisinkerq = TY(E)Nn 1’ C
kero’. Sinces’(t) = 0, we see that’'(t") = 0. Consequently’ is in
kero’ Nimages’ = 0, and we obtaint’ = 0 andq(t) = qt") = 0,
contradiction.

4. Filtrations and Gradings

Letk be any field. A vector spacé overk will be said to bdfiltered if
there is a specified increasing sequence of subspaces

(A.34) VoEViCV,C -

with unionV. In this case we pu¥_; = 0 by convention. We shall say that
V is graded if there is a specified sequence of subspacgsv?, v, ...
such that

(A.35) V=V
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WhenV is graded, there is a natural filtration \éfgiven by
n
(A.36) Vo =V~
k=0

WhenE is a vector space, the tensor algebra= T (E) is graded as a
vector space, and the same thing is true of the symmetric al@Bneand
the exterior algebrg\(E). In each case the™ subspace of the grading
consists of the subspace of tensors that are homogeneous of degree

WhenV is a filtered vector space as in (A.34), thgsociated graded
vector spaces

(A.37) gV =P Vo/Var.
n=0

In the case thaV is graded and its filtration is the natural one given
in (A.36), grV recovers the given grading o i.e., grV is canonically
isomorphic withV in a way that preserves the grading.

Let V and V' be two filtered vector spaces, and letbe a linear
map between them such thatV,) < V, for all n. Since the restriction
of ¢ to V, carriesV,_, into V,_,, this restriction induces a linear map
ar'e : (Vn/Va-1) — (V/V/._). The direct sum of these linear maps is
then a linear map
(A.38) gro:.grV — grV’
called theassociated graded mayor ¢.

Proposition A.39. Let V andV'’ be two filtered vector spaces, and let
¢ be a linear map between them such tha¥,) < V; forall n. If gre is
an isomorphism, thep is an isomorphism.

PrROOF Itis enough to prove that]y, : V, — V. is an isomorphism for
everyn. We establish this property by induction anthe trivial case for
the induction beingh = —1. Suppose that

(A.40) @lv, . - Voor — V;_; is anisomorphism
By assumption
(A.41) e : (Vn/Vao1) = (V./V._)) s anisomorphism

If visinken(gl|y,), then@r" ¢)(v+V,-1) = 0+V,_,;, and (A.41) shows
thatvisinV,_;. By (A.40),v = 0. Thusp|y, isone-one. Nextsuppose that
v isinV,. By (A.41) there exists, in V, such that(gr" ¢)(v, + Vo_1) =
v+ V). Write p(vy) = v +v,_, with v_, in V,_,. By (A.40) there
existsvn_1 in Vp_1 With ¢ (vn_1) = v;,_;. Theng(v, — vy,_1) = v/, and thus
¢lv, is onto. This completes the induction.
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Now let A be an associative algebra odemwith identity. If A has a
filtration Ag, A4, ... of vector subspaces with& A, such thatA, A, C
A for all mandn, then we say thad is afiltered associative algebra
Similarly if Ais graded a®\ = @,_, A"in such a way thaA™A" € A™™"
for all m andn, then we say thaf\ is agraded associative algebra

Proposition A.42. If Ais a filtered associative algebra with identity,
then the graded vector spacefjacquires a multiplication in a natural way
making it into a graded associative algebra with identity.

ProOOF We define a product

(Am/Am-1) x (An/An-1) = Anin/Amin-1

by @m + An—D (@ + As-1) = andy + Angnoi.

This is well defined sinca,, A,—1, An_1a,, andA,,_1 A,_; are all contained

in Anyn_1. Itis clear that this multiplication is distributive and associative
as far as it is defined. We extend the definition of multiplication to all of
gr A by taking sums of products of homogeneous elements, and the result
is an associative algebra. The identity is the elemehtA ; of A/ A_;.

5. Left Noetherian Rings

The first part of this section works with an arbitrary riAgvith identity.
All left A modules are understood to bmital in the sense that 1 acts as 1.
Later in the section we specialize to the case Kigtan associative algebra
with identity over a fieldk.

Let M be a left A module. We say thaM satisfies theascending
chain condition as a leftA module if wheneveM; € M, C --- is an
infinite ascending sequence of I&tsubmodules oM, then there exists
an integem such thatM; = M, fori > n. We say thatM satisfies the
maximum condition as a leftA module if every nonempty collection of
left A submodules oM has a maximal element under inclusion.

Proposition A.43. The left A moduleM satisfies the ascending chain
condition if and only if it satisfies the maximum condition, if and only if
every left A submodule oM is finitely generated.
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ProOF. If M satisfies the ascending chain condition, we argue by
contradiction thatM satisfies the maximum condition. Let a nonempty
collection{M,} of left A submodules be given for which the maximum
condition fails. LetM; be anyM,,. SinceM, is not maximal, chooshkl, as
anM, properly containingVl;. SinceM, is not maximal, choosbl; as an
M, properly containingM,. Continuing in this way results in a properly
ascending infinite chain, in contradiction to the hypothesisithahtisfies
the ascending chain condition.

If M satisfies the maximum condition aidl is a left A submodule,
define a leftA submoduleNg = ) _- Amof N for every finite subsef
of N. The maximum condition yields &, with Ng € Ng, for all F, and
we must haveNg, = N. ThenF, generatedN.

If every left A submodule oM is finitely generated and if an ascending
chainM; € M, C ... is given, let{m,} be a finite set of generators for
Ufil M;. Then allm, are in someM,, and it follows thatM; = M, for
i >n.

We say that the rinA is left Noetherian if A, as a leftA module,
satisfies the ascending chain condition, i.e., if the left ideald eftisfy
the ascending chain condition.

Proposition A.44. The ringAis left Noetherian if and only if every left
ideal is finitely generated.

PrOOF. This follows from Proposition A.43.

Theorem A.45(Hilbert Basis Theorem). lAis a commutative Noether-
ian ring with identity, then the polynomial ring[ X] in one indeterminate
is Noetherian.

REFERENCE Zariski—-Samuel [1958], p. 201.

ExampLES. Any fieldk is Noetherian, having only the two ideals 0 and
k. Iterated application of Theorem A.45 shows that any polynomial ring
k[ X4, ..., Xp] is Noetherian. IfE is ann-dimensional vector space over
k, thenS(E) is noncanonically isomorphic as a ringkpXy, ..., X,]as a
consequence of Corollary A.24b, aBdE) is therefore Noetherian.

Now let A be a filtered associative algebra okerin the sense of the
previous section, and let g be the corresponding graded associative
algebra. Leta be an element ofA, and suppose tha is in A, but not
A,_;. The membea = a+ A,_; of A" C gr Ais called thdeading term
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of a. In the case of the 0 element 8f we define the leading term to be
the O element of gA.

Lemma A.46. Let A be a filtered associative algebra, and lefAdre
the corresponding graded associative algebra.idfa left ideal inA, then
the setl of finite sums of leading terms of memberslois a left ideal of
gr A that is homogeneous in the sense that . (I N A").

PrROOF. Every leading term other than 0O lies in soa& and therefore
| is homogeneous. Let be homogeneous in g, and lety be a leading
terminl, arising from some € |. We are to prove thaty is in I. From
the definition of grA, X has to be the leading term of some= A. Then
xyisin |, andXyis in . From the rule for multiplication in gA and the
requirement tha\, A, C An in A, eitherxy = Xy or Xy = 0. In either
casexyisin|.

Proposition A.47. Let A be a filtered associative algebra, and leAgr
be the corresponding graded associative algebra.Afigteft Noetherian,
then A is left Noetherian.

PrROOF. By Proposition A.44 every leftideal of gxis finitely generated,
and we are to prove th& has the same property. Suppdss a left ideal
in A, and forml. By Lemma A.46] is a homogeneous left ideal, and thus
it has finitely many generatogs, ..., a8 . Without loss of generality we
may assume that eaéhis homogeneous and is the leading term of some
ainl.

The claimisthag, ..., a is afinite set of generators for We prove by
induction onn that each elememtwhose leading terra has degrea can
be written asa = Z[zlqai with ¢ in A, and then the claim follows. The
claimis trivial forn = 0. Thus assume the claim for elements with leading
term of degree< n. Leta be given with leading terma = >_, G4,
¢ e gr A. Equating homogeneous parts, we may assume thatGégh
homogeneous and that eaGh; is homogeneous of degree Theng; is
the leading term for somg, and the leading term (E{:lcia- isa. Hence
a— Zir:l G a is in A,_; and by inductive hypothesis is in the left ideal
generated by the,. Hencea is in the left ideal generated by tlag This
completes the induction and the proof of the proposition.





