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HINTS FOR SOLUTIONS OF PROBLEMS

Chapter I

1. We are interested in odd p’s such that (’") = +1. Factormas [, pkj Then qua-

dratic reciprocity gives () =]T; (% ) =TT, 0aa (&) =TT, wag(—DFP~ 1)(p/—1)(p ).
We consider p = 1 mod 4 and p = 3 mod 4 separately For p = 1 mod 4, the set
in question consists of those p’s for which ( ) is —1 for an even number of those
k;’s that are odd. This is the union over all such systems of minus signs of the
intersection over j of the finitely many arithmetic progressions for which the residue
(pﬂj) equals the j™ sign. For a single system of minus signs, the result is an arithmetic
progression of the form k ij odd Pj + b by the Chinese Remainder Theorem. Each
of these contains a nonempty set of primes by Dirichlet’s Theorem, and hence P is
nonempty.

For p = 3 mod 4, if [y, waa(=D2® D is 41, then the set in question is of the

same form as above. If [ | k; odd (—1) 3(Pi=1) is —1, then the set in question consists of
those p’s for which (p ) is —1 for an odd number of those k;’s that are odd, and this
again is the finite union of arithmetic progressions.

2. For (a), the proof of necessity of Theorem 1.6b remains valid when the prime p
is replaced by the integer m. For (b), the first paragraph of the proof of the sufficiency
of Theorem 1.6b handles matters if m is odd.

3. For D = —56, H has order 4, but H' has order 3 because 3x2 + 2xy + 5y?
are improperly equivalent but not properly equivalent. A 3-element set has no group
structure such that a 4-element group maps homomorphically onto it.

4. For (a), the product of any two integers representable as ax? + bxy + cy? is
representable by the class of the square, which is the class of the inverse because the
class is assumed to have order 3. The class of the inverse is the class of (a, —b, ¢),
and this represents the same integers as (a, b, ¢).

For (b), we seek reduced triples. These are (a, b, ¢) with |b| < a < ¢ and with
b* —4ac = D = —23, and we know that 3ac < |D| and that b has the same
parity as D. Hence b is odd, and the inequalities 36 < 3a% < 3ac < 23 show
that |b| = 1. For |b| = 1, we have 1 — 4ac = —23 and ac = 6. Since a < c, the
possibilities with [b| = 1 are (1, £1, 6) and (2, &1, 3). Since (1, 1, 6) and (1, —1, 6)
are properly equivalent by Proposition 1.7, |b| = 1 leads to just the three possibilities
(1,1,6), (2,1,3), and (2, —1, 3). Proposition 1.7 shows that these lie in distinct
proper equivalence classes, and thus £(—23) = 3.

649



650 Hints for Solutions of Problems

For (c), the general theory shows that (1, 1, 6) corresponds to the identity class,
and therefore the other two reduced forms are in classes of order 3.

For (d), we first track down what happens to the forms. If we write ~ for proper
equivalence, then we have

2,1,3)(2,1,3) ~(2,1,3)(3,—1,2) ~ (2,5,6)(3,5,4)
=(6,5,2) ~ (2,-5,6) ~ (2,—1,3),

and the last form is improperly equivalent to (2, 1, 3). The next step is to interpret this
chain with actual variables. If the initial variables are x1, yj, x2, y2, then the change
at the first step from (2, 1, 3) to (3, —1,2) comes from x = y), y» = —x} while
leaving x; and y; unchanged as x; = x|, y; = y;. The change at the second step
from (2, 1, 3) to (2, 5, 6) and from (3, —1, 2) to (3, 5, 4) comes from the translations
xp =x{+y/, ¥y =y{, x5 = x5 +), ¥, = yJ. The multiplication step comes from
Proposition 1.9 and is given by x3 = x{'x} —2y{ 'y} and y3 = 2x] y} +3x5 y{ +5y] y5.
And so on. The final result is that

@x7 +x1y1 +3yD(2x3 + x2y2 + 3y3) = 2X? + XY +3Y7,

where X = x1(—x2 4+ y2) + y1(x2 +2y2) and Y = y1(x2 — y2) + x1(x2 + y2).

5. The equality (_al,lb (1)) (2: 2176) ((1) ’“flb) = (i’; ;f) shows this.

6. For reduced forms we seek (a, b, ¢) witha > 0,¢ > 0, |b| < a < c. We know
that 3ac < |D| = 67, and D odd implies b odd. From 3b%> < 3a? < 3ac < 67, we
obtain 36 < 67and |b| < 4. So|b|is 1 or3. For |b| = 1, (b — D) = 1 (b*+67) =
17; then 17 = ac, and a = 1 and ¢ = 17. Since (1, 1, 17) is properly equivalent
to (1, —1, 17) by Proposition 1.7, we obtain only one proper equivalence class from
this pair. For |b| = 3, i(b2 — D) = %(9 + 67) = 19 forces ac = 19 and thena = 1
and ¢ = 19. Then |b| < a is not satisfied. So |b| = 3 gives no proper equivalence
classes, and h(—67) = 1.

7. The 6 cycles are

(1,8, —15), (—15,7,2), (2,7, —15), (—15,8,1);
(—1,8,15), (15,7, -2), (=2,7,15), (15,8, —1);
(3,8,-5), (=5,7,6), (6,5,-9), (—=9,4,7), (7,3,—-10), (—10,7, 3);
(-3,8,5), (5,7,-6), (—=6,5,9), 9,4, -7, (-7,3,10), (10,7, =3);
5,8,-3), (=3,7,10), (10,3, =7), (=7,4,9), (9,5, —6), (—6,7,5);
(-5,8,3), 3,7,-10), (-10,3,7), (7,4, -9), (-9,5,6), (6,7, =5).

8. The form (1, 1, 12) corresponds to the identity class, the classes of (2, £1, 6) are
inverses of one another, and the classes of (3, &1, 4) are inverses of one another. The
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group structure has to be cyclic, and any element other than the identity can be taken as
a generator. Let us take a to be the class of (2, 1, 6). We are to identify a?. The form
(2, 1, 6) is aligned with itself (having the same b component), it has j = 6/2 = 3,
and the composition formula of Proposition 1.9 leads to 2 - 2,1, j) = (4, 1,3).
This is properly equivalent to (3, —1, 4), and we do not have to follow through the
algorithm of Theorem 1.6a to identify the product in our list. The result is that
a<o (2,1,6),d>2 < 3,-1,4),a> =)' o 3, 1,4),a* =a - 2,-1,6),
anda® =1« (1,1, 12).

10. For (a), the result is known for n prime by Theorem 1.2. By induction and
the definition of the Jacobi symbol, it is enough to handle » = ab when a and
b can be handled. We have 1(n — 1) = @b —1) = Iba— 1)+ I -1
= %(a - D+ %(b — 1) mod 2, the last step following because b is odd. Therefore
(—D)20=D = (—1)2@=DH30-D = = (F) = (5, the last step following by
Problem 9a.

For (b), we argue similarly, and the key computationis g (n> — 1) = §(a*b>—1) =
ib2(@® — 1) + §(b* — 1) = §(a* = 1) + §(b* — 1) mod 2, the last step following
because b? is odd.

11. Allowing primes to appear more than once, write factorizations of m and n as
m = []i_; pi and n = [];_, ¢;. Then Theorem 1.2 gives () = [T, [Ti=, (%) =
J

s r 1 L l L
[T Ty ()= D3R = () 2orm 2 H07DH07D e

Zj:l > %(Pi - 1)%(% -bh= [Z;=1 %(51/' - 1)][er'=l %(Pi - 1)]

andsince ) 5_; 3(gj—1) = 5(n—1) mod 2and Y, 5(p; —1) = 5(m—1) mod 2
by the same argument as in Problem 10a, the required formula follows.

12. For (a), choose by Dirichlet’s Theorem a sufficiently large prime p that is
= 3 mod 8 and is in particular = 3 mod 4. If 8 divides |G|, then the fact that |G|
divides p + 1 implies that 8 divides p + 1. So p = —1 mod 8. Since p was chosen
with p = 3 mod 8, this is a contradiction. So 8 cannot divide |G/|.

For (b), choose by Dirichlet’s Theorem a sufficiently large prime p that is =
7 mod 12 and is in particular = 3 mod 4. If 3 divides |G|, then 3 divides p + 1. Thus
p = —1mod 3. Since also p =3 mod4, p =11 mod 12. But p was chosen with
p =7 mod 12. This is a contradiction, and 3 cannot divide |G]|.

For (c) with an odd prime g > 3 given, choose by Dirichlet’s Theorem a sufficiently
large prime p that is = 3 mod 4¢ and is in particular = 3 mod 4. If ¢ divides |G/,
then g divides p 4+ 1, and p 4+ 1 = 0 mod g. Meanwhile, p = 3 mod 4g implies that
p+1=4mod4q and p 4+ 1 = 4 mod g, contradiction. So g cannot divide |G]|.

13. For (a), choose by Dirichlet’s Theorem a sufficiently large prime p that is

= 5 mod 12 and is in particular = 2 mod 3 and = 1 mod 4. If 4 divides |G|, then 4
divides p + 1, which is = 2 mod 4. So 4 cannot divide |G|.
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For (b), choose by Dirichlet’s Theorem a sufficiently large prime p that is =
2 mod 9 and is in particular = 2 mod 3. If 9 divides |G|, then 9 divides p + 1, which
is =3 mod 9. So 9 cannot divide |G]|.

For (c) with an odd prime g > 3 given, choose by Dirichlet’s Theorem a sufficiently
large prime p that is = 2 mod 3¢ and is in particular = 2 mod 3. If ¢ divides |G|,
then ¢ divides p + 1, which is = 3 mod 3¢ and hence is = 3 mod g. So g cannot
divide |G|.

14. The integers in (a, r) are exactly the multiples of a, since such an integer n has
to be of the form n = ca + dr for integers ¢ and d. This equation says that n = ca
and 0 = dr, since 1 and r are linearly independent over Q. The integer N (s) = so (s)
isin I because s is in I and o (s) is in R, and thus N (s) has to be a multiple of a.

15. Write I = {(a, r) with a > 0 an integer and r in / by Lemma 1.19b. As in the
previous problem, the integer a is characterized uniquely in terms of I as the least
positive integer in . Putr = b 4+ g6 for suitable integers b and g. Without loss of
generality, we may assume that g > 0. Using the division algorithm and possibly
replacing b by b — na for some integer n, we may assume that0 < b < a.

With these conventions in place, let us see that g necessarily divides a. The fact
that aé has to be in I means that aé has an expansion ad = cia + c2(b + g8) with
integer coefficients. Then a§ = ¢>¢6, and g must divide a.

In particular, 0 < g < a is forced. To see that b and g are uniquely determined,
let {a, b’ + g’§} be another such Z basis. Since b’ + g'8 = cja + c2(b+ g68) and since
symmetrically we have b + g8 = cja + ¢, (b' + g'8), we obtain g’ = c2¢8 = c2¢5g’.
Therefore |c;| = 1. Meanwhile, we must have

cla+cb="5 and 88 = g's.

The second of these equations shows that ¢; > 0. Thus ¢; = 1. Finally cia = b — b
with0 < b <aand0 < b’ < aforces b’ —b = 0. Therefore a, b, and g are uniquely
determined.

To complete the proof, we need to see that g divides b and that ag divides N (b+g4).
Since ad is in I, a8 = c{a + 5 (b + g8). Hence ¢jg = a and c{a + ¢jb = 0.
Substituting the first of these equations into the second gives ¢ ¢} g +c5b = 0. Since
¢y # 0 from the equality ¢5g = a, ¢]g + b = 0. Thus g divides b.

To see that ag divides N (b + g&), we use the fact that go (§)(b + gd) isin I to
write bgo (8) + 80 (8)g* = diag + drg(b + g8) for some integers di and d. Then
N + g8) = b> +bg(8 + 0 (8)) + 80 (8)g> = b*> + bgs + diag + drg(b + gb).
Equating coefficients of § and 1 gives

0=bg+drg> and  N(b+ g8) = b’ +dyag + drbg.

Since g > 0, the first of these equations gives do = —bg~'. Substituting into the
second equation gives

N(b + g8) = b* +diag — (bg~")bg = djag,
and we see that ag divides N (b + g§).
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16. We are to show that Za + Z(b + g§) is closed under multiplication by arbitrary
members of R. It is enough to treat multiplication by 1 and by §. There is no problem
for 1. Since § + 0 (§) is in Z, it is enough to show that there exist integers ¢y, ¢z, di, do
with

da =cra+ c(b+ gé) and o(8)(b+ g8) =dia+dy(b+ gé).
In view of the assumed divisibility, we canputc, = ag™',c; = —bg~',dr, = —bg ™!,
and dy = N(b + g8)(ag)~!. Then the first equation is certainly satisfied, and the
question concerning the second equation, once we have multiplied it by g, is whether
we have an equality

g0 (8)(b + g8) = N(b + g8) — b* — bgs.

The left side is N (b + g8) — b(b + g6), and thus equality indeed holds.

17. From Section 7 the relevant formula is N(I) = |«/5 I=Yro @) — o (r)r).
Here we can take r; = a and rp = ¢ + d§. Substitution gives

N(I) = |VD | Yallo(c + d8) — (c + d5)|
= VWD | Vallc +do () —c —dS| = | D | |ad||o(8) — $.

The expression Iv/D |~ Yo (8) — 8| arose in Section 7 in the computation of N(R)
and was shown to be 1. Thus N(I) = |ad|.

18. For (a), the algorithm of Section IV.9 of Basic Algebra shows how to align
matters so as to compute the quotient of a free abelian group by a subgroup when
the subgroup is given by generators. The given relationship between the generators
a and b + g6 of Problem 15 with the Z basis of R is

(1) = (2) (5)

b+gs ) —\bg)\s)"

The procedure is to do row and column operations on the coefficient matrix to bring
it into diagonal form. Since g divides b, a column operation replaces the b by 0.
We obtain a diagonal matrix with diagonal entries a and g, and the quotient group
is identified as (Z/aZ) ® (Z/gZ). Thus ag is identified as the number of elements
in the quotient group R/I. Problem 17 identified ag as N(I), and thus N (/) is the
number of elements in R/1.

For (b), the inclusion / € J induces a quotient mapping of the finite group R/1
onto R/J. As a homomorphic image of R/I, R/J must have an order that divides
the order of R/I. In view of (a), N(J) divides N(I). The equality / = J holds if
and only if the quotient mapping is one-one, and this happens, because of the finite
cardinalities, if and only if N(J) = N(I).
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19. The relevant arguments for the first three parts of this problem already appear
in Chapters VIII and IX of Basic Algebra, and thus we can be brief. For (a), the
Chinese Remainder Theorem (Theorem 8.27 of Basic Algebra) shows that R/1J =
R/I x R/J, and then N(IJ) = N(I)N(J) by Problem 18a. For (b), the in-
ductive argument for (#x) in the proof of Theorem 9.60 of Basic Algebra shows
that dimz,,z R/P® = ef, and thus |R/P¢| = p¢!. For (c), Corollary 8.63 of

Basic Algebra and Problem 18a above together show that N(/) = ]_[;’:1 N (P,.k’ ) if

I = ]_[;':1 ijj is the unique factorization of the ideal /. Since N (ijk) =N (Pj)k-f
by (b), N(I) = [Tj_; N(P))", and (c) follows immediately.
For (d), we use Problem 15 to write I = (a, b + g8); then

Io(I) = (a®, a(b+ g8), a(b + g5 (8)), N(b + g9)).

Each of the generators on the right side lies in the principal ideal (ag). In fact, a® is in
(ag) because g divides a, a(b + gé) and a(b + go (8)) are in (ag) because g divides
b,and N (b + gd) isin (ag) because ag divides N (b + g8). Therefore Io (1) C (ag).
Since N(I) = ag by Problem 17, Problem 19c shows that N(lo (1)) = N((ag)).
Then Io(I) = (ag) = (N(I)) by Problem 18b.

20. The only ideal I with N(I) = 1is I = R. Problem 19c therefore shows that a
nontrivial factorization of (p) R leads to a nontrivial factorization of its norm, which
is p2. This factorization must be p> = p - p, and thus I factors nontrivially at most
into two factors, each with norm p.

21. For (a), we use Problem 15 to write a nontrivial factor I of (2)R as I =
{(a,b + gd). Problem 17 shows that 2 = N (/) = ag with g dividing a. Therefore
a = 2 and g = 1. So the only possible factors are of the form I = (2, b + §) with
0<b<a=2 Thusb =0o0rb = 1. When D is odd, we have Tr(§) = 1 and
N@) =11 —m). Then N(b+8) =b*>+bTr(§) + N®) =b*+b+ (1 —m) =
41_1(1 —m) mod 2. If m = 5 mod 8, then we see that 2 does not divide N (b + §), and
thus (2) R cannot have a nontrivial factor.

For (b), we againhave N(b +8) = b +bTr(8) + N(§) = b> +b+ 11 —m) =
41_1( 1 — m) mod 2, and the condition m = 1 mod 8 makes the right side 0. Thus 2
divides N (b+6), and (2, §) and (2, 14 6) are both ideals by Problem 16. The product
of these ideals is (2, 8)(2, 1 +8) = (4, 28, 2(1 + 8), §2) and contains (2) R because
2 =2(1 + &) — 28. Moreover, the product has norm 4 by Problems 17 and 19c, and
this matches the norm of (2) R. Thus Problem 18b shows that (2, §)(2, 14+6) = (2)R.

For (c) and (d), § = —/m. Thus N(b + §) = 2+bTr(8) + NS =b*> —m =
b— iD. If D/4 = 3 mod 4, then b — D is divisible by 2 for b = 1. If D/4 =
2 mod 4, then b — )TD is divisible by 2 for b = 0. With b taking on the appropriate
value in the two cases, (2, b 4 §) is an ideal by Problem 16. The square of this ideal
is (4,2(b +8), (b — ym)?) = (4,2(b + 8), b> + m — 2m~/b). The definition of b
makes b% 4+ m even in every case, and hence (2, b + 8 )2 D (2)R. Since the norms of
the ideals on the two sides are both 4, the two ideals must be equal.
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22. Arguing as in the previous problem, we see that any nontrivial factor of (p) R
must have norm p and therefore must be given by (p, x + §) for some x such that p
divides N (x + 8) = x% + x Tr(8) + N ().

For (a), Tr(8) = 1 and N(8) = (1 —m) = (1 — D), and the condition is that
p divide x% + x + %(1 — D). This means that xZ 4+ x + %(1 — D) = O0mod p
is to have a solution. When this happens, Problem 16 ensures that (p, x + §) is
an ideal. Then (p,x + o (§)) is an ideal as well, and the product of the two is
(p%, p(x +8), p(x +0(8)), N(x +8)). Since p divides N (x + 8), this product ideal
is contained in (p)R. The product ideal and (p)R both have norm p?, and therefore
they are equal.

For (b), Tr(§) = 0 and N(§) = —m = —D/4, and the condition is that p divide
x2 — D/4. This means that x> — D/4 = 0 mod p is to have a solution. When this
happens, Problem 16 ensures that (p, x + §) is an ideal. Then (p, x + ¢ (8)) is an
ideal as well, and the product of the two is (p2, p(x +8), p(x + c(8)), N(x + 8)).
Since p divides N (x + 8), this product ideal is contained in (p) R. The product ideal
and (p) R both have norm p?, and therefore they are equal.

For (c), the respective conditions for factorization in (a) and (b) are that
x24+x+ %(1 — D) =0mod p and x?> — D/4 = 0 mod p be solvable. In both cases
the quadratic expression on the left side has discriminant D. Hence factorization
occurs if and only if D is a square modulo p.

23. In both cases we are assuming that (p)R has a factor I = (p, x + §) with
0 < x < p. Using Problem 15, let us write (1) = (p,x +0(5)) = (p,y + 8)
with 0 < y < p. Choose integers ¢ and d with x + o (§) = cp + d(y + ). Since
o(8) = Tr(8) — 8, the equation is x + Tr(6) — 8 = cp + dy + d§, and we obtain
x4+ Tr(6) = ¢cp +dy and -6 = d§. Thusd = —1, x + Tr(§) = ¢p — y, and
cp=x+y+Tr(6). From0 <x < pand0 <y < p,wehave 0 < x +y+Tr(5) <
2(p — 1) +Tr(8) < 2p — 1. So c in the equation cp = x + y + Tr(5) has to be 1
or 0, and the equationis x + y = p — Tr(6) or x + y = — Tr(8). The condition that
o(I) = I is the condition that x = y, hence that 2x = p — Tr(6) or 2x = — Tr(4).
When D is odd, this says that x = %(p — 1); when D is even, it says that x = 0.

24. Since o ({p, x +8)) = (p, x + d(8)), the two factors are the same if and only
if o (1) = I. Problem 23 says that the latter equality holds for D odd if and only if
x = %( p — 1) and that it holds for D even if and only if x = 0. In the two cases we
know from Problem 14 that p divides N (x + 8) = x* + x Tr(8) + N (8).

When D is odd, this result says that p divides x24+x+ %(1 — D), hence that it
divides 4x> + 4x 4+ (1 — D) = (2x + 1)> — D. Then p divides D if and only if p
divides 2x + 1, if and only if x = %(p — 1.

When D is even, we know from Problem 14 that p divides x> — m. Hence p
divides 4(x> — m) = 4x> — D = (2x)?> — D. Then p divides D if and only if p
divides 2x, if and only if x = 0.

25. Theorem 1.14 shows that the genus group G is the quotient of the abelian group
H modulo its subgroup of squares. The subgroup of squares consists of the elements
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in the product of the cyclic subgroups of orders k=l k=1 qi‘ e qff , and the
quotient is the product of r copies of a cyclic group of order 2. Thus G has order 2".
The subgroup of elements of H whose order divides 2 is the product of the 2-element
subgroups of the cyclic groups of orders 2%t ..., 2k Tt is a product of r copies of a
cyclic group of order 2 and hence is abstractly isomorphic to G.

26. If P is a nonzero prime ideal, then so is o (P). Since o> = 1, the mapping
P +— o(P) is a permutation of order 2 on the nonzero prime ideals. Evidently the
prime ideals of type (i) above are permuted in 2-cycles, and the prime ideals of types
(ii) and (iii) are left fixed.

If a nonzero ideal / has prime factorization / = [7; Pl.k" ,theno (1) = [, o (P)k.
When o (1) = I, we can match the factors and their exponents. We conclude that the
factorization of [ is as

. k,' ki
i :( I (PiU(Pi))k‘>< M P )( n e )
pairs (P;,o (P;)) ideals P; ideals P;
of type (i) of type (ii) of type (iii)

Each factor in the first product is of the form (N (P))ki by Problem 19d, each factor
in the second product is of the form (p)* for some prime p not dividing D, and each
Pl-2 contributing to the third factor is of the form (p) for some prime p dividing D.
The result follows.

27. For (a), the only nontrivial step in the displayed formula is the third equality,
which follows because xo (x) = N(x) = 1 by hypothesis. If we take y = (1 +x)~!,
then the displayed formula gives x = (1 +x)(1 + o (x))~' = y~lo(y) as required.

For (b), the equality o (y)y~! = x remains valid when y is replaced by ny with
n € Z, and thus we may take y to be in R. Now let y and z be in R with o(z)z ™! =
x = o(y)y~!. Theno(zy™!) = zy~!, and zy~! is in Q. Among all y € R with
o(y)y~! = x, let yo be one with | N ()| as small as possible; yy exists because [N (y)|
is an integer in each case. Ifa(z)z’l = x,writez = u+vd, yo = a+>b$, and zyo_l =
p/q with GCD(p, g) = 1. Then qu + qvé = gz = pyo = pa + pbé, and we obtain
qu = pa and qv = pb. Therefore ¢ divides a and b, and ¢~ 'yg = ¢ 'a + ¢~ 'b8 is
in R. Then y = ¢~ 'yp is another element in R with o (y)y~! = x, and it contradicts
the minimal choice of |N (yg)| unless |g| = 1. We conclude that z = =+ pyy.

28. In(a), N(I%?) = N((x)) says that N(I)?> = |N (x)|N(R) = |N(x)|. Therefore
NGxINWD) = IN@)|T'N(NT)) = IN®)|"'N)? = 1, and xN(I)~" has
norm 1.

In (b), Problem 27b gives us yop € R with U(yo)yo_1 = xN(I)~'. Then we
compute that o ((y0)!) = o (yo)o(I) = yoxN(D)~'o(I) = yN(D~' (o (l) =
YoN (D™ Po (D) = yoN ()™ (NI = yol.

For (c), suppose N(yg) > 0. Then Problem 26a shows that (yo)/ = (a)Js for
some a € Z, and this gives the required strict equivalence. If N(yg) < O, then

N(yo/m) > 0, and o ((yo/m )I) = (yo~/m )1 ; Problem 26a shows that (yo+/m )1
= (a)Js for some a € Z, and this gives the required strict equivalence.



Chapter [ 657

29. For (a), since m < 0 and m is neither —1 nor —3, the possible units are
& = £1. The equality o (x) = ex says that x is in Z if ¢ = +1, and it says that x is
inZymife=—1.

For (b), whenm = —1 orm = —3,wehave D = —4or D = —3; thus g = 0,
and there is nothing to prove. For other values of m < 0, consider Js. Then
N(Jg) = ]_[pe s P, and this is some divisor D’ of D with no repeated factors. Let us
write Jg = (a, b + g8) by Problem 15. Then ag = D’ and g divides a. Since D’ is
square free,a = D’ and g = 1. If Jy is principal, then (a) shows that Jg = (c¢) for an
integer ¢ or Jg = (d/m ) for an integer d.

Suppose Js = (¢). Then b 4+ § = rc for some r € R. Write r = x + y§ for
integers x and y. Then b + 8§ = cx + cyé shows that 1 = ¢y and hence that ¢ divides
1. Thus Js = R, and the set S is empty.

Suppose Js = (d/m). Thenb+§8 = dx./m+dys./m for some integers x and y.
If D is odd, then the equation reads b+ £ (1 — /m ) = dx/m +dy%(1 — /m)/m.
This implies that —1 \/m = d(x + }dy)+/m, hence that —1 = d(2x + 1). Therefore
d=1,Js=(J/m)= (D), N(Js) = |D|,and § = E. If D is even, then the
equation reads b — /m = dx./m — dym, and we obtain —1 = dx. Sod = 1,
Js = (Jm), N(Js) = m = D/4 = D’. This is the product of all prime divisors of
D if D/4 =2 mod 4 and all of them but 2 if D/4 = 3 mod 4.

For (c), let E’ be a subset of g members of E, and assume that the element of E
that is not in E’ is not 2 unless D = —4. If § and S’ are two subsets of E’, then
JsJs = (n)Jr, where n = npeSmS’ pand T = (§ —SHU (S = S). If Jg and Jg
represent the same genera, then JgJg is principal, and Jr must be principal. The set
T can be empty only if S = §’, and it has to be a subset of E’ and thus cannot be
all of E. According to (b), the only way that Jr can be principal is thus that § = §’
or that all of the conditions D even, D/4 =2 mod4,and T = E' = E — {2} are
satisfied. In the latter case the construction of E’ shows that D = —4, T is empty,
and S = §’. Thus the ideals Jg for S € E’ represent distinct genera in every case.

For (d), the roots of unity are :I:s’f. Since N (1) = —1, the roots of unity of norm 1
are the :I:e%”. So suppose that ¢ = j:s%”. Put 59 = &}. Then goo (g9) = N(gg) =
(=", and o (] x) = o (e0)o (x) = o (g0)ex = (—1)”80_18x = :I:(—l)”sl_"af"x =
£(—1D"elx = seffx withs = £(—1)". If s = 41, then &{x isin Z, while if s = —1,
then &{'x is in Z./m. Then the same steps as in (b) and (c) finish the argument.

For (e), the four mentioned ideals are principal, and we have (1) = Jg for S
empty and (y/m ) = Js for S equal to the set of prime divisors of m. For these two
ideals, N(1) > 0 and N(/m) < 0. Consider (y;) and (y;). The ideal (y;) has
() = (@) = (v e1) = (), and hence it is of the form (n)Js for some S.
Then yar = nr for some r € R, and it follows that n_ly(;r is in R. This contradicts
the minimality of |N (yar )| unless |n] = 1. Hence (yar ) = Js for some S. Similarly
(¥ ) = Js for some S. Thus all four principal ideals are of the form Js.

Let us see that the four principal ideals are distinct. Neither ideal (yg' ) nor (¥, )
can equal (1). In fact, if ( yar ) were to equal (1), then y(;“ would be a unit ¢, and we
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would have g; = (r(ygr)(y(;")_1 = o(e)e~! = £72, in contradiction to the fact that

&1 is fundamental. Similarly (y, ) cannot equal (1).

Since o (y5 /m) (g V/m) ™' = = (v )Vm (39) 7 (Wm) T = o (yH ) !
= —é&1, the definition of y, shows that yar /m = ny; for some integer n. Passing
to norms gives —mN (y(;r ) =n?N (g ). Therefore N (yar ) and N (¥, ) have opposite
sign.

We have seen that two of the four elements 1, yo+ Yo s »/m have positive norm,
two have negative norm, and the two of positive norm generate distinct principal
ideals. To see that the two of negative norm generate distinct ideals, we consider
separately the cases N(y, ) < 0and N (yar ) <0.If N(y5) < 0, we use the equation
—mN (y(;r ) = n’N (¥ ) proved in the previous paragraph. If (y,) = (/m), then
cancellation gives N (yé|r ) = +1; then ygr is a unit, and we have seen that it cannot
be. If N (yg' ) < 0, we use the definition of y; in the same way as in the previous
paragraph to obtain —mN (y, ) = n*N (yar ) for some integer n. Cancellation shows
that N(y, ) = +1; then y, is a unit, and we have seen that it cannot be. Thus the
four principal ideals are distinct.

Now suppose that (x) is any principal ideal fixed by o. As in the statement of the
problem, we have o (x) = ex for some unit &. The most general unit is of the form
& = *£e. We shall produce constructively the element of Problem 27 corresponding
toe. Putyp, = 8;’/2 if n is even and yo , = sinﬂ)/z
have

yo if n is odd. For n even we

/2

o (yo.ux) =0 (Yon)ex = :ta(s'f/z)sfx = :tel_" glx = £yo.ux,

and for n odd we have

1)/2
o (youx) = o (yon)ex = £a (e yp)elix =

_ iggnfl)/Z -1/

—(+1))2
+e, (n 1)/ o (yo)efx

o(yo)x = j:sgn 2y081x = £y nx.

Thus o (yo,,x) = %yo.,x for all n. Therefore yg ,x is in Z or in Z+/m, depending
on the sign £. Depending on the sign, |N (yo,,Xx)| = |N(yo,,)||N (x)| thus is either
the square of an integer or m times the square of an integer. If n is even, then
N (y0.n)] = 1, and | N (x)] is therefore either the square of an integer or m times the
square of an integer. Since |N (x)] is the value of the norm of (x), there are only two
possible S’s for which this can happen. If  is odd, then [N (yo )| = a for a certain
square-free integer > 1, as we have seen. Therefore | N (x)| has to be either a ! times
the square of an integer or ma~! times the square of an integer. So there are only two
possible S’s in this case. Thus there are only four possible S’s in all cases, and these
have been accounted for. So the number of principal ideals among the Jg’s is exactly
four. To complete the proof, we now argue as in (c) but consider only possibilities
for which the product of two Js’s is n* times one of the two Js’s given by a principal
ideal with a generator of positive norm.
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30. Since D is fundamental, (a1, by, c1) is automatically primitive. Then Lemma
1.10 produces a properly equivalent form that represents some integer a relatively
prime to D. The rest follows from the argument in the second paragraph of the proof
of sufficiency in Theorem 6b.

31. For (a), choose an integer r such that b + 2ar = kD for some integer k; this is
possible because GCD(D, 2a) = 1. Then the translation x = x’ +ry’, y = y’ leads
fromax?4bxy+cy? toax'>+kDx'y'+c'y'? forsome ¢’. The discriminant of the new
form is still D = k2D? — 4ac’, and thus 4ac’ = 0 mod D. Since GCD(4a, D) = 1,
¢’ =0mod D.

For (b), b has to be even because D = b? — 4dac is even. Write b = 2b. Choose an
integer s such that b+as = kD for some k; this is possible because GCD(a, D) = 1.
Then the translation x = x’' + sy’, y = y’ leads from ax? + bxy + c¢y* to
ax’® + 2kDx'y’ + ¢’y'? for some ¢’. The discriminant of the new form is D =
4k2D? — 4ac’, where ¢! = (4a)"'D@k*D — 1) = a~"(D/4)(4k*D — 1). Modulo
D, this expression is —a(D/4), where a is an integer with aa = 1 mod D. Here
a is odd, and hence > = 1mod 8. If 2“ is the exact power of 2 dividing D,
then aa = 1 mod 2%, and hence a = a mod 2%. If p is any odd prime dividing
D, then p divides D/4, and hence a(D/4) = 0 = a(D/4) mod p. Therefore
a(D/4) = a(D/4) mod D, and we conclude that ¢’ = —a(D/4) mod D.

32. For (a), clearing fractions in the expression ax” 4+ kDxy + Dy’ = r yields
au®+kDuv+1Dv* = rw?. Suppose a prime p divides GCD(w, D). Then p divides
au?. Since GCD(a, D) = 1, p divides u. Referring back to the equation, we see that
p2 divides au? and k Duv, hence divides  Dv2. Thus p divides/ v2. The discriminant
is D = k> D? — 4al D, and divisibility of I by p would force p? to divide the left side
D. Hence p does not divide /, and p must divide v. Then p divides both u and v,
in contradiction to the minimality of the common denominator w. We conclude that
GCD(w, D) = 1. Taking the equation au” + k Duv + [ Dv* = rw? modulo D gives
au® = rw? mod D. Since r and w are relatively prime to D, so is . Thus we can
rewrite this congruence as @ = d*r mod D for some integer d relatively prime to D.

For (b), the same argument gives a’ = d’>r mod D. Since d is relatively prime to
D, we can rewrite the congruence for a as ¥ = d~2a mod D, and then ¢’ = d'*r =
(d~'d")%a mod D.

For (c), the given forms are properly equivalent over Z to (a, kD, ID) and to
(@', k' D, ' D), respectively, by Problem 31a. Proper equivalence over Q means that
the two forms take on the same rational values, one of which is the integer a’. Part
(b) therefore shows that a’ = as? 4+ nD for some integers s and 7, necessarily with
GCD(s, D) = 1. Modulo D, the forms are given by ax? and a’x’?, and the first
can be transformed into the second by the substitution x = sx’, y = s~'y’, where
s~ ! is the multiplicative inverse of s in Z/DZ. In fact, substitution into ax? gives
a(sx’)2 — (asz)x/z = a/x/2
in SL(2,Z/DZ).

33. Part (a) is almost the same as Problem 32a. Clearing fractions leads to

mod D. This substitution is given by the matrix ((S) S(,)] )
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au’® + kDuv + (ID — a(D/4))v> = rw?, and the argument that no odd prime p
divides GCD(w, D) is the same. Suppose that 2 divides w. The equation modulo 4
is then au® — a(D/4)v* = 0 mod 4 with D /4 congruent to 2 or 3 modulo 4. Since
2 divides w, at least one of # and v must be odd. If D/4 = 3 mod 4, the congruence
becomes a(u? + v?) = 0 mod 4, which is impossible with at least one of u and v
odd. If D/4 = 2 mod 4, the congruence becomes a(u> + 2v?) = 0 mod 4, which
again is impossible with at least one of # and v odd. Thus GCD(w, D) = 1. Taking
the equation modulo D and using the invertibility of » and w modulo D, we have
ar~'w™?w? — (D/4)v?) = 1 mod D.

For (b), let p be an odd prime divisor of D. The above congruence then becomes
ar~'w™2u? = 1 mod p. Similarly with the second form, there is some w’ prime to
D such that a’r ~'w’~2u’?> = 1 mod p. Comparing the two expressions, we see that
a modulo p is the product of @’ and an invertible square.

For (c), the above congruence becomes ar ' w2 (u>4v?) = 1 mod 4. This forces
u? 4+ v2 = 1 mod 4. Since w has to be odd, w? = 1 mod 4. Hence ar~! = 1 mod 4.
Similarly a’r~! = 1 mod 4, and therefore a = a’ mod 4.

For (d), the above congruence becomes ar ~! (u? — (D /4)v?) = 1 mod 8, since w
is odd. If D/4 = 2 mod 8, we obtain ar ~!' (u> — 2v%) = 1 mod 8. Here u has to be
odd, and thus ar‘l(l — 2v2) = | mod 8. If v is even, this says that a = r mod 8; if
v is odd, it says that « = —r mod 8. Putting this conclusion together with a similar
conclusion about the second form, we obtain a’ = +a mod 8.

If D/4 = 6 mod 8, we obtain ar ~! (u? 4+ 2v?) = 1 mod 8. Here u has to be odd,
and thus ar ' (1 4+ 2v%) = 1 mod 8. If v is even, this says that ¢ = r mod 8; if v
is odd, it says that a = 3r mod 8. Putting this conclusion together with a similar
conclusion about the second form, we obtain ¢’ = a mod 8 or @’ = 3a mod 8.

For (e), we shall assemble a member of SL(2, Z/DZ) one prime at a time and
use the Chinese Remainder Theorem. For odd primes p dividing D, choose s, with

a =52 g 91)inSL(2, 7)pZ). D4 =
p 0 s,

3 mod 4, introduce the matrix M, = (é ?) in SL(2, Z/4Z). If D/4 = 2 mod 4, let

My = (} j) inSL(2, Z/8Z) if D/4 = 6 mod 8, and let M = (} §) inSL(2, Z/87)

if D/4 = 2 mod 8. The Chinese Remainder Theorem produces a unique matrix with
entries in Z/ DZ that is congruent to M, modulo each odd prime divisor of D and is

a mod p, and introduce the matrix M, = (

congruent to M, modulo the power of 2 dividing D. Call this matrix M = z 'Z )
It has determinant 1 modulo D and hence lies in SL(2, Z/DZ). Then substitution of
x =ax’ 4+ By and y = yx’ + 8y’ into the form a(x> — (D/4)y?) modulo D leads

to the form a’(x? — (D/4)y?) modulo D.

34. These problems establish a function from the set of equivalence classes of
binary quadratic forms over Z with discriminant D, the equivalence relation being
proper equivalence over QQ, onto the set of equivalence classes of binary quadratic
forms over Z with discriminant D, the equivalence relation being proper equivalence
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over Z/DZ. The number of elements in the domain has to be > the number of
elements in the range.

35. The steps in solving Problems 32 and 33 involve relating a to r modulo
each prime power dividing D. These relationships are the same as the relationships
between a and r’ if the form modulo D represents r’ and GCD(r’, D) = 1, and the
relationships are transitive. Thus the genus characters take the same values at r as
they do at r’, and they take the same values at a as well.

36. Multiplication is the operation on proper equivalence classes of forms that
corresponds to composition of aligned representatives of the classes, and composition
is defined in such a way that the set of values of the composition is the set of products
of a value of one form by a value of the other. The values are unaffected by proper
equivalence over Z.

37. For (a), D/4 has an odd number 2¢ + 1 of prime factors 4k + 3. Use of the
Jacobi symbol with a odd and p varying over the prime divisors of D /4 gives

M@= 11 @ I @)=t I & I ¢ =t

p P a1 P p=ak43 p=dk1 - p=ak43

Therefore

s@ll() = CAH = CH=®.

For (b) and (c), say that the number of prime factors 4k 4 3 of D/8 is t. With
p varying over the odd prime divisors of D, the same computation as above gives

];[(%) = S(a)’(DT/S). Then (g) = (%) (DT/g) = n(a)é(a)’ ];[ (%) One easily checks
that ¢ is even if D/4 = 2 mod 8 and is odd if D/4 = 6 mod 8, and the result follows.

38. For each odd prime divisor p of D, choose a residue r, modulo p such that
(%") = sp. If D is even, choose an odd residue r, modulo 8 such that a(r7) = s.
The Chinese Remainder Theorem produces an integer b prime to D such that b =
rp mod p for the odd p’s and b = r» mod 8. For this integer b and every k > 0, we
have (#) = r, for each odd p and (b + kD) = s;. Dirichlet’s Theorem says
that b + kD is a prime g for a suitable choice of k, and this prime g has the required
properties.

39. Problem 37 showed that the product of the genus characters for an odd integer
a such that GCD(a, D) = 1 is (g) Using the genus characters at a = g, we see
that (g) = 1. Theorem 1.6b shows that g is primitively representable by some form
(g, b, ¢) of discriminant D. The values of the genus characters for this form are
their values on ¢, and we have arranged that these values are the various numbers
sp. Since there are g + 1 genus characters and the first g of them can be specified
arbitrarily and still give a similarity class modulo D, there are at least 28 similarity
classes modulo D.
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40. Problem 29 shows that the number of classes of type (i) is exactly 28. Problems
30-33 show that equivalence of type (i) implies equivalence of type (ii), and they
therefore give a mapping of the set of classes of type (i) onto the set of classes of
type (ii). The definition of “similar modulo D”’ immediately implies that equivalence
of type (ii) implies equivalence of type (iii), and therefore we obtain a mapping of
the set of classes of type (ii) onto the set of classes of type (iii). Finally Problem 39
shows that there are at least 28 classes of type (iii). The result follows.

Chapter 1I

1. The unital left CG modules correspond (via the universal mapping property of
a group algebra) to representations of G on complex vector spaces. The theory in
Chapter VII of Basic Algebra shows that every representation splits as the direct sum
of irreducible representations, which correspond to simple left CG modules. Hence
every unital left CG module is semisimple. The left regular representation of G,
which corresponds to the left CG module CG, decomposes as the sum of irreducible
representations, each irreducible representation occurring as many times as its degree.
The sum of all the irreducible subspaces of a given isomorphism type gives one of
the factors M, (C) of CG, and every factor arises this way.

2. For (a), rad A = (C + CX)(X? + 1), and S will be the sum of two copies
of C. Finding S requires some computation. We can identify A/(rad A) with the
quotient C[X]/(X? + 1), and direct computation shows that the two idempotents in
this notation having sum 1 are %(X 4+ i) and —%(X — 7). The proof of Proposition
2.23 shows how to lift these to idempotents in A. For the first one, puta = 21—1 (X +1i)
and b = 1—a = —%(X — i), and observe that (ab)?> = 0. The proposition
gives the formula e = Y;_, ({)a**b* = a* + 4a’b, the term for k = 2 being 0.
Then e = a(a + 4b) = 11—6(X +i)3(=3X + 5i). So one contribution to S comes
from Ce; the other will come from the complex conjugate in the form of C f, where
=X —i)3(=3X —5i).

We can check directly that e is an idempotent. In fact,

e —e=e[ % (X +i)(-3X +5i) —1].

The polynomial in square brackets vanishes at X = i, and so does its derivative.
Thus the polynomial is divisible by (X — )%, and e? — e = (X 4 i)3(=3X + 5i)x
[(X —)2Q(X)] is divisible by (X2 + 1)2.

For (b), the answer is yes. This problem anticipates Problem 5 below. The algebra
S is spanned linearly by its idempotents, and Problem 5 shows that the idempotents
are determined uniquely in the commutative case.

For (c),rad A = (R+RX)(X2+ 1). Call the subalgebra So. This subalgebra will
be a 2-dimensional real subalgebra isomorphic to C. To find it, we can go through
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the proof of Theorem 2.17 or we can use the Galois group. The latter method is a
good bit easier. Thus we seek those members of § as in (a) that are fixed by complex
conjugation. Since S = Ce + Ce, the result is that Sy = R(e 4 ¢) + iR(e — ¢). This
is unique; in fact, any choice of Sy has the property that So ®g C is an S for (a), and
we know that the S for (a) is unique.

3. Since rad A is a nilpotent ideal of A, (rad A) ® r B is a nilpotent ideal of
A ®r B, and therefore (rad A) ® p B C rad(A ®r B). For the reverse inclusion
Proposition 2.31 shows that rad(A ® r B) = [ @ B for some two-sided ideal of A.
If rad(A®pF B))" =0anday,...,a,arein I, then (a; ® 1) --- (a, ® 1) must be 0,
and hence a; - - -a, = 0. Therefore I C rad A, and rad(A ®fr B) C (rad A) ®f B.

4. For (a), suppose on the contrary that there is an infinite sequence M1, Mo, ...
of distinct maximal ideals. Then we obtain a decreasing sequence of ideals R O
M| D MMy D MiMy;M3 D - - -, and the Artinian property shows that My - - - M,, =
My ---M,M,4, for some n. Since M, is prime and M,41 2 M ---M,, M,
contains M; for some j with 1 < j < n. By maximality, M,, = M;, and we have a
contradiction.

In (b), every element of rad R is nilpotent because rad R is nilpotent. Conversely
if x € R is nilpotent with x” = 0, then Rx is nilpotent with (Rx)" = 0, since
ayxax ---a,x = ayay---apx" =0foranyaj,...,a, € R. Thus Rx C rad R, and
the nilpotent element x lies in rad R. This proves (b), and (c) follows because R is
semisimple if and only if rad R = 0.

For (d), R semisimple implies that R is a product of full matrix rings over division
rings. Commutativity implies that the matrices are all of size 1-by-1 and the division
rings are all fields.

5. If ¢’ is a second representative, then ¢’ = ¢ + r with r € rad R. If n is an odd
integer large enough to have r" = 0, then

n n—1
O=r"=(—e"= kZO(—l)"(Z)(e’)"”‘e" =d+ 3 (=D ()e'e—e
n
=e/+(z (—1)"(Z))e/e—e/e+e’e—e:e/+0—e/e+e/e—e=e’—e.
k=0

6. Let My, ..., M, be the finitely many maximal ideals, and put N = M| - - - M,,.
Nakayama’s Lemma says that if  is any ideal contained in all maximal ideals, then
the only finitely generated unital R module M having the property that /M = M is
M = 0. The Artinian property shows that N**! = N* for some k. We take I = N
and M = N* in Nakayama’s Lemma. The R module M is finitely generated because
Artinian implies Noetherian (Theorem 2.15), and hence Nakayama’s Lemma shows
that N*¥ = 0.

7. Let the maximal ideals be M, ..., M,, and let (M, ---Mn)k =0. IfPisa
prime ideal, then P 2 0 = (M - -- M,)¥. Since P is prime, P contains one of the
factors. Thus P 2 M; for some j.
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8. It helps to have a multiplication table available. If the rows index a factor on

the left and the columns index a factor on the right, then the resulting products are
RMO

givenby(o oM ).

00 S
If I is a left ideal of S and I, is a left R submodule of R & M containing M I,
then RI, =0, MI, C I, and SI, C I,. Also, RI}, € I}, MI, =0, and SI; = 0.
Thus Al} € I and Al, C I} @ . Consequently I @ I is a left ideal of A.

In the reverse direction if J is a left ideal in A, then I; = ( : g) JCROM

and I, = (8?) J C Saresuchthat J = 11 I,. Also,r € Rimplies(gg) ((])8) J
_ (10 . e N 00) (00 _
= (00>rJ C I, while (M & S)I) = 0; and s € § implies (Os><Ol>J =
00 . _ . . om\ {00 __{O0m
1)sJ C I, while Rl = 0 and m € M implies (00)(01>J = (00>J C

(=]

10) (0 m 10\ , _
00)(00)J§<00>J_11'

9. For (a), suppose A is left Noetherian. The table produced in the solution of
Problem 8 shows that M & S and R @ M are two-sided ideals of A, and the respective
quotient rings are R and S. As quotients of a left Noetherian ring, R and S have to be

left Noetherian. If {M;} is an ascending chain of R submodules of M, then { (8 Ag" ) }

is an ascending chain of left ideals of A, by Problem 8. The latter must be constant
from some point on, and then the same thing is true for {M;}.

Conversely suppose that R and S are left Noetherian and that the left R module M
satisfies the ascending chain condition. If {J;} is an ascending chain of left ideals of A,
then the corresponding sequence {(I>);} is an ascending chain of left ideals in S, and
{(1y);} is an ascending chain of left R submodules of R & M containing M I,. Since
S is left Noetherian, {(/7);} is constant from some point on. Since R = (R @& M)/M
and M satisfy the ascending chain condition for their left R submodules, so does
R & M, and therefore {(1;);} is constant from some point on.

10. In view of Problem 9a, showing that A is left Noetherian amounts to showing
that R and S are (left) Noetherian and M satisfies the ascending chain condition for
its left R submodules. The ring S is Noetherian by assumption, and R is a field,
hence is Noetherian. The action of R on M is the action of a field on itself, and the
R submodules are trivial. In view of Problem 9b, A fails to be right Noetherian if the
ascending chain condition fails for the right S submodules of M = R. If the ascending
chain condition were to hold, then R would be a finitely generated S module, and
the only denominators needed for members of the full field R of fractions would be
those dividing the product of the denominators of the generators; these fractions are
already in §, and hence S would equal R, contradiction.

The analogs of the results of Problem 9 for the Artinian case show that A fails to
be either left or right Artinian if S is not Artinian. If s is a nonunit in S, then the
chain of principal ideals {(s¥)} is properly descending, since (s¥) = (s**!) implies
es* = sk*1 for some unit & and since the hypothesis that S is an integral domain
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allows us to cancel and obtain ¢ = s, contradiction.

11. Since R and S are fields, they are left and right Noetherian and Artinian. In
view of Problem 9, we are to show that M = R satisfies both chain conditions for
its left R modules and neither chain condition for its right S modules. Since R is a
field, M = R has only trivial R submodules and satisfies both chain conditions. For
the S action on R, we are to examine the S vector subspaces of S. Since dimg R
is infinite, there exist both a properly increasing sequence of such subspaces and a
properly decreasing one. Hence neither chain condition is satisfied.

12. For (a), the vector-space dimension over [ is certainly 4, and computation
shows that A is closed under products. The choices @ = 1 and b = 0 show that A
has an identity.

For (b), let x # 0 be in a two-sided ideal 1. If x = (” 0

0 ), then x is invertible,
o(a)

and hence I = A. Otherwise suppose that some matrix x = (ma(b) Jfa)) withb # 0

0 b/ ) i

is in /. With c as in the statement of the problem, cx — xc = (_2m B o

in 7; this matrix is invertible since b # 0, and thus I = A.
To see that A is central, let x be in the center. The computation 0 = cx — xc shows

that b = 0. Thus x is of the form (g U?a) ) Such an x does not commute with (? (l))

unless a = o (a), in which case x is in F.

13. The determinant is ao (a) — rbo (b) = Nk r(a) — r Nk, r(b) and equals 0
for a given r if and only if some pair (a, b) # (0,0) has Ng,r(a) = rNg,r(b).
Since r # 0, both a and b are nonzero, and this equality then holds if and only if
r = NK/F(ab_l).

In other words, some nonzero member of A has determinant O if 7 is a norm, and
then A cannot be a division algebra. Conversely if 7 is not a norm, then every nonzero
member of A is invertible as a matrix. Computation of the inverse matrix shows that
it has the correct form to be in A. Hence A is a division algebra.

When A is not a division algebra, it is anyway finite-dimensional and central simple
and has to be of the form M, (D) for some n and some division algebra D over F
such that dim M, (D) = 4. The dimensional formula says that n?dimp D = 4. Since
n#1,wemusthaven =2and D = F.

-1
14. The isomorphism follows from the computation (C 0) ( “ b ) (c 0) =

01 ro(b) o(a) 01
a bc '\ _ a bc '\ _ a be
relo®) o@) ) — \r'o@o®) o@ ) — \robe) o))

15. Direct computation.

16. If K is a maximal subfield, then dimr K = 2. Since the characteristic is not 2,
K = F(/m) for some nonsquare m € F. Definei € K be to /m.

The map f : K — D given by f(a + bi) = a — bi is an algebra homomorphism
into the central simple algebra D. So the Skolem—Noether Theorem produces j € D
with j(a 4+ bi)j~' = a — bi for all a + bi in K, necessarily with j invertible.
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As in the proof of Theorem 2.50, j> = r lies in F. Define k = ij. Then k> =
ijij = i(jij™")j? = i(—i)j*> = —rm, and —rm = k> = ijk implies that k =
—rm(jHG™) = —rmG T jymTli) = —ji.

Let us check the multiplication table for {1, 7, j, k}. We know thati% = m, j2 =r,
k2= —rm, ij =k,and ji = —k. In addition, we have

jk=jij = (jij™hj* = (=D = —ri,
kj=ijj =i(* =ri,
ki=iji=i(jij~j=i(=1)j=-mj,
ik=iij = (%) =mj.

Hence the F' linear map ¢ from A into the given central simple algebra is an algebra
homomorphism sending 1 into 1. Since A is simple, ¢ is one-one. Since A and the
given algebra both have dimension 4, ¢ is onto. Thus ¢ is an algebra isomorphism.
(We did not have to check directly that {1, i, j, k} is linearly independent over F.)

17. A is an algebra by routinely checking that it is closed under multiplication.
Manifestly A has an identity and has dimension 9 over F. If I is a nonzero two-sided
idealin A, let x = a+bj 4 cj2 be nonzero in I, and assume that x is chosen in I such
that as few of the coefficients a, b, c are nonzero as possible. Possibly by multiplying
x by j or jZ on the right, we may assume thata # 0. Choosed € K withd, o (d), and
o2(d) distinct. Computation shows that dx — xd has one fewer nonzero coefficient.
By minimality we must have dx — xd = 0; hence x must have had just one nonzero
coefficient. Such an x is invertible, and thus 1 isin / and / = A. Hence A is simple.
To see that A has just F as center, we test a general element x = a + bj + ¢j> for
commutativity with both d € K and the element j, and we find that > = ¢ = 0 and
a=o0(a) =o2a).

18. Since A is finite-dimensional central simple, A = M, (D) for some n and
some central division algebra D over F. Then 9 = dim A = n* dimy D, and the only
possibilities are that n = 3 and D = F, or that n = 1. In the first case, A = M3(F),
and in the second case, A is a division algebra. In the first case any column of A
(when viewed as M3(F')) is a 3-dimensional left A module; in the second case A has
no proper nonzero left A modules.

19. Left multiplication by K makes A into a K vector space, and the left K
submodules of A are the K vector subspaces. The F' dimension of such a subspace
is 3 times the F' dimension. Hence the left K submodules of A are the subspaces of
K dimension 1, which consist of all left K multiples of any nonzero vector.

Letx =ao+boj+coj 2 be nonzero in A. Then K x is a left A module if and only if
jxliesin Kx. Here jx = o (ag) j+0o (bo) j>+0 (co) j> = ro(co)+o(ag) j+o (bo) j>.
This equals dx for some d € K if and only if

ro(cg) =day, o(ag) =dby, and o(by) = dcy. (%)
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Combining the second and third equations gives the necessary condition that 52 (ag) =
o (dbg) = o(d)o(bg) = o(d)dco. Applying o gives the necessary condition ag =
o3(ap) = o (o(d)dcy) = 0*(d)o(d)o (co) = o>(d)o(d)r 'dag = Nk r(d)ray.
Thus it is necessary that some d € K have Nk, r(d) = r. Conversely if d € K has
Nk/p(d) =r,thenxg = 1 +d7'j+d 'o(d) ' j> hasag = 1, by = d™!, and
co = d Yo (d)™!, and we observe that the conditions (x) are satisfied; thus K xg is a
left A submodule.

Chapter 111

1. For (a), define f : A x K — Endge A by f(a,c)(@’) = ad’c just as in the
proof of Theorem 3.3. The verification that the action of right multiplicationby b € B
commutes with f(a, ¢), i.e., that f(a, c¢) is in Endg. A, uses that B commutes with
K, and the verification that the extended map f : A ® r K — Endp. A respects
multiplication uses that K is commutative; otherwise the argument is the same as
with Theorem 3.3. The algebra A ® r K is central simple over K, and B is an algebra
over K because B contains K. Since A ® p K is simple, f is one-one.

For (b), let V be the unique-up-to-isomorphism simple finite-dimensional left B
module. If the left B module B is the direct sum of m copies of V, then the proof
of Theorem 2.2 shows that B = Endg B = M,,(D°), where D? is the central
division algebra over K given by D’ = Endp V. Hence B = M,,(D). If V°
denotes the unique-up-to-isomorphism simple finite-dimensional left B module and
if D'° = Endg.(V?), then we have B = Endg.(B°) = M, (D’?), and it follows that
m=m'and D' = D°.

Since B € A, A is a right B module, hence a left B° module, and A has to
be the direct sum of some number n of copies of V°. Then the same argument
gives an isomorphism Endg. A = M,(D'°) = M,(D). The Double Centralizer
Theorem gives dimg A = (dimp B)(dimg K), and thus dimg A = dimg B =
(dimg K)(dimg B) = (dimg K)(mdimg V). Meanwhile, dimxg A = ndimg V
and thus ndimg V = (dimp K)(mdimg V). Son = mdimp K. Consequently
dimp Endge A = n?dimp D = m?(dimg D)(dimr K)? = (dimr B)(dimr K)? =
(dimp A)(dimg K) = dimr(A ®f K), and the map f in (a) is onto.

For (c), application of (b) and an isomorphism from above gives A @ K =
Endp.(A) = M, (D), and we have seen that B = M,,(D). Thus A ® r K and B lie
in the same Brauer equivalence class in B(K).

2. Take the product over o of the equality p(a(o, t))a(p, ot) = a(p, o)a(po, 1),
and get ,0( [, a(o, ‘L')) [I,a(p,0) = [l,a(p,0)]],alo, v). Canceling gives
p(ng a(o, 1:)) =[], a(o, 7). Thus [], a(o, 7) is fixed by every member of the
Galois group and is in F*.

3. Proposition 3.32 and Theorem 3.31 show that H**(Gal(K/F), K*)
H?*(Gal(K/F), K*) fork > 1 and H***1(Gal(K /F), K*) = H'(Gal(K /F), K*)

~
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for k > 0. Then Corollary 3.34 gives H* >~ FX/NK/F(KX) forall k > 1, and
Theorem 3.17 gives H**+! = 0 forall k > 0. Finally H" is the subgroup of elements
in K* fixed by Gal(K /F), and this is F*.

4. For (a), it is shown in Chapter IX of Basic Algebra that Q(¢**/P) is a Galois
extension of Q with cyclic Galois group of order p — 1 whenever p is prime. Here
p = 7. Complex conjugation is a member of the Galois group of order 2, and X is the
subfield fixed by this subgroup. Hence K has degree 6/2 = 3 over Q, and its Galois
group is the quotient of a cyclic group of order 6 by the subgroup of order 2, hence is
cyclic of order 3. The powers ¢!, ..., £® form a basis of the Q vector space Q(¢), and
the sums of them with their images under complex conjugation span K. These sums
are 71, 73, T3. Since there are only 3 such sums, they must be linearly independent
over Q. Put tp = {k + {_k. Then t; depends only on k mod 7, and tz = 7_4.
Hence the only t;’s that are not any of 71, 12, 73 are the ones with k = 0 mod 7. The
members of the Galois group of Q(¢) carry ¢ to ¢¥ for I < k < 6 and therefore carry
71 t0 Tk, T2 tO T2k, and T3 to t3;. None of k, 2k, 3k is divisible by 7, and the result
follows.

For (b), let 0 € Gal(K/Q) have o (1)) = 12, 0(72) = 13, and o (13) = 1;. For
x € K, wehave Ngg(x) = xo (x)o2(x). Withx = at| + bty + 13, We get 27 terms
when everything is expanded out, and they are the ones listed.

For (¢), 1) + 12 + 13 = —1 because 213:73 ¢/ =0.Next, i = (¢! +¢7Hx
24+ =342+ ¢+ ¢! = 11 + 13, and the other two identities on the
second line are similar. Finally 12 = (¢! +¢™ 12 = ¢2+2+4¢72 = 1, + 2, and the
other two identities are similar.

For (d), let «, B, v, § be the expressions involving 71, 7, T3 on the right side in

(b). First we have 113 = ‘512‘51 = (12 +2)t1 = 1172 4+ 271 = 371 4 3. Summing this
expression and similar expressions for ‘1723 and 1'33 givesa = 4(11 + 10 + 13) = —4.

Second B = 11913 = (11 + 3)13 = T2 + 13 + 11 + 2 = 1. In (d), the coefficient
of abc is o + 38 = —4 + 3 = —1, and the coefficient of > + b> + 3 is B = 1.
Third ‘L'12‘L'2 =17+ 1) =@0m+2)+(m+n) =13+ 20+ 2. Similarly
12213 = 11+213+2and r3211 =1+4+271+2. Thesumisy =3(ri+ o +13)+6 = 3.
Fourth 'L’]‘L’22 = 11(13 + 2) = 10 4+ 13 4+ 277. Similarly 12r32 =1+ 13 + 21, and
‘173‘512 =11+ 17 +213. The sumis § =4(t; + 1o + 13) = —4.

For (e), the norm modulo 3 is (a® + b3 4 ¢3) —abc — (a*c 4+ ab* + bc?), and this is
= (a+b+c)—abc — (@%c + ab* + be?) mod 3. Any nonzero square is = 1 mod 3,
and we consider cases. If 3 does not divide abc, then a® = b? = ¢? = 1 mod 3, and
the norm is = —abc # 0 mod 3. If 3 divides a but not bc, then b2 =c?=1mod 3,
and the norm is = (b + ¢) — b = ¢ # 0 mod 3. If 3 divides a and b but not ¢, then
the norm is = ¢ # 0 mod 3, while if 3 divides a and ¢ but not b, then the norm is
= b # 0 mod 3. The case that 3 divides all of a, b, c is excluded by the condition that
GCD(a, b, c) = 1, and all other cases are handled by symmetry. Thus in all cases
the norm is not divisible by 3.

For (f), let x, y, z be members of Q not all 0. Choose integers a, b, ¢ and relatively
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prime integers n and d such that x = n~lda, y = nd—ldb, 7 = nd~'c, and
GCD(a, b, ¢) = 1. Then Nk g(xt1 + y12 + z13) = d>n3 Nk g(at) + bty + c13).
Applying (e) and supposing that 3 is a norm, we obtain 3 = d3n3(3k + (1 or 2))
for some integer k. Thus 3d® = n®(3k + (1 or 2)). This equality forces n to divide
d, and we may therefore take n = 1. Thus 3d> = 3k + (1 or 2). The left side is
divisible by 3, and the right side is not. Hence 3 is not a norm.

5. For (a), Dirichlet’s Theorem (Theorem 1.21) says that there are infinitely many
primes of the form p = kn + 1. For any such p, n divides p — 1. For (b) with this p,
the Galois group of Q(e>™//?)/Q is cyclic of order p — 1 and has a cyclic subgroup
of order (p — 1)/n. The corresponding subfield is a Galois extension of QQ of degree
n with cyclic Galois group.

6. ForO <k <nand0 <[ < n, we have x xx, = jkjl = jk+l. Meanwhile,
xghst equals j¥Hif k +1 < n and equals jKH " if k 4+ 1 > n. So xpuxy = Xyuu if
k+1 <nand x,iXyt = j"Xpktt-n = FXghin if k +1 > n. Thus a(o¥, o!) has the
stated value.

7. Itis just a question of checking that c,« 0% (c,1) = a(o¥, o')cyuu witha(o*, o)
as in the previous problem.

8. We have 9y(1, o) = 1 — o* and thus
fodo(1,e")=1-0"=(@ - 1)(=(I+o+--+0 ).

Ifweput fi(1,0%) = —(140+---4+0*"1), thenwehave Tf; (1, %) = fodo(1, o%)
for all k.

Next, for k < I, we have 3;(1,0%, 0!) = (6%, 6)) — (1,0)) + (1,05 =
ok (1,0'7%) — (1, 0') + (1, 6%). Then £13;(1, 6%, o!) equals

Q4o+ o FH Q4o+ 4o TH—U4+0+--+oFH=0.

For k > [, the term (o", ol) is replaced by ak(l, o””’k). Thus 9;(1, o, o[) =
ok(1, 6" %y — (1, 6% + (1, 6%). Then £19;(1, o*, o) is

—ofQto4- o F Y U to+ o (4ot +oFh
=—(+o+- 4" HtUt+o+- 40
=ol(=l4+0 44"
If we define f> as in the problem, then in the two cases we have
k<l: Nfi(ooh=U+o+---+0"H0)=0= f10:(1,6%, "),
k>1: Nfsi(l,o¥,6)=U+0+---+0"H(=ch = 13,1, 0%, o).

9. To ¥ in Homzg (ZG, K*), the chain map of the previous problem associates
¥ o fo in Homgzg(ZG({(1, g1, g2)}), K*), and then the corresponding member
of C3(G, K*) is ®»(¥ f>) whose value at (g1, g2) is ¥ f>(1, g2, g1g2). That is,
Oy (Y f2)(0k, o) = Y1, o, o¥F1), and this by Problem 8 is ¢ (0) if k +1 < n
and is Y (—o ="y = Yok ")V ifk +1 > n.



670 Hints for Solutions of Problems

10. Taking Proposition 3.32 into account, we see that the mapping whose kernel
gives the cocycles is Hom(7, 1) : Homzg(ZG, K*) — Homzg(ZG, K*). Here
Hom(T, 1)y = ¥ o T. We are identifying v with ¥ (1) and also ¢ o T with
w(T(1)) = Y(c — 1) = (6 — D)y¥(1) in additive notation. Hence the effect of
Hom(T, 1) is to carry y to o(y)y~' in multiplicative notation. A necessary and
sufficient condition for o (y)y~! to be 1 is that y be in F*, since the subgroup of K *
fixed by G is F*.

11. Since ¥ (0) = 1 and ¥ (¥ ") = ok ="y (1) = (1) = r~!, the member
a of C*(G, K*) that corresponds to Y has

1 ifk+[1 <n,

a(ak,al): .
r ifk+1>n,

and this is the 2-cocycle of Problem 6.

12. Corollary 3.34 and Theorem 3.14 combine to give us a group isomorphism
B(K/F)=E F* /NK/F (K™), and the above problems show that the element r of F*
used in defining A corresponds under this isomorphism to the coset of »~!. Hence
the order of the Brauer equivalence class of A equals the order of the coset of r, as
required.

If A is not a division algebra, then A = M,,, (D) for some central division algebra
D over F and for some integer m > 1. Here dimg D = (n/m)?> < n®. Corollary
3.15 then gives the contradiction that the order of the Brauer equivalence class of D,
which is the same as the order of the class of A, divides n/m, which in turn is < n.

13. The Skolem—Noether Theorem shows that the image matrices under two
different isomorphisms ¢ and ¥ have to be conjugate to one another, say with ¢ =
C~ 'y C. Then

det(p(X1 —a® 1)) = det(C 'Y (C(X1 —a ® 1))
= (detC) " det(¥ (X1 — a ® 1))(det C)
= det(y (X1 —a ® 1)).

14. Let B = A ®F K. The left B module B is semisimple and is the direct sum
of n isomorphic simple modules of dimension n. On each the operation of @ ® 1 has
characteristic polynomial det(X1 — a ® 1), and the characteristic polynomial for the
direct sum of the spaces is the product of the characteristic polynomials.

15. Arguing by contradiction, we may assume that the statement is false for
some monic P = P(X) and that P has the lowest possible degree among all monic
polynomials for which the assertion is false. Factor P over K into powers of distinct
irreducible polynomials as P = Pld ! Pkd . The n-fold product of Pld ! P,fl k
with itself is in F[X] by assumption and is therefore invariant under Gal(K/F).
Consequently for each o € Gal(K/F) and each P;, there exists some P; such that
P; = o (P;). It follows that if H is the subgroup of G = Gal(K/F) fixing Py, then
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O = [loneg/m o P1 is the product of distinct irreducible factors of P and hence
divides P. The polynomial Q is fixed by every member of G and hence is monic
in F[X]. Thus Q # P. Then Q" is in F[X], and hence (P/Q)" is in F[X]. The
fact that P is not in F[X] implies that Q # P. Therefore deg(P/Q) < deg P. By
the minimal choice of deg P, P/Q is in F[X]. Therefore P = (P/Q)Q is in F[X],
contradiction.

16. For a matrix m with entries in a field, passing to a larger field does not change
det(X1 — m). Suppose we start with two finite Galois extensions K| and K, of F'
that split A. Let K| be a splitting field for a polynomial g; € F[X], and let K> be
a splitting field for g» € F[X]. Define K to be a splitting field for g;g>. Then K is
a finite Galois extension of F, and we can regard it as containing both K; and K>.
Applying the first sentence of this paragraph first to K; and K and then to K and K,
we see that the reduced characteristic polynomial is the same over K as it is over K».

17. The formulas for Nrd4,r(ab) and Nrda,r(1) follow from properties of

determinants. From Problem 14 we observe that deta = (—1)”2 det(—a) and
det(—¢(a ® 1)) = (—1)"det(p(a ® 1)). Substituting X = 0 into the formula
therefore givesus Ny/r(a) = deta = (—1)"2 det(—a) = (—1)”2 det(—pa@®1))* =
(—1)"2((—1)")" det(p(a ® 1))" = det(p(a ® 1))" = Nrds,/r(a)". If a is invert-
ible, then 1 = Nrda,r(1) = Nrda,r(aa™!) = Nrda,r(a)Nrd(a~') shows that
Nrd4,r(a) isnonzero. Conversely if Nrd 4, (a) # 0, then Nrd 4/ (a) # 0 and hence
det L(a) # 0. If P(X) is the algebra polynomial of L(a), then the Cayley—Hamilton
Theorem shows that P(L(a)) = 0. Since det L(a) # 0, P(X) has a nonzero constant
term. Therefore we can separate the constant term in the equation P(L(a)) = 0 to
exhibit an identity of the form L(a)Q(L(a)) = 1 for some polynomial Q(X), and
the element Q(a) is a 2-sided inverse to a in A. This proves (a), and the conclusion
about division algebras is immediate.

18. The definition gives
m(dxp) =3 u(d)a(i, P)Ey pup,
%
m(cxy) = ZG(C)CI(G, ‘E)EU,O'Tv
o

m((dxp)(cxs)) = m(dp(c)alp, Dxpe) = 3 u(dp(©alp, 1))a(i, pT)Ey ppr-
I

Also we have
m(dxp)m(dxp) = Z u(d)a(u, p)o(c)a(o, T)EM,W)EU,UT
w,o

=Y u(d)pp©a(p, p)a(pup, TV Ey upr-

12

This matches m ((dx,)(cx1)) by the cocycle relation for a.
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For the reduced norm we have two one-one F' algebra homomorphisms of A into
M, (K), one via the mapping m above and one by the embedding A - A®Fr 1 C
A®F K = M,(K), and these are conjugate by the Skolem—Noether Theorem. Hence
the determinant gives the same result in the two cases. The determinant in the second
case gives the reduced norm, and hence it must give the reduced norm in the first case.

19. The algebra H can be realized as all complex matrices x = (7;; g) and
Nrdy/r(x) = la|? + |B|*> and Nuyr(x) = (la|> + |B1%)? as a special case of
Problem 18.

20. Let D be a finite-dimensional central division algebra over F, say with

dimp D = n?. Choose a basis {x;} of D over F, and expand elements of D

as x = Z;il cjxj. The function P(cy, ..., c,2) = NrdD/F(Z;i1 cjxj) is easily
checked to be a homogeneous polynomial of degree n in n? variables, and condition
(C1) says that it has a nontrivial zeroif n < n2. Inthis case the corresponding member
x of D would be a nonzero element of D that fails to be invertible, and there is no such
element. We conclude that n < n? is false, and that means that n = 1. Therefore F

is the only finite-dimensional central division algebra over F, and B(F) = 0.

Chapter IV

1. For (a), every free abelian group of finite rank is in the category, and such
groups provide enough projectives.

Let I = F & T be a decomposition of an injective I as the direct sum of a free
abelian group F of rank k and a torsion group 7. The sequence 0 - F & T —
2F @ T — (Z/27)* — 0 is exact but not split unless k = 0, and thus F = 0. Thus
every injective in the category is a finite group, and no infinite group in the category
embeds into an injective.

For (b), every abelian group and in particular every torsion abelian group is a
subgroup of a divisible group. The torsion subgroup of the divisible group is still
divisible and is still an injective, and thus every group in the category embeds in an
injective in the category.

Let P be a projective in the category mapping onto Z/2Z = {0, 1} by a homo-
morphism 7, and let x be an element of P with 7(x) = 1. If g is a generator of a
cyclic group G of order 2, then there is a homomorphism ¢ of G onto Z /27 with
¢(g) = t(x) = 1. Since P is projective, there exists a homomorphismo : P - G
with po = 7, and then we have 1 = 7(x) = @o (x). Then o (x) = g™ for some odd
integer m, and this has order 2F. Hence x has order at least 2. Since & is arbitrary,
x must have infinite order. But all groups in the category are torsion groups, and P
therefore cannot exist.

2. Let p be a prime, and let C be the category of all abelian groups that are the
underlying additive group of a vector space over the field of p elements. This category
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coincides with the category of all direct sums of copies of Z/ pZ. Every such abelian
group is projective and injective for the category.

3. Every unital left R module is the direct sum of simple R modules. Hence every
short exact sequence splits, and every module is both projective and injective for Cg.

4. For (a), let I be injective. Given x € [ anda # 0in R, let B = C = R, let
T: R — Ihave t(r) =rx,andlet ¢ : R — R have ¢(r) = ra. Setting up Figure
4.4, we obtaino : R — [ with t = o¢. If we put y = o (1) and evaluate both sides
at 1, then we obtain x = t(1) = o (¢(1)) = o(a) = ao (1) = ay, as required.

For (b), suppose that the unital left R module / is divisible. Suppose that J is an
ideal of R, and write J = (a). Let ¢ : / — I be an R homomorphism. Since [ is
divisible, there exists y in / withay = ¢(a). Then ¢ extends to the R homomorphism
@ with ©(1) = y. By Proposition 4.15, I is injective.

5. Proposition 4.20 shows that there exists an injective I containing an isomorphic
copy M of M. Problem 4 shows that Iy is divisible, and hence I = Iy/M is divisible.
By Problem4, I isinjective. Then0 — M — Iy — I} — Oisaninjectiveresolution
of M.

6. If amodule M in C is given, we form the appropriate kind of resolution X in C
needed to compute the derived functors of G, and the same X will be appropriate for
computing the derived functors of F o G. The derived functors of G come from the
homology or cohomology of G(X) with G(M) removed, and the derived functors of
F o G come similarly from F(G(X)). Thus the result follows from Proposition 4.4.

7. If amodule M in C is given, we form the appropriate kind of resolution X in C
needed to compute the derived functors of G o F on M. Then F (X) is the appropriate
kind of resolution for computing the derived functors of G on F (M), and the result
follows.

8. For n odd, H" (G, M) is the cohomology of the complex
Homye (ZG, M) <~ Homyg(ZG, M) <— Homyg(ZG, M),

while for n even, H" (G, M) is the cohomology of the complex
Homy (ZG, M) <— Homyg(ZG, M) <~ Homyg(ZG, M).

This proves the isomorphisms concerning cohomology. For n odd H, (G, M) is the
homology of the complex

ZG ®z6 M > .G @76 M — Z.G ®z6 M,
while for n even, H, (G, M) is the homology of the complex

7G Q26 M —> 7.G @26 M - 7.G @16 M.

This proves the isomorphisms concerning homology.
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9. For (a), let T4 : Homp(F (A), B) — Hom¢ (A, G(B)) be the natural isomor-
phism. Naturality in B says for any ¢ : B — B’ that we have

Hom¢(14, G(¥)) 0 Tap = Tap o Homp(1pa), ¥)

on Homp(F(A), B). Let P be projective in C. We are to prove that F(P) is
projective in D, thus to prove that Homp(F (P), -) is exact. We need to show that
whenever ¢ : B — B’ is onto in D, then Homp (1 r(py, ¥) is onto. By hypothesis,
G(¥) : G(B) — G(B’) is onto in C. The displayed equation with A = P has
Hom¢(1p, G(¢)) onto, and Tpp and Tpp are given as isomorphisms. Therefore
Homp(1F(py, ¥) is onto, as we were to show. The proof of (b) is similar.

10. Conclusion (a) follows from the natural isomorphism HomS(PgA, B) =
Homg(S ®g A, B) = Hompg(A, .7-"§B). Conclusion (b) follows from Problem 9a
with F = P;g and G = ]—'§ , since .7-'§ is exact and therefore carries onto maps to onto
maps. For (c), Plg A is given by the tensor product S ®g A, and this tensor product
is an exact functor of A if S is projective as a right R module, by Proposition 4.19a.

For (d), part (c) says that M +—> P;g M is an exact functor. Taking it to be F in
Problem 7a and G to be Homgs(-, N), we have Ext&(P5 M, N) = G*(F(M)). Prob-
lem 7a says that this is equal to (G o F)X. Since (G o F)(M) = HomS(PgM, N) =
Hompg (M, FEN) has (G o F)*(M) = Exth (M, FEN), we obtain Ext§(Ps M, N) =
Exth (M, FEN).

For (e), (b) shows that the chain complex Pg X is projective over Pg M, and we
are assuming that Y is exact (and projective) over Plg M. Theorem 4.12 says that the
identity map on Pg M extends to a chain map f : Pl‘g X — Y that is unique up to
homotopy. Dropping the terms in degree —1 and applying the functor Homg( -, N)
to the diagram gives us a cochain map from the complex Homg (Y, N) to the complex
Homs(PI§X, N) = Hompg (X, .7-'§N). Thus we get homomorphisms on cohomology
Exti(PEM, N) — Exth(M, FEN).

11. Conclusion (a) follows from the natural isomorphisms Homg(A, / Ig B) =
Homg(A, Homg (S, B)) = Homg (S ®s A, B) = HomR(}"gA, B). Conclusion (b)
follows from Problem 9b because ]-'§ is exact and therefore carries one-one maps
to one-one maps. For (c), I3 = Homg(S, -) is exact if S is projective as a right R
module, by Proposition 4.19a.

For (d), part (c) says that M +— I[‘gM is an exact functor. Taking it to be F
in Problem 7b and G to be Homg(M, -), we have Ext{(M, ISN) = G*(F(N)).
Problem 7b says that this is equal to (Go F)X. Since (GoF)(N) = Homg(M, I3N) =
Hompg (FEM, N) has (G o F)¥(M) = Extk(FR M, N), we obtain Exti (N, ISN) =
Exth (FRM, N).

For (e), (b) shows that the cochain complex 1 Ig X is injective over [ g N, and we
are assuming that Y is exact (and injective) over / Ig N. Theorem 4.16 says that the
identity map on [/ g N extends to acochainmap f : Y — [ ]g X that is unique up to
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homotopy. Dropping the terms in degree —1 and applying the functor Homg (M, -)
to the diagram gives us a cochain map from the complex Homg (M, Y') to the complex
Homg(M, I§X) = Homg(FX M, X). Thus we get homomorphisms on cohomology
Ext§(M, I8N) — Exth(FEM, N).

12. For (a), the definition of ®, is

(Py0)(g1s---589) = (1, 81,8182,---,81" " 8&¢)

for ¢ € Homyg (F,;, M). Putting f = ®,¢ gives (0™ f)(g1, ..., 8¢) = p*(Pyp) =
D, (g o p) = (Pyp) o p, as asserted.

For inflation the groups are (G, G’) = (G, G/H), and the map p is the quo-
tient map; the effect is given by (Inff)(g1,...,8¢) = f(g1H, ..., g;H) for f in
Ci(G/H, M™Y. For restriction the groups are (G, G’) = (H, G), and the map
is the inclusion; the effect is given by (Resy)(hy, ..., hy) = ¥ (hy, ..., hy) for
v e C1(G, M).

For (b), let f be in C'(G/H, M"). Then Res(Inf(f))(h) = Inf(f)(h) =
f(hH) = f(H). The condition for f to be a cocycle is that §; f = 0, i.e., that
f@v) = f(u)+u(f(v)) foru and vin G/H. Taking u and v to be the identity coset
H shows that f(H) =0.

For (c), let f € C'(G/H, M™) be a cocycle. Then Inf(f)(g) = f(gH). If
this is a coboundary in C'(G, M), then there exists ¥ € M with oy = f, ie.,
with f(gH) = gy — ¢ for all g. The left side depends only on the coset g H, and
hence so must the right side. Then it follows that ghyr = gy for all A € H and that
¥ is in M™. Then the formula f(gH) = gy — ¥ exhibits f as a coboundary in
CY(G/H, M),

For (d), let f be a cocycle in C'(G, M) such that Resf is a coboundary in
C'(H, M). The formula is (Res f)(h) = f(h), and the coboundary condition shows
that there is some ¥ € M with f(h) = hyy —  for h € H. Since ¥ is in M,
f(h) =0forallh € H. The cocycle conditionon f isthat f(uv) = f(u)+u(f(v))
for all # and v in G. Taking v to be in H shows that f(gh) = f(g) forallh € H.
Taking instead u to be in H shows that f(hg) = h(f(g)) forallh € H. Since H is
normal, h(f(g)) = f(g) forall h € H. Therefore f takes values in M and is Inf
of the cocycle f in C'(G/H, M™) givenby f(gH) = f(g).

13. For (a), we have (go¢m)(8) = ¢m(880) = g80m = @gum(g), and m > @y, is
a ZG homomorphism. Suppose that ¢,, = 0. Then gm = 0 for all g and in particular
for g = 1. Therefore m = 0, and m +— ¢, is one-one. Then it follows that the
sequence is exact.

For (b), we know that ZG as an abelian group is free abelian. Then Problem 11d
shows that H*(G, B) =Ext},;(Z, B) =Exth;(Z, 126 (FL.M)) = Bxts (Z, FL . M).
Since Homy(Z, -) is exact from Cy, to itself, Ext’i(Z, f%GM) =0fork > 1.

For (c), a Z basis of ZG consists of all 1-tuples (g) with g € G, and a Z basis of
ZH consists of all (h) withh € H. Let {v} be a set of representatives of the cosets of
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G/H, and let A be the free abelian group on {v}. The Z-bilinear map (v, (h)) — (vh)
extends to a homomorphism of A ®z ZH into ZG that is manifestly onto, and it is
one-one because Y_ n; (vih;) = 0 implies n; = 0 for all i. Thus it is an isomorphism.

For (d), use of (c) gives F2H B = FLH Homz(ZG, M) = Homgz(FLH (ZG), M)
= Homz(A®zZH, M) = Homy,(ZH, Homz (A, M)),and then H*(H, FLH B) = 0
for k > 1 by the same argument as in (b).

For (e), the long exact sequence for Ext}, (Z, -) that comes from the short exact
sequence in (a) shows that 0 — H°(H,M) - H°(H,B) - H%H,N) —>
H'(H, M) is exact. The right member is assumed to be 0, and the three middle
members are isomorphic to M, B and N

For (f), consider the Z bilinear map (1, (g)) — (gH) of Zx ZG into Z(G/H), and
extend it to a Z linear map of Z ®z ZG into Z(G/H). The group H acts trivially on
Z on the right, and it acts on Z(G/ H) by left translation. Let /2 be in H. The passage
Z x 7G — Z(G/H) has (1h, (g)) — (gH) and (1, h(g)) — h(gH) = (gH);
thus the group homomorphism Z ®7z ZG — Z(G/H) descends to a homomorphism
of Z ®@zu ZG into Z(G/H). This is certainly onto. To see that it is one-one, let
Zi nil ® (g;) — 0. Then Zi ni(giH) = 0, and for each coset representative v
in G, Y com i(g) = 0. So Y ni(h;'v) =0, and (3, ni(h;"))(v) = 0. Then
Zi n; (hfl) = 01in ZH because (v) is invertible in ZG, and it follows that the map
is one-one.

For (g), (f) gives BY = Homzy (Z, Homz(ZG, M)) = Homz(ZQzy ZG, M) =
Homz(Z(G/H), M), and the same argument as in (b) shows that Hk(G/H, By =0
fork > 1.

Conclusion (h) is immediate because g > 2 and because all the cohomology
associated with B has been shown to be 0 in degrees > 1.

The commutativity in conclusion (i) follows because the inflation and restriction
mappings are clearly functorial. The vertical mappings have been shown to be
isomorphisms in (h). To see via induction that the top row is exact, we have to
verify that H*(H, N) = 0 for k < g — 2; but H*(H, N) = H*T'(H, M) for all
k> 1,and H¥H! (H, M) is assumed to be O for k + 1 < g — 1. Therefore the bottom
row is exact, and the induction is complete.

14-16. These problems are routine verifications.

17. Part (a) follows because R ® g A is naturally isomorphic to A. For (b), F ®g A
=P, (Fs®@rA)and 1 rQ f corresponds to @ (17, ® f). The values of the various
R homomorphisms are in the various spaces Fy ® g B, whose sum is direct, and thus
the kernel of 17 ® f is the direct sum of the kernels. Then (b) follows. For (c), we
see from (a) and (b) that free R modules are flat. In Cg, every projective is a direct
summand of a free module, and thus (c) follows by a second application of (b).

18. Consider | ® f: M @r A — M ®g B. Any element of ker(1 ® f) is a finite
sum Y m; ® a;, and this lies in ker((1 ® f) ‘ Mp)’ where F is the finite set of indices
in question. Thus ker(1 ® f) # 0 implies ker((1 ® f)‘MF) # 0 for some F. The
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converse is immediate because ker((1 ® f) | MF) Cker(1 ® f) forall F.

19. The long exact sequence for tensor product over R is of the form
. — Torf(A, F) — Torf(A,B) > AQrK - A@r F - A®r B — 0,

and Torfe (A, F) = 0 because F is projective for Cg. This establishes the exactness
of the sequence in the problem. If A is flat, then

0 — Torf(A,B) > AQrR K > AQrF - A®r B — 0

is exact for each B, and Torf (A, B) must be O for each B. Conversely if Torf (A, B)
is O for each B, then A ®p () is an exact functor by Proposition 4.3. Hence A is flat
by definition.

20. On the one hand, the long exact sequence associated to tensoring the short
exact sequence given in (a) by B is of the form

0 — Torf(M, B) — Torf(T (M), B) - F®rB - M®gB — T(M)®rB — 0,

since F free implies Torf(F , B) = 0. On the other hand, the given short exact
sequence splits, and tensoring it by B must directly produce a short exact sequence

0> F®rB—>M@rB—>T(M)QrB — 0.
Thus ker(F ® g B — M ®g B) = 0, and we must therefore have
image(Tork (T (M), B) — F ®g B) =ker(F @z B — M ®g B) = 0.

Consequently 0 — Torf (M, B) — TorfR(T (M), B) — 0 is exact. This proves (a).

For (b), Problem 18 shows that M is flat if and only if each M is flat, and
(a) in combination with Problem 19 shows that each M is flat if and only if each
T (MF) is flat. Now suppose that M is flat, so that T (MF) is flat for each finite
subset F of M. This is true in particular for each finite subset F’ of T (M), and
T(Mp)) = Mg = (T (M))F. Hence Problem 18 shows that 7 (M) is flat. Conversely
suppose that T (M) is flat. Then T (M) is flat for each finite subset F' of T (M).
Let F be a finite subset of M. Then MF is a finitely generated R submodule, and
the structure theorem shows that 7(Mp) is finitely generated. Let F’ be a set of
generators for it. Then T(Mf) = Mg = T (M) . This is flat by Problem 18, since
T (M) is flat, and the first sentence of this paragraph allows us to conclude that M is
flat.

For (c), T(M) # 0 means that am = 0 for some nonzeroa € Rand m € M.
Leti : (a) — R be the inclusion, which is one-one. Theni ® 1 : (a) Qg M —
R®r M = M has (i ® 1)(a ® m) = am = 0. Thus the one-one map i is carried to
the map i ® 1 that is not one-one, and tensoring with M is not exact. So M is not flat.

For (d), if M is flat, then T (M) = 0 by (c). Conversely if T(M) = 0, then T (M)
is flat, and (b) shows that M is flat.
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21. Since 9, , and 9, , both lower p + ¢ by 1, they both carry Ep14 to Epig—1.
Also, the hypotheses give (8;,’(1 + 81’,/’,1)2 = 8;,_1#81’,’(1 + a[’,yq_la;;,q + 81’,’_1#8;,# +
BI;”qfl 8[’7”,] = 0, and we have a chain complex.

22. We compute that 81’771’(]81’],(] = (@1 Q@ D®1) = ap_10p, @1 =
0, 0,4 19 + 91 gOhy = @1 ® DEDPA® F) + (1P (1 ® )
(@ ®1) = (=)@, ® fy) — (~1)P(ap ® f) = 0, and that 3/ 3/ =
(=DPA® Bg-N(=DP(A® By) =1® Bg—184 = 0.

23. The formulas for 3, , and 3, . show that kerd), , = kera;, ®g D, and that
ker 81’,;(1 = Sp ®r ker,t/ﬁq. Since;/ 9y qEp.q and 3y E) 4 .lie.in ind?pendent spaces,
ker(d, ,+9, ,) =kerd, ,Nkerd, , = kera,@gker fy. Similarlyd, ., (Epi1.4) =
ap+1(Cp41) ®r Dg and 9] (Ep,g+1) = Cp ®r Bg+1(Dg+1), and hence

image(a[/;.g.l,q + 81/;/,[]4.1) = Up+1 (Cp+l) QR Dq + Cp ®r ﬂq+l (Dq+1)-

Thus if ¢ is in Cp, d is in Dy, ¢’ is in ap41(Cpt1), and d’ is in By41(Dy41), then
@, , + a;;,q)((c +¢) ® (d + d)) is the sum of @, + 0, ,)(c ®d) and three
terms that are in image(é);] 41g T 8;)/’ q +1)- Consequently we obtain a well-defined
homomorphism of H,(C) ®r H, (D) into Hy,4(E).

24. Let 3" and 9" be the boundary operators; these satisfy 8’9" = —3"9’. Leta
be a cycle in E_j 4, i.e., let 3”a = 0. Since 3'a = 0, the exactness for 3’ produces
cox € Eok with a = 8/60,1(. Since 0”a = 0, this has 3/8//00’/( = —3”3/C0’k =
—08"a = 0. Now suppose inductively oni > 0 that j > 0 is defined by i + j = k and
that ¢; ; € E; j is given with 8’9" ¢; ; = 0. By the assumed exactness, 3'0"c; ; = 0
implies 3//6‘,"]' = 8/ci+1,j_1 for some Citl,j—1 € Ei—',—l,j—l, and then 3/3//Ci+1yj_1 =
—0"9'cjq1,j—1 = —3"9"¢; j = 0. The induction leads us nonuniquely to cx 0 € Ex 0
suchthat 3’9" cg o = 0. Defineb € Ey,_1 by b = 3" ¢ 0, and then 3’b = 0. The result
of the construction is therefore that we pass nonuniquely from the cocyclea € E_j
for 3” to a cocycle b € Ey,_; for 9.

Inverting the steps and the choices, we see that we can pass from b back toa. Thusif
we can address the nonuniqueness, then the isomorphism in homology will have been
established. We are to show that if a € E_ ; at the start is a boundary relative to 9",
then any system of choices leads to aresult b € Ey _; that is a boundary for 3’. Since
a is assumed to be aboundary for 3”,a = 3”a’ witha’ € E_j j+1. The elementa’ has
8’a’ =0, and thus a’ = —8’ag 4+ for some ap x+1 € Eo x+1. Meanwhile, the above
construction makes a = d'co k. S0 3’8" ag +1 = —98"0ap k+1 = 8"a’ =a = ' co.
By exactness, co x — 8”ag k+1 = 3'by x for some by x € Ej . This proves that o «
is of the form co x = 8”ag g+1 + 8'b1 x With ag x41 € Eo k+1 and by x € E} . (Note
that this form for ¢ already implies that 3’8" co ; = 0.)

Now suppose inductively on i > 0 that j > 0 is defined by i + j = k and
that ¢; j € E; ; is given with ¢; j = 8”a; j41 + 8'bi41,j. The constructed element
Citl,j—1 € Ei+],j7] has 8”0,',]‘ = a/ci+1,j71 for some Citl,j—1 € E,‘+|,j7|. Thus
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8/Ci+1_,j_1 = 3/,8/b,’+1’j = —8/3//bi+1’j, and Cit+1,j—1 + 3”b,‘+1,j = 3/bl'+2“/'_1. If
we put a;y1 j = —biy1, j, then we have ¢;y j_1 = 3//611'4_1,]' + 3/b1+2’j_1, and the
induction goes through to i = k. Consequently any choice of ¢ ¢ obtained starting
from the boundary a is of the form ¢ o = 3" ay,1 +9'br1,0. The final step is to define
b = 8"cy 0, and then we have b = 8”9'bgy1,0 = —3'90"bi+1.0, and b is exhibited as
a boundary relative to 9’.

25. Since each C), is projective for p > 0, C, ® D is exact. Similarly C ® D, is
exact for ¢ > 0. The hypotheses of Problem 24 are satisfied, and the two homologies
match.

26. Hy(C) = Hy(C") = Hy(D) = Z/2Z, and H,(C) = H,(C') = H,(D) =0
for p # 0. Hy(C ®z D) = Hy(C' ®z D) = 7Z/27, H|(C ®z D) = 0 and
H((C'®z D) =17/27Z, H,(C ®z D) = H,(C’' ®z D) = 0for p ¢ {0, 1}.

27. Let Z, = kerd, € Cp, B, = imaged, | S Cp, and B, = B,_;. Since R
is a principal ideal domain, Problem 20 shows that flat is equivalent to torsion free.
Modules of the complex C are flat by assumption, hence torsion free. Modules of Z
and B’ are R submodules of these, hence are torsion free, hence are flat.

28. The long exact sequence in homology shows that
TorR(B',D) > Z®r D - CQr D — B'®r D — 0

is exact. Since B’ is flat, Problem 19 shows that Tor{e (B’, D) =0.

29. For (a), the boundary map on 31/7 ®rDy;in B’ ®rDisd'@1+(—1)P(1®3"),
and 8’ = 0 on boundaries in BI’,.

For (b), tensoring with B’ is an exact functor, since B’ is flat. Therefore the

NG

= 3 = N
exactness of 0 > Z — D > B — 0 implies the exactness of

0— (B ®rZ)y, — (B ®r D), 25" (B @z B), — 0

for each n. From the exactness of this sequence, we can read off that ker(1 ® 3”),
within (B'®g D), is (B'®g Z), and that image(1®3"),, on (B'®g D), is (B'Qr B ).,
which is the same thing as (B’ @g B),_1.

For (c), the results of (b) show that

Hy(B' ®k D) = ker(1 ® "),/ image(1 ® 3")y1 = (B' ®r Z)n/(B' ® B)y.

Since tensoring with B’ is exact, the exactness of 0 — B — Z — H(D) — 0
implies the exactness of

0—> B QB — B ®Z— B ®g HD) = 0

12

in each degree. Thus B’ @ H(D) = (B’ ®& Z)/(B' ®g B), and H,(B' ®g D)
(B'® H(D)), = (B®g H(D)p—1.
Part (d) is handled in a fashion similar to (c).
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30. For (a), Tor{e (Z, H(D)) = 0 because Z is flat.

In (b), comparison of the exact sequence with ker w,_; with the exact sequence
displayed before part (a) (but with n replaced by n — 1) shows that ker w,_; is
isomorphic to Torf (H(C), H(D));—1. Substituting for ker w,— and incorporating
the isomorphism into the mapping into H,(B’ ®g D) leads to f;_, as the one-one
mapping.

In (¢), we have

coker(t ® 1) = H,(C ®g D)/image(t, ® 1) = H,(C Qg D)/ker(ar’l ®1)
= image(d) ® 1) = kerw,_1 = TorfR (H(C), H(D)),—1.

The composition of maps leading from H,(C ®g D) to H,(B’ ®g D) has to be
9, ® 1, and thus B, _,B,—1 = 9, ® 1. The map B,_, apart from isomorphisms, is
onto because g was constructed as onto.

Part (d) is completely analogous, and the resulting map «,, is one-one.

For (e), we know that « is one-one and that g is onto. Also, we have ;8;17 1Bn—1 oana,
= (0, ® D(t, ® 1) = 0. Since B,_, is one-one and «;,, is onto, B, 1, = 0.
Finally suppose that x is in ker 8,—1. Then x is in ker(ﬂ;_lﬂn_l) =ker(d,®1) =
image(t, ® 1) = image(o,),) = image «,. This completes the proof of exactness.

31. This is immediate.

32. Let X = {X,} and Y = {Y,}. Then Morph(X, Y) is the subgroup of
[152 _ . Hom(X,, Y,) consisting of those elements in the product satisfying the chain
map conditions. A zero object is any tuple of 0’s, and certainly product and coproduct
make sense. One readily verifies that the tuple of kernels of a chain map furnishes a

kernel for a chain map and that the tuple of cokernels furnishes a cokernel.

33. The additional objects and morphisms at the top of the extended diagram are
Co = 27/8Z, By = Z, k given by 2 mod 8 — 2 mod 8, k given by x 2, ¥ given by
1+ 2 mod 8, and ¢ given by x 4. Since the composition of k followed by f = x 2
is not 0, (By, k) cannot be the kernel of S.

The additional objects and morphisms at the bottom of the extended diagram are
Ay = Z/AZ, By = Z/16Z, p given by 1 — 1 mod 4, p given by 1+ 1 mod 16, ¢’
given by 1 mod 4 > 4 mod 16, and v/ given by 1 mod 16 — 1 mod 4.

34. We give the argument only for Hom(M, -). Let0 — A £ B ¥ C —> Obe
a given exact sequence, and form the sequence

Hom(1,v)

Hom(l,
_Hom(le) Hom(M, B) ————— Hom(M, C).

0 —— Hom(M, A)

We are to show that Hom(1, ¢) is one-one and that exactness holds at Hom(M, B).
If o is in Hom(M, A) with Hom(1, ¢)(o) = 0, then ¢o = 0, and it follows that
o = 0 because ¢ is a monomorphism.
For the exactness at Hom(M, B), we use Theorem 4.42e. We know immediately
that Hom(1, ¥) Hom(1, ¢) = Hom(l, {r¢) = Hom(1,0) = 0. Thus suppose that
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T €,;, Hom(M, B) has Hom(1, ¥)t = 0. This condition means that ¢yt = 0. Since
the given sequence is exact, Theorem 4.42¢ produces some ' €,, A with 7/ = 7.
In turn, this says that Hom(1, ¢)t’ = t. By Theorem 4.42, we have exactness at
Hom(M, B).

35. We give the proof only that the splitting of exact sequences as indicated
implies that P is projective. Thus suppose that a morphism r € Hom(P, B) and an
epimorphism ¢ € Hom(C, B) are given. We are to produce o € Hom(P, C) with
T = yo. Let (W, 1/; T) be a pullback of (v, t). Then nﬂ YT, and Proposition
4.40 shows that w is an epimorphism. Then it follows that

0 — domain(ker J) lﬂ w i) P—-0

is exact, and it must spllt by assumption. Thus there exists p € Hom(P, W) with
Ip,o = 1p. Puto =Tp. Then Yo = YTp = ‘L'l/f,O = 1lp = 7, as required.

Chapter V

1. If £ is aroot of F(X), then the given formula shows that D (&) is —23 and —31
in the two cases. These contain no square factor and therefore equal Dy in the two
cases.

2. For (a), let G(X) = F(X + 3) = X> — 3X + £. Then F(X) and G(X)
have the same discriminant, and the discriminant for G(X) is given by the formula
of Problem 1. It is —44.

For (b), let x = a + b& + c";“z be given with a, b, c all in {0, 1}. The matrix of
left-by-x in the ordered basis (1, &, & 2) works out to be

a —2c¢ —2b—4c
b a —2c s
¢ b+2c¢ a+2b+4c

a® +2a*(b + 4c) + 4¢® = 2b(b + 2¢)? + dac(b + 2¢) + 2bc(a + 2b + 4c).

and the determinant of it is

For x to be twice an algebraic integer, this determinant, which is the norm of x, has
to be = 0 mod 8. All the terms are even except possibly the first, and thus a has to be
even. Thatis,a = 0. The determinant then reduces to 4¢> —2b(b+2¢)?+4bc(b+2c¢).
All terms here are divisible by 4 except possibly —25%. Thus b must be even. That
is, b = 0. The determinant reduces in this case to 4c>. For this to be divisible by 8, ¢
must be even. That is, ¢ = 0. Proposition 5.2 consequently says that a further factor
of 2% cannot be eliminated from the discriminant.
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3. For (a), Theorem 5.21 and the remarks after it show that every equivalence
class contains an ideal whose norm is < (O.283)DH1</ 2, Proposition 5.8 shows that
Dy = 3° = 243. Thus every equivalence class contains an ideal with norm < 4.

Conclusion (b) is immediate from Theorem 5.6 with F(X) = X3 — 3. Conclusion
(c) follows because (/3 — 1)(/9+ +/3+1) = (/3)>—1 =3—1 = 2. Conclusion
(d) is immediate from Proposition 5.10d.

For (e), any nonzero ideal is the product of powers of prime ideals associated with
the various prime numbers. The ones corresponding to the prime numbers 2 and 3 are
principal ideals by (b), (c), and (d). These are the only ones that need to be checked,
according to (a). Thus every nonzero ideal is principal.

4. Conclusion (a) is immediate from Theorem 5.6, since X 3 _ 7 factors modulo 2
as (X + 1)(X2 + X + 1). For (b), we show that no element x = a + b/7 + ¢ /49
has norm 2. Left multiplication by x carries 1 toa + b I+ ci/@, carries v/7 to
Te+ a7+ bi/@, and carries v/49 to 7b + T¢ /7 + a +/49. Thus its matrix is

aTc Tb
bac ).
cb a

The determinant is a3 + 49¢> + 763 — 21abc, which is congruent modulo 7 to a3,
Modulo 7, the cubes are 0 and +1, and thus the congruence a® = +2 mod 7 has no
solution.

5. Since the element /—1 + +/—5 has degree 4 over Q, the minimal polynomial
has degree 4. The product of (X — (++/—1 + +~/=5)) and the Galois transforms
X — (+V/-1=V=5), (X = (—/—1+/=5)),and (X — (—/—1 —/=5)) is
X* +12X? + 16, which is in Z[X].

6. The minimal polynomial of & = (v —14+/=5)is H(X) = X*+27212X>+
27416 = X* 4+ 3X% + 1 with |D(§)| = |Nkg/(H'(§))|. Here H'(X) = 4X3 +
6X = 2(2X? + 3). Since £* +3&%2 + 1 = 0, we have &2 = —3 £ 1/5; thus
262 4+ 3 = /5. So |D(¥)| = |NL/@(:|:2\/§)|. The four conjugates of +/5 are
+4+/5 twice and —+/5 twice, and the norm is the product of the four conjugates. Thus
ID(&)| = [NLjg(#2+/5)] = 245%

7. These follow immediately by applying Theorem 5.6 to the indicated prime, 2
or 5, and the respective polynomials: X> 45, X? + X — 1, and X2 + 1.

8. WithQ C K’ C L, the (e, f, g) for L/Q has to be entry by entry > the triple for
K’/Q. The triple for K’'/Q is given in Problem 7b as (1, 2, 1) for p = 2. Similarly
from Q € K” C L, the (e, f, g) for L/Q hastobe > (2, 1,1). Thuse > 2, f > 2,
and g > 1. Since efg = 4, equality must hold throughout: (e, f, g) = (2,2, 1).

This proves (a). Similarly for (b), we must have (e, f, g) > (2,1, 1) and (e, f, g)
> (1,1,2). Thus (e, f,g) > (2,1,2). Sinceefg =4, (e, f,g) = (2,1,2).

9. In (a), Problem 8a shows that (2)T = P2, and we know that (2)R = p% Then
P? = (2T = )RT = p%T = (§2T)($2T). Since P is prime, P divides g, T .
For the equality P2 = (g T)? to hold, we must have P = (T .
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Similarly (5)7 = P2P; and (5)R = 2. Then P?P} = (5T = (5)RT =
5{)52T = (5 T)2. Since P; and P, are prime, P} and P, must divide g57". Therefore
PP, = psT.

In (b), conclusion (a) shows that no prime ideal of R that divides (2)R or (5)R
ramifies in 7. Since D(&) is divisible by no prime numbers other than 2 and 5,
Theorem 5.6 shows that no prime ideal (p) of Z ramifies in 7. Hence no prime ideal
of R containing such a prime (p) of Z ramifies in 7.

10. Roots of unity must map to roots of unity under the embedding, and there
are only two roots of unity within R. Hence there are no real-valued embeddings
when p > 2. Thus the embeddings come in complex-conjugate pairs. The product
o (x)o (x) is positive for x > 0, and Nk, (x) is the product of these expressions over
all such pairs.

11. For (a), F(X) is the minimal polynomial of ¥ when GCD(k, p) = 1. Then
¢k — 1is aroot of G(X) = F(X + 1) of the correct degree, and therefore G (X) is
the minimal polynomial of ¢ — 1. If H(X) is the field polynomial of an element 7,
then Nk ,g(n) = (—1)®QH (0). In this instance [K : Q] = p — 1 is even. Taking
n = ¢* — 1, we obtain Ng,g(¢* — 1) = G(0) = F(1) = p.

For (b), ¢ — 1 divides ¢¥ — 1, and hence the quotient is in R. If / is chosen with
lk = 1 mod p, then ¢ — 1 = ¢/ — 1, and ¢* — 1 divides ¢ — 1. Therefore the
reciprocal of ¢k —1)/(¢ — 1) isin R.

12. With F(X) and G(X) as in the previous problem, F'(¢%) = G'(¢¥k — 1).
Here F(X) = (X? — 1)/(X — 1) makes G(X) = X '[(X + 1)? — 1] and G'(X) =
X 2[pX (X + 1P~ — (X + 1)? + 1]. Since ¢¥P =1,

F'(¢") = G'(¢"=1) = ¢ =D p =)D~ 1] = (¢* =)~ petrTh.

The result now follows from the formula D(¢ k )=F'(¢ k ).

13. Continuing from the previous problem gives

Ni,g(F'(£%) = Ngjgeh — D7 pP = Nk jg(cFP=1) = pp=2.

The result follows from the computation (—1)P~D®»=2/2D(c*) = Nk 0(D(¢*))
Ni/o(F'(c") = pP=2.

14. For (a), we have AF = (1 — ¢0)f = Yh_, (-1)-/‘(’});!’ and ¢F = (1 — F =
Z?:o (=1D/ (I;))J . Conclusion (b) is a version of Problem 11b because the conjugates
of ¢ are the powers ¢/ for 1 < j < p — 1. For (c), we have p = ]_[,’:;11 1-¢h =

72 (= 0up = (1=2)P ' [1PZ] wy,, where ug, = (1—¢%)/(1—¢). Eachelement
uy is a unit by Problem 11c, and (c) follows.

15. The identity (p))R = (1 — ¢)?~! is immediate from Problem 14c. The
extension K/Q being Galois, we know that the prime decomposition of the ideal
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(P)R is of the form (p)R = P --- Pg, where p — 1 = efg and f is the common
value of all dimp,(R/P;). This latter fact says that no factorization of (p)R into
proper ideals can have more than p — 1 factors, and p — 1 factors occur only if all
factors are prime. In this case, (1 — ¢) is a proper ideal because Nk, (1 — ¢) = p.
Thus each factor (1 — ¢) is prime.

16. Following Proposition 5.2, suppose that a; is an integer for each j with
s < j<ksuchthat0 <a; < p—1,a; #0,a, =1, and

ar’ +a Mt ot g A gk = pr

with » in R. Subtracting all terms from the left side but the first and applying
Problem 15 shows that agA* lies in (1)**!. Thus (as)(1)* € (A)*T!. Canceling gives
(as) < (A), and this inclusion is a contradiction because GCD(N ((as)), N((1))) = 1.

17. Each step toward a Z basis multiplies a discriminant by a square, and it is
enough to prove that a primitive element £ for K/Qlying in R hassgn D(§) = (—1)"2.
We are thus to compute the sign of ]_[i<j (0i(§) —oj (£))%. For a given pair (i, j), the
factor (0;(§) —o;(§ ))? is matched by its complex conjugate elsewhere in the product
unless o; and o; are both real or are complex conjugates of one another. The factor
and its mate have a positive product, and pair with o; and o; both real contributes a
positive square. If 0; = &, then 0;(§) — 0;(§) is purely imaginary, and its square is
negative. Hence the sign is (—1)"2.

18. Let g be in Gal(K/Q) = {01, ...,0,}. Replacing each o; by go; has the
effect of permuting the columns of [oj(e;)]. If the permutation is even, then the
terms contributing to P are the same before and after the permutation; otherwise they
are interchanged. In either case, P + N and PN are fixed. Since P + N and PN
are fixed by the Galois group, they are in Q. The entries o;(;) of the matrix are in
R, and thus P and N are in R. Consequently P + N and PN are in Z. The formula
D() = (P + N)? — 4PN shows that D(I') = (P + N)? mod 4. Any square of a
member of Z is congruent to O or 1 modulo 4, and the result follows.

19. Let J be an ideal of S™'R. Proposition 8.47 of Basic Algebra shows that
I = RN Jisanideal in R and that J = S~'1. Since I, ..., Iy, is a complete set
of representatives for the equivalence classes, al = bl; for some j with 1 < j < h.
Let (a)s and (b) g be the principal ideals of S~! R generated by a and b. The fact that
uisin I; N S means that S~'7; = ST!R, and thus

(@sJ =S @S ' T=5" @l =5"®BI

—1 _ —1 _ (x)
=57\ 0)S7 L = ST\ B)STIR = (b)s.

Hence J is principal. (In fact, the equality shows that aj = b for some j € J.
Hence ba~! = j is an element of J € S~! R, the principal ideal (ba~')g of S™' R is
meaningful, and (ba‘l)s C J. For the reverse inclusion let j € J be given, and use
(%) to write aj = bx withx € ST'R. Then j = (ba~')x shows that j is in (ba™)s,
and J C (ba™Y)s.)
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20. For (a), write ab = u¥. Then a~! = u~*b exhibits a~! as in S~!R. For (b),
ifu™"ais aunitin ST'R, then u "a~! = u~!c for some ¢ € R. Hence ac = u'™".
Since ac is in R and u is not, [ — m = k with k > 0. Then a divides u*.

21. For (a), write (u)=P{" - -- P'. Then (u") = (P! --- (P/Y* = (b5 -- - b}").
Thus u” = bf‘ .- -ble’e for some unit ¢ in R, each b; divides u", and the conclusion
follows from Problem 20a.

For (b), we have (@)(b) = W) = Plk‘)l ~~Plkel. Since a and b are in R, this
equality implies that (a) = P;' - Plr’ . For each j, use the division algorithm to
write rj = njh +t; with 0 < t; < h. Then P’ = (P! P! = (b)" P, and
consequently (a) = (d)P;' --- P,' as required, where d = ]_[é:l b;lj .

The argument for (c) was given in parentheses at the end of the solution of
Problem 19.

22. Because of Problem 21d, we now have (a) = (d)(c¢;). Thus a = dc;e for
some unit & in R. Since uf = ab = c;dbe, ¢; divides u* and is a unit in SR by
Problem 20a.

23. Problem 22 shows that any unit of S~!'R is a product of a power of u by a
product Hj’:l b?j , an element ¢;, and a unit ¢ of R. Problem 21a shows that each b; is

aunitin S™! R, and Problem 22 shows that each ¢; is a unitin S~!R. Thus (S~1R)*
is generated by u, the finitely many elements b; and c;, and a finite set of generators
of R*. (The group R* is finitely generated by the Dirichlet Unit Theorem.)

24. G(4/€) = (6463 — 1662 + 8671 +8) =863 (E2 + 62— 26 +8) =
8¢ 3F(£) = 0. The element 7 is in K, and it is exhibited as the root of a monic
polynomial in Z[X]; therefore it is in R.

25. For (a),0 = F(§)/6 = €2+ & —2+ 881 = g2 4 & — 2 4 25. For (b),
0=G®m)/n=n*—n+2+8/n=n*>—n-+2+2£. Solving the first equation for &2
gives the first formula in the table, and solving the second equation for > gives the
second formula in the table. The formula £ = 4 is immediate from the definition
n = 4/&. The formulas in the table together show that any integer polynomial in &
and n reduces to a Z combination of 1, &, and 7.

Conclusion (¢) is clear. For (d), we have n = 1 — %(& 2 + &), and this is not in
Z({1, &, £2}). For (e), wehave D((1, £, £?)) = —22.503. Since the only square factor
is 22, it follows that Z({1, £, £2}) has index 2 in Z({1, £, }) and that D((1, &, )) =
—503. This latter discriminant is square free and thus cannot be reduced further.
Therefore Dg = —503, and {1, &, n} is a Z basis of R. Finally the formula n =

— 1(&% + &) shows that Z({1, &, n}) = Z({1, &, L (2 + &)}).

26. Application of ¢ to 2 = & + 2 — 27 gives £~ = £. Similarly 7% = 7. The
elements of a finite field of characteristic 2 fixed by the squaring map are 0 and 1.
Hence & and 7 are in {0, 1}. Since F = ¢(R) is generated by the values of ¢ on 1,
£, and n, I has two elements. From &n = 4, it follows that £ = 0. Thus & and 77
cannot both be 1, and the only possibilities are the ones in the table.
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27. Define ¢ : R — T, on £ and 5 by one of the lines of the table of Problem 26,
and set ¢(1) = 1. Then ¢ extends to a well-defined additive homomorphism on
Z({1, &, n}). We have to check that ¢ respects multiplication. It is enough to do so
on additive generators. Thus we have to check that (p(éz) = (p(& ))2, that gp(nz) =
((p(n))2, and that ¢(£n) = (¢(&))(¢(n)). Thus, for example, in the first one we
want —@ (&) + 2¢(1) — 20()) = (p(&)). If we write the values of ¢ as triples
corresponding to the three possible ¢’s, the left side is —(0, 1,0) + 2(1,1,1) —
2(0,0,1) = (0, 1,0) mod 2, while the right side is (0, 1,0)> = (0, 1, 0) mod 2.
These match, and this relation is verified. The other two relations are verified in
similar fashion.

28. The norm of a kernel equals the number of elements in the image of the
homomorphism, which is 2 in each case. Since each ideal has prime norm, the
ideal is prime. Moreover, these ideals contain (2)R and hence all figure into the
prime factorization of (2)R. On the other hand, we must have > ¢; f; = 3 for
the decomposition, and we have seen that there are at least three terms. So there
are exactly three terms, and we must have ¢; = f; = 1 in each case. Therefore
QR = PyoPr0Po,1-

29. For (a), the elements listed are additive generators of the ideal in each case,
and hence they are also ideal generators. For (b), n = n(§ 4+ 1) — 2 - 2 shows that
n is in the ideal (2, & 4+ 1). Thus 2,& 4+ 1,n) € (2,& 4+ 1). The reverse inclusion
is clear. In (c), the argument for (2, n + 1) is completely symmetric. Let us see that
(2,&,n) = (2, & —n). The inclusion D is clear. For the inclusion C, we use the two
formulas

(—l=m2+ () —m =—2-2n— (~E+2 -2 +4=¢,
B2+ (—mME —m) =6+25 —4+ (=26 — 24 = 1.

30. For (a), the field polynomial of 6 — g is H(X +¢g), and so the norm of 6 — g is
—H(0+4¢q), asrequired. In (b), the first two formulas come from the field polynomials
F(X) and G(X) of & and 1, and the other formulas follow from (a).

In (c), the fact that N((§)) = |Nr,@(§)| = 8 shows that the prime factorization
of (£) is into prime ideals whose norms are powers of two. Problem 28 shows that
all such ideals have been identified, and thus (§) = P(i OPllf OP& | for some exponents
> 0. Comparing norms shows that a 4+ b 4 ¢ = 3. Similar remarks apply to (7).

In (d), use of Problem 28 shows that Py P, P3| = (Q)R)* = (HR = (£)(n) =

P&ga Pﬁgﬂ ngy. Thena+o = 2,b+ B = 2,and c+y = 2 by unique factorization.
For (e), we observe from the kernels, or else we see from Problem 29a, that & is not
in P1 g andthatnisnotin Py ;. Hence P; o does notappear in the prime factorization of
(&), and Py, | does not appear in the prime factorization of (). Therefore b =y = 0.
For (f), the results of (e) and (d) combine to show thata + o« = 2, 8 = 2, and
c=2.Sincea+c=3anda+pB=3,a=a=1.
31. For (a), we see immediately from Problem 29a that £ 4 [ lies in Pj o but
not in Py and not in Py 1. For (b), the formula |Ng,p(§ + 3)| = 22 shows that
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(& + 3) is the product of exactly two of the prime ideals of norm 2; thus (a) implies
that (§ +3) = P{,. Similarly |[Nx/q(€ — 1)| = 27, and (a) gives (£ — 1) = P},
Conclusion (c¢) is immediate from Problem 29a.

For (d), we have 2)R C (2, &); thus (2, &) is of the form P&OPﬁOP(il with
a+b+c <3. Since & isnotin Py, b = 0. Since & is in Py o and Py 1, we must
have a > 0 and ¢ > 0. Since the inclusion (2)R C (2, &) is proper (becauseé is not
in Q)R =27Z({1, &, n})), N((2,8)) <4. Thusa=c=1,and (2,&) = PyoFo.1.

For (e), Problem 29a shows that Py ; = (2,&,n + 1). Thus P& | contains 4 and
Em+1) =4+ & hence &. If P02,1 contains also & + [ with [ = 2 mod 4, then it
contains £ + 2, hence 2. This would mean that P02,1 D (2,€) = PyoPo,. Since P02,1
and Py oPp,1 both have norm 4, they would have to be equal, and we would obtain
Po,1 = Py, contradiction.

For (f), Problem 30b gives N((§ 4+ 2)) = 8. In view of (¢), (§ +2) = Pél,oPOc’1
with a + ¢ = 3 and ¢ > 1. Part (d) shows that ¢ < 1. Thus (§ 4+ 2) = P&OPO’]. The
argument for (§ — 2) is similar.

32. For (a), this kind of argument is done in a parenthetical remark at the end of
the solution of Problem 19. For (b), we have (§ +2) = V&OPOJ and(§—1) = Pi 0=
(§ 4+ 3) P1,0. Thus the same kind of argument shows that Py | and Pj o are principal.

For (c), we factor X> + X% — 2X + 8 modulo 3; there is no root in F3, and hence
the reduced polynomial is irreducible. By Theorem 5.6 the only prime ideal whose
norm is a power of 3 has norm 3.

For (d), we factor X3 4+ X2 —2X + 8 modulo 5 as (X + 1)(X? — 2), and Theorem
5.6 gives us one prime ideal of norm 5 and one of norm 5. The one of norm 5,
according to the theorem, is (2, 1 4 &). For (e), the technique of Problem 30a shows
that N((1+4&)) = 10. Thus the only possibility for the prime factorization of (14 &)
isas (2, 1 + &) P, where P is one of the three ideals of norm 2. For (f), since (1 + &)
and P are principal, (2, 1 4+ &) is principal, by the same technique as in earlier parts.

For (g), the prime factorization of nonzero ideals allows us to conclude that every
nonzero ideal of norm < 6 is principal. Application of the technique after Theorem
5.21 shows that every ideal class has a representative with norm < 6.35, hence norm
< 6. All such ideals are principal, and therefore R is a principal ideal domain.

Chapter VI

1. Apply the Cauchy criterion. Since |a, +a,4+1 + - - - —}—amlp < maxXp<k<m |ak |p,
the series is Cauchy, hence convergent, if and only if the terms tend to 0.

2. In (a), the equality GCD(3, 2") = 1 implies that there exist integers x,, and y,
such that 3x, — 2"y, = 1. Then x,, — % = 2"371y,. Applying the 2-adic absolute
value gives |x, — %|2 = 27"|yul, < 27", and this tends to 0. For example take
X, = $(2*"~' 4+ 1). In (b), the argument with & replacing % is similar: to get
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|x — Z—’|2 < 27", start by finding x and y with bx — 2"y = a.

3. Write ideles as tuples indexed by 00,2, 3,5,.... If ¢ is in Q, then t(q) =
(g.9,9,9,...). Ifthisis to be in R* x ]_[p Z , then the only restriction on the first
coordinate is that ¢ 7 0, but the other coordinates are restricted by |g|, = 1 for all
primes p. This means that g in lowest terms has no p in either the numerator or the
denominator. So g = %1. This proves (a).

In (b), let (xo0, X2, X3, ...) bein . Since |xp|p # 1 for only finitely many p, there

exists a unique positive rational g such that |¢|, = |x,|, forall p. Definez, = qu_l

as a member of Q7. Then |z,], = prlp|q|1;1 = 1 shows that |z,|, = 1 for all p.
Finally define r = xooq_l as a member of R*. Then (r, 22, z3, ...) is in [(Ss), and
(Xo0s X2, X3,...)=1(9,9,9q,...)(T 22,23, ...).

4. 1In (a), the norm of the ideal divides the norm of any element, and if the
norm of the ideal is prime, then the ideal is prime. With K = Q(+/—5), we have
N o(1£+/=5) = 6, Nk/0(3) = 9,and Nk ¢(2) = 4. Therefore N ((1£+/-5, 3))
divides GCD(6, 9) = 3, and N((1 & /=3, 2)) divides GCD(6, 4) = 2. One checks
that these ideals are not all of R, and then the respective norms are 3 and 2. So
the ideals are prime. In (b), (1 ++/=5) = (1 + v/=5,2)(1 + +v/=5,3),and 3) =
(14 +/-5,3)1 —+/-5,3).

In(c), $(1++v/=5)R = (14++/=5, 2)(14++/=5,3)(1++/=5,3) 1 (1-/=5,3)"!
= (1++/=5,2)(01 —+/=5,3)"!, and (1 4+ /=5, 3) does not appear.

In (d), 1+«3/—_5 — 2(14‘2\4—_5) — 2(1++/=5) — 2 .

: A+V/=5)(1-V=5) " 1-V=5

5. The mapping ¢ : 1 + P — P/P"*! induced by 1 + x > x + P’ is
a homomorphism from 1 4+ P’ under multiplication into P}/ Pl’f“ under addition
because the equalities (1 4+ x) = x + PU”“, o(l+y)=y+ Pg‘“, and

p(I+x)A+y) =@l +x+y+xy)
=x+y+xy+ P =xy4 prt!

show that (p((l + x)(1 + y)) = @¢(1 +x) + ¢(1 + y). The kernel of ¢ is the set of
all 1 +x withx € P""! ie., 1 + P! and the image is certainly all of P}/ P!+,

6. The composition I' /t(K*) — 1/1(K*) — Z/P induced by the inclusion
I' — T and the passage from I to Z discussed in Section 10 is onto Z/P because the
composition is affected by only the nonarchimedean places and because any member
of I can be adjusted at the archimedean places so as to be in I'. In addition, the
composition is continuous if Z/P is given the discrete topology. Since I'/t(K*) is
compact, the discrete space Z/P has to be compact and must be finite.

7. Fix a finite subset S of places containing S,.. Then the projection of [ [, ¢ K
to K * is continuous foreach v € S. Since also the inclusion K — K, is continuous,
the composition [[,,.g Ks — K, is continuous. Thus the corresponding mapping
[lwes Kiw = [lyes Kw is continuous. In similar fashion [], g Zy — Zy is a
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continuous function as a composition of continuous functions. Thus [],,.¢ Z; —
Hw¢s Zy 1is continuous. Putting these two compositions together shows that
Ix(S) — Ag(S) is continuous, and therefore Ix (S) — Ak is continuous. Since
this is true for each S, it follows that [ — Ak is continuous.

8. Each x,, lies in Ag(Sx), whichis an open setin Ag. For each prime p, x,, , = 1
if n is large enough, and also x, o = 1 for all n. Since Ag(Sx) has the product
topology, {x,} converges to (1). On the other hand, if {x,} were to converge to some
limit x in I, then x would have to lie in some I(S), and the ideles x,, would have to
be in I(S) for large n. But (x,_,) is not in I(S) as soon as v is outside S.

9. For fixed g in G, we have d(®(gx)) = d(DP(g)P(x)) = d(P(x)), and hence
d(®(-))andd(-) are Haar measures on G. Any two Haar measures are proportional,
and the result follows.

10. In (a) the equality is trivial if c;cp = 0. When cic2 # 0, we have d(cicx) =
Icica|p dx and also d(cicax) = |ci|pd(c2x) = |cilplc2|p dx, and it follows that
lcic2lp = |c1|glea| in this case as well.

The proof of continuity is harder (but is essential to make sense out of (b)). We first
check continuity ateach ¢y # 0. Let f be a continuous real-valued function vanishing
off a compact set S, and let N be a compact neighborhood of ¢y not containing 0. If ¢
isin N, then f(c~'x) is nonzero only for x in the compactset NS. Lete > 0 be given.
Continuity of (¢, x) — f(c~'x) allows us to find, foreach x in N'S, an open subneigh-
borhood N, of ¢y and an open neighborhood U, of x suchthat | f (c~'y)— f (co lx)| <
eforce Nyandy € Uy. Then | f(c™'y) — f(co_ly)| < 2eforc € Ny and y € Uy.
The open sets Uy cover NS. Forming a finite subcover and intersecting the cor-
responding finitely many sets Ny, we obtain an open neighborhood N’ of ¢y such
that | f(c™'y) — f(caly)| < 2¢ for ¢ € N’ whenever y is in NS. As a result,
c fv f(c™'x)dx is continuous at ¢ = ¢o. Therefore ¢ — |c|y fv f(x)dx is
continuous at ¢y, and so is ¢ — |c|y.

To prove continuity at ¢ = 0, we are to show that lim,_, ¢ f v f (c‘lx) dx = 0 for
f as above. Let U be any compact neighborhood of 0 in V. Find a sufficiently small
neighborhood N of 0 in V such that ¢ € V implies that ¢S does not meet U¢. Then
¢ 'U° NS = @. For such c’s, we have | [, f(c'x)dx| = | [, fc'x)dx| <
IIf ||Sup (dx(U)), and the desired limit relation follows.

For (b), wehave d(cx)/|cx|r = (Ic|F dx)/(Ic|Flx|F) = dx/|x|F. For (c), |x|F =
x| if F =R, and |x|p = |x|?if F = C. For (d), |x|r = |x|p if F = Q,. For (e),
we have I = pZ,, and therefore the Haar measure of / is the product of |p|, = p!

times the Haar measure of Z,. Hence the Haar measure of [ is p~ L.

11. If F has characteristic p’ # 0, then the sum 1 + --- 4+ 1 with p’ terms is 0
in R, and it must be 0 in R/p. So R/p must have characteristic p’. Thus any such
p’ # 0 must be p.

12. In (a), apply Corollary 6.29 with f(X) = X4~! — 1 in R[X]. Every nonzero
a is a simple root of the reduced polynomial f(X) = X9~! — 1 in F,[X], simple
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because (¢ — 1)(@)?~! # 0. The corollary produces a root a of f(X) whose image
in R/p is a. In this way we obtain ¢ — 1 distinct roots of 1 in R, each corresponding
to a different coset in R/p. Together with 0, these exhaust the cosets of R/p.

In (b), if F has characteristic p, then raising to the p™ power is a field mapping
of F into itself. Since ¢ = p™, raising to the g™ power is the m-fold iterate of
a field map and is a field map. If a and b are two (g — 1)* roots of 1 in R, then
(a£b)? =a?+ (£bh)! =a+ (£b),andsoa £ bisa (g — 1) root of 1. Since the
nonzero elements of E are closed under inverses, E is a subfield.

13. In(a) letx be in R. Problem 12 produces aunique ag € E withx —ag inp, i.e.,
with v(x — ap) > 1. Then v(t~'(x — ap)) > 0, and Problem 12 produces a unique
ap in E with =1 (x — ag) — a; in p. Continuing in this way, we obtain ag, . .., ay in
E with

T e —ag) —an) — - —an-1) —an

in p. Thus v(x — Y3 g axt¥) > N + 1. Since F is complete, Yo axt* converges
with sum x. The statement about the value of v is clear.

In (b), the part about the series giving an element in R is immediate from Problem 1,
since 7* has limit 0. The operations on R now match those on I, [[#]], and the isomor-
phism follows. For (c), let x be given withx ¢ R. Setv(x) = —N. Then v(Nx) =0,
and we can apply (a) to write 1V x = Y e ax tk. Thenx = Yo apt*=N  asrequired.

14. In (a), the inclusion of the integers into R, followed by passage to the quotient
R/p, is an additive homomorphism. Since R/p has order g, g must map to the O
coset, namely p.

Part (a) shows that v(g) > 1. Since v(g) = v(p™) = mv(p), v(p) is positive,
and (b) is proved. The same argument as in the proof of Ostrowski’s Theorem shows
that v(p’) = O for all prime numbers other than p, and then (¢) is immediate. For
(d), it is enough to check equality of the absolute values in question on the element
p, and for that we have |p|;/(mv°) = g7V mw) — g=1/m — =1

For (e), the map of Q' to Q, when composed with the completion Q — Q,, is a
homomorphism of valued fields into a complete field. It therefore extends uniquely
as a homomorphism of the closure Q' into Qp. The dense set Q" maps to the dense
set Q, and hence the extended map is an isomorphism.

Part (f) is just a repetition of the argument in Problems 13a and 13c. In (g), let
x = Y22 axt* be the expansion of f,and put ¢, = Y 20" axzx. Since v(r) = 1, we
obtain v(x —cj,) > v(t") = vov(t) = vo. Therefore v(p~'(x — ¢j,)) = 0. Iterating
this procedure as in Problem 13a, we obtain a convergent expansion x = Z,fio Cji pr.
For (h), we then have x = Y 7 ¢; pf = Zj.:l Ci ikl o= p¥, and we see that x
lies in lezl @cj. Therefore dim[F : Q'] < [.

15. Part (a) is immediate, and (b) follows from Theorem 6.33. For (c), R/p
corresponds to extracting the constant term from a power series in 7, and thus L /g =
F,s is of dimension f over R/p = Fy. The computation pT = tUT = 1T =
tRT = pT = P° shows that K /L has ramification index e. For (d), each index
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(residue class degree and ramification index) for K/ F is the product of that index for
K /L and that index for L/F. Soe for L/F is 1,and f for K/L is 1.

16. For (a), the irreducible polynomial g(X) has to be separable, and therefore all
of its roots in kg are simple. Application of Hensel’s Lemma in the form of Corollary
6.29 produces «. For (b), the polynomial g(X) is monic with coefficients in R, and
its root « is therefore a member of L integral over R. Thus « lies in U. The natural
fieldmap U/gp — T /P takesu + g tou + P, hence takes o« + g toa + P = o«. Thus
we can regard o as a member of k. Since kr and o generate kg by construction of
o,k =kp.

For (d), let us use subscripts on the indices e and f to indicate the field extension
in question. Then we have e /r fr;r = [L : F] = degg(X) = degg(X) =
kg : kr] = fk,r onthe one hand and fx,r = [kg : kr] = [kr : kr] = fr/F on
the other hand. The two chains of equalities together show that e; ,;r = 1, and the
second one in combination with fx,r = fx,r fr/r shows that fx,, = 1.

17. In (a), the element y; exists and is unique because of the nondegeneracy of the
trace form, which holds because K/ F is separable (Theorem 8.54 and Section IX.15
of Basic Algebra).

In (b), the expression for the z;’s in terms of the y;’s shows that Zzzl Rz C
Z}’zl Ry;. The assumption det A = +1 implies that B = A~! lies in M,(R). Since
Yj = 2 x Bkjzk, we obtain Z;'Zl Ry; € Y i Rz

For (c), itis evident that the degree is at mostn — 1. Write g(X) = ]_[j (X—§;). The
opening computations of Section V.4 show that g'(§;) = [[;; (& — &;). Therefore

J
the value of the left side at & for the identity in question is

1 1_[‘,'76,' (%'k - Ej)

it 1 Gi = &)
The numerator is O unless i = k. Thus only the i™ term makes a contribution, and its
value, namely 1, matches the value of the right side. Then (d) is a routine computation.

For (e), the rational expression (1 + ¢ X + --- + c, XM~ on the left side is
expanded in series using (1 + Z)™' =1 — Z + Z? — Z> + - ... Thus the left side
is the sum of X" and a series beginning with a multiple of X"*!. The right side is
Y reo Trg/r (g’ (&) ek xk+l ) , and the conclusion of the problem results by equating
the indicated coefficients.

For (f), the result of (e) handles the entries with i + j < n 4 1. For those with
n+2 <i+4j<2n,wewrite £/ 2g' (&)~ as g7 /"2’ (&)1, substitute for £”
recursively from the field polynomial, and check that the traces are in R by applying
(e). Thus all A;; are in R.

For (g), conclusion (f) shows that A is triangular with 1’s on the off diagonal, and
hence the determinant of A is +1. Put z; = Zj Ajry;. Since x; = é"",

Tre/r(zixi) = 225 Aji Trer(yjxi) = Aik
= Trg/r((g'(€) TEFDHEY) = Trg /r((g' ()71 xy).



692 Hints for Solutions of Problems

Therefore z; = g'(€)~'£¥~!. Combining this equality with (b) shows that N =
Y Ry =Y Rau =Y R e =g'¢)7'N.

18. For (a), the assumption f = n makes dimy, (kx) = n. Thus degg(X) =
degg(X) = n. Since g(X) is irreducible, so is g(X). The root o of g(X) in K is
such that F(«) is an n-dimensional subspace of K, hence equals K

For (b), the conclusion N ) T follows from the definition. Since T = D(K/F )71,
we obtain D(K /F)~! C N = g @) IN C g 'T.

For (c), the polynomial g(X) was constructed as irreducible, and g(X) was con-
structed to reduce to g(X). Then g’ (@) # 0, and it follows that g’(«) is in T but not
P. Thus g’(e) is a unitin 7', and g’()"'T = T. Then D(K/F)~! C T. Since
D(K/F)~' D T also, D(K/F)~! = T,and D(K/F) =

19. For (a), we may assume that v(x;) < v(x;) for j > 1. If v(x1) < v(x;)
for all j > 1, then induction and use of property (vi) of discrete valuations shows
inductively that v(0) = v(x; + - - - + x;») = v(x1), contradiction.

For (b), the element 7 is in T, and its minimal polynomial has coefficients in R
because T is integral over R; in turn, the field polynomial is a power of the minimal
polynomial. Since c; is in R, we have vg(cj) = nvr(c;), and therefore vg (c;) is
divisible by n.

For (c), apply (a) to the equality com” + ¢~ '4iide,=0t0 produce indices
i < jwithv(e;n"™) = v(c;m"™ 7y and with v(cgm"™ k) > v(c;r"h) for all k. The
equality involving i and j implies that j —i = vk (cj) — vg(c;). Fromi < j < n,
we have n — i > 0. Thus v(c;7"™") > v(c;w) > 0. By (b), v(c;t"™") > n. So
v %) > n.

In (d), the right side of the equality j — i = vk (c;) — vk (c;) is divisible by n,
by (b), and the left side is between 1 and n. Hence the two sides equal n, and we
conclude that i = 0 and j = n. Thus the equality says that n = vk (¢,). Since ¢, is
in F and since vg = nvr, vr(c,) = 1. Therefore ¢, is in p but not p>. The inequality
VK (ckrr”_k) > n implies that vg (ck) > k. For 1 < k < n, this conclusion implies
that vg (cx) > 1. Since ck is in F and since vg = nvg, vp(cy) > 0 for k > 1. Thus
cyisinp fork > 1.

In (e), the irreducibility is immediate from the Eisenstein irreducibility criterion, R
being a principal ideal domain. Since the field polynomial is a power of the minimal
polynomial, the field polynomial equals the minimal polynomial. Then the degree of
F () is n. Since F () is an n-dimensional subfield of the n-dimensional field K,
K = F(m).

Part (f) is proved in the same way as Problem 14g. For (g), the expansion can be
rewritten as 3 ;%o @Yk =3 20 2 o< j<e deitjVeitj = D0<j<e I (X720 @eit j2).
The term in parentheses is the most general member of R, and the left side is the most
general member of 7. Thus (g) follows.

In (h), conclusmn (g) shows that N = Zk -0 Rk equals T, and Problem 17 with
£ = showsthat N = g/(m)"'N. Thus D(K/F)~! = T = g/(;r)"'T. Multiplying
by (¢'())D(K /F), we obtain D(K /F) = (g'()).
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For (i), g'(m) = en®™ ! + ZZ;% cn_ikm*~! = ex®! + b. In each term of b,
vi (ken—i) > evp(cn_i) > e, and vg (7%~ 1) = k — 1. Thus vk (b) > e. Meanwhile,
vk (er¢™!) = (e — 1) + vk (e). Thus vk (¢'(r)) = min ((e — 1) + vg (o), vk (b)),
and property (vi) of discrete valuations shows that equality holds if the two members
(e — 1) + vk (e) and vk (b) of the minimum are unequal. If vg(e) = O, then the
members are unequal, and we obtain vk (g'(w)) = e — 1. Otherwise, we obtain
vi (g’ (7)) > e. We know that D(K/F) = (g'()) = P*® ) and Lemma 6.47
follows.

Chapter VII

1. If x and y are members of L purely inseparable over K, then x” and y”e, are
in K for suitable e and ¢’. Without loss of generality, let ¢’ < e. Then x”* and y?*
are in K, and hence (x = y)?* = x?* + y”* are in K and so are (xy)?" = x?*y” and
(xy™"P* = xPy"P if y £0. Sox £ y, xy, and xy~! are purely inseparable over
K, the last of these if y £ 0.

2. In view of Proposition 7.10, the given conditions imply that [K («) : K] =
p°IK (@) : K] and that XP" — o« is irreducible over K («?") for every u > 0.
Since a” " is a root of this polynomial within K (o) for each u < e, K(«) has a
chain of subfields

K@) G K@ )G S K@) G K@)

in which the consecutive degrees of the extensions are all p. Let 8 be separable over
K, and let K (”") be the first of these fields to contain 8. Arguing by contradiction,
suppose thatr < e. Then 8 and aP™! generate K (") because [K (a?') : K(oﬂ’r“)]
isprime. The separability of 8 over K implies that f is separable over K (oﬂ’r+l ), hence
that K (a”") is separable over K (oﬂ’r+l ), hence that «”" is separable over K (oﬂ’r+l ).
Since («”)? lies in K(oc”m), aP is also purely inseparable over K(oz”r+1). By
Corollary 7.12, of" lies in K (oz”“rl ). This contradicts the fact that the above chain
of subfields is strictly increasing. We conclude that r = e. Hence all elements S
separable over K lie in K (aP).

3. For suitable integers R,, we form the tuple z = (R, + aZ),>1, using the
realization of the inverse limit in Proposition 7.27. We have to specify the integers
R,. The condition for z to lie in Z, coming from the condition f,;, o f, = f, whena
divides b, works out to be that R, — R, is divisible by a whenever a divides b. After
the integers R, have been defined for all a, it is enough to check that R,, — R, is
divisible by a whenever p is prime.

For n odd, define Ryc, = nk + 1, where k is the unique integer from 0 to 2¢ — 1
such that nk + 1 is divisible by 2¢. This k exists and is unique because —n has an
inverse modulo 2¢. One checks that Ryc+1,, — Rpe, is divisible by 2¢ and by n, and
that Rycp, — Roep is divisible by 2¢ and by # if p is an odd prime. The definition
makes R, = 0 and R; = 1 for every odd prime g, and therefore z is not of the form
z. for any integer c.
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4. The first part is immediate from Theorem 7.34. For the second part the group
Gal(R/Q) is trivial. In fact, any member of Gal(R/Q) must fix Q and map squares in
R to squares. It therefore respects the ordering. For any r € R, it fixes each rational
less than r, and hence it fixes r.

5. Use K, = Q(/P1, - - ., \/Pn ), Where p, is the n'™ prime, and Proposition 7.30
to see that Gal(K /Q) is an infinite product of groups of order 2. (A problem at the
end of Chapter IX of Basic Algebra can help with this step.) The open subgroups of
index 2 correspond to quadratic extensions of @, of which there are countably many.
Since Gal(K /Q) has uncountably many subgroups of index 2, such a subgroup H
exists that is not open. The field extension K /Q is normal, and thus Gal(K /Q) is a
homomorphic image of Gal(Qa1g/Q), say by a homomorphism ¢. Then o '(H) is
the required subgroup of Gal(Qy1/Q).

6. Suppose [ is primary. If b+ I is a zero divisor in R/1, then ab is in I for some
anotin /. Since [ is primary, b™ is in I for some m. Thus (b + )" =b" +1 =1,
and b + [ is nilpotent in R/1.

If every zero divisor in R/ is nilpotent, then the ideal O in R/ is primary because
whenever (a + I)(b+ 1) = I and a + I # I, then the nilpotence of b + I implies
that ™ + I = I for some m. This says that the 0 ideal 0 + / in R/ is primary.

IftheOideal in R/I is primary and if ab is in [ witha notin I, then (a+1)(b+1) =
I witha+1 # I, and hence (b + I)™ = I for some m, 0 being primary in R//. This
means that b™ is in I, and I is primary.

7. In (a), if xy is in +/7, then (xy)™ is in I for some m, and therefore either x” is
in I or y"" is in I for some n, i.e., either x is in /1 or y is in /1.

In (b), let x be in /I, and choose n such that x" is in /. Then x” is in J because
I C J. Since J is prime, some factor of x" is in J, i.e., x is in J.

8. In (b), R/I = C[y]/(y?). The zero divisors of R/I are ¢y with ¢ € C, and
(cy)?> = 0 in R shows that cy is nilpotent in R. By Problem 6, I is primary. The
radical P = /T is (x, y) by inspection, and this is prime. Since P> = (x2, xy, y?),
we have P2 g 1 ; P. If I = Q" for some prime ideal Q, then I < Q, and
Problem 7b shows that /T C Q. Since /T is maximal in this case, Q has to be P.

In (c), R/P = K[X,Y, Z1/(XY — Z* X,Z) = K[Y], and this is an integral
domain. Hence P is prime. Next, P? = (x%,xz,7%). Thus Xy = z2 lies in P2.
However, x is not in P2, and y™ is not in P2 for any m > 0. So P? is not primary.

9. Leta and b be in R with ab in [ and a not in /. To show that / is primary,
we are to show that b is in /1. We do this by showing that (b) + I C +/I. The
ideal (b) + I is proper, since otherwise 1 = ¢b + x with x € I, which implies that
a = cha + xa is in I, contradiction. Let J be a maximal ideal with (b) + 1 C J.
It is enough to show that VT C J; in fact, then /T = J because +/1 is assumed
maximal, and (b) + I C /T as asserted. So let u be in /1. Then u™ isin I C J for
some m, and u is in J because J is prime.

This proves the first part. The second part follows from the observation that if J
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is maximal, then +/J” = J. In fact, J" contains all elements a" fora € J. So +/J"
has to contain all elements a € J. Since J is maximal and +/J" has to be proper,
VIt =1.

10. In (a), let P be a prime ideal, and suppose that P = [ N J nontrivially. If i is
in I but not J and if j isin J but not 7, then ij is in P, buti is not in P because i is
not in J and similarly j is not in P because j is notin /.

In (b), 1> = (x%, xy, y?) is primary by Problem 9. The equality of /> with
(Rx + I?) N (Ry + I?) holds by inspection.

11. Arguing by contradiction, we can use the Noetherian property to obtain an
ideal I maximal with respect to the property of not being a finite intersection of proper
irreducible ideals. Since I is not irreducible, I = AN B nontrivially. By maximality,
A and B are intersections, and then so is /, contradiction.

12. Let Q be a proper irreducible ideal in R. Then O is a proper irreducible
ideal in R/ Q. We show that O is primary in R/Q, and then Problem 6 shows that
Q is primary. Thus let xy = 0 in R/Q with y # 0 in R/Q. We want to see
that some power of x is 0 in R/Q. In R/Q, we form the sequence of annihilators
Ann(x) € Ann(x?) C - - - and use the Noetherian property of R and its quotient R/ Q
to obtain Ann(x’) = Ann(x**!) for some /. Let us see that the intersection (x') N (y)
is0in R/Q. Infact,if a isin (y), then xy = 0 implies ax = 0, and if @ is in (x), then
a = bx! and 0 = ax = bx!'*!, from which we see that b is in Ann(x'T!) = Ann(x}).
Therefore a = bx! =0 in R/ Q. Thus indeed «Hhn (y) = 0. Since 0 is irreducible
in R/Q and (y) # 0, we conclude that (x') = 0 and x! = 0 in R/Q. This is what
we were to show.

13. If ab is in Q and a is not in Q, then ab is in Q; for all i and a is not in Q;,
for some ip. Since Qj, is primary, b™ is in Q;, for some m, i.e., bisin \/Q;, = P.
Since /Q; = P for all i, bk is in Q; for some k; depending on i. Taking N to be
the maximum of the integers k;, we see that bV is in each Q; and hence is in their
intersection Q. Thus Q is primary.

Problem 7b shows that ,/O € P. On the other hand, if b is in P, we have just
seen that some power b" lies in Q. So b lies in /Q. Therefore \/Q = P.

14. Problem 11 shows that every ideal is the finite intersection of proper irreducible
ideals, and Problem 12 shows that these are primary. Thus if [ is given, we have
I = () Q; with each Q; primary. Group all Q;’s whose associated prime ideal is
the same P;, and denote the intersection of these by Q; The ideal Q/i is primary
by Problem 13. Then I = ) Q}, and the Q} have distinct associated prime ideals.
So condition (ii) is satisfied. Finally among all expressions for / as intersections
satisfying (ii), choose one that involves the smallest number of primary ideals. This
minimality forces (i) to hold.

Chapter VIII

L@ =D/@-D=1+q+¢*+-- +q"
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3. It is enough to consider a monomial F(Xy,..., X,) = X% ... X% with
> j—1aj =d. Then Xjai}(f(X‘x] <o X%) = o; X% ... X% and the sum on j equals
dxe ... X%, ‘

4. If f* and g* have a nontrivial common factor in B[X], then 0 = R(f*, g') =
t(R(f, g)). Since t is one-one, R(f, g) = 0. Therefore f and g have a nontrivial
common factor in A[X].

5. Let us show thatif g, # 0 and f,,, = 0, then Theorem 8.1 for indices (m — 1, n)
implies the theorem for indices (m, n), and vice versa. Assume for the moment that
m > 2. Let R(f, g) be the resultant matrix of size m + n that takes into account all
coefficients fp, ..., fi, of f, and let R(f, g) be its determinant. With f;,, = 0, let
R'(f, g) be the resultant matrix of size m +n — 1, and let R'(f, g) be its determinant.
The matrix R/ (£, g) is obtained by erasing the m™ row and last column of R( £, g). On
the other hand, the only nonzero entry in the last column of R(f, g) is g,. Expansion
in cofactors therefore gives R'(f, g) = g, R(f, g). The hypotheses of Theorem 8.1
apply to f and g for either of these resultants, and we have just seen that the two
conditions (c) are equivalent. Certainly the two conditions (a) are equivalent. For the
two conditions (b), the resultant of size m +n — 1 tells us thata’ f +b'g = R'(f, )
with dega’ < n and degb’ < m — 1. Certainly this implies that af + bg = R(f, g)
witha = a’g, and b = b'g,. Conversely if af + bg = R(f, g) with dega < n and
degh < m, we define a’ = ag; ! and b’ = bg,'. Thena'f +b'g = R'(f, g) with
dega’ < n, and we need to see that degd’ = degb < m — 1. Since f,, = 0, all the
powers of X inaf are < (n — 1) 4+ (m — 1), and the same must be true in bg. Since
g has degree n, we must have degh <m — 2 < m — 1, as required.

Next we check what happens when m = 1 and we are comparing the resultant of
size n + 1 and a degenerate resultant whose matrix is of size n and contains only the
entries of g. The determinant formula is still valid, and we see that R'(f, g) = g,
which is nonzero. Thus (a) and (c) are false for both sizes. For (b), we cannot have
af +bg =0 withdegb < 0 and b # 0. We need to check that af + bg = 0 cannot
happen with dega < n and degbh < 1; in fact, then degbg = degg = n, while
f1 = 0 implies that degaf < n + deg f = n. So we cannot have af + bg = 0 in
this case either.

The result of these calculations is that Theorem 8.1 for (m, n) is equivalent to the
theorem for (m—1, n) if g, # O and f,,, = 0. Using induction, we see that the theorem
for (m, n) is equivalent to the theorem for (k, n) if g, #0and fry1 =--- = fiu =0.
Taking k = deg f gives the desired result.

6. Proof via Nullstellensatz: Since f isirreducible and K[X1, ..., X,,] is aunique
factorization domain, the principal ideal (f) is prime. Corollary 7.2 shows that g lies
in (f): hence g = hf for some A.

Proof via resultants: The idea is to arrange to have

af +bg = R(f, g), ()
with the resultant taken with respect to X,,. Proposition 8.1 shows that this happens
if f and g are of positive degree in X,,, and we shall show that either this is the case
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or else f divides g for easy reasons. Since f is nonconstant, it depends nontrivially
on some X;, and renumbering the variables allows us to assume that f depends
nontrivially on X,,. Then f is of the form

fX, .0 X
=coX1,...., Xn-D+a X, ..., Xn-0DXn+- -+ X1, ..., Xy )X,

with r > 0 and with ¢, nonzero in K[X1, ..., X,—1]. If g = 0, then certainly f
divides g. So we may assume that g # 0. Choose ay, ..., a,—1 in K such that

glai, ...,an—1, Xp)cr(an, ..., an—1) #0. (k%)

Then f(ai, ..., a,—1, X,) is a polynomial in X,, whose coefficient of X, is nonzero.
Since K is algebraically closed, this polynomial in X, has a root, say a,. Since
f(ay,...,a,) = 0, the hypothesis shows that g(ay, ...,a,—1,a,) = 0, and (k%)
allows us to conclude that g = g(Xy, ..., X;) depends nontrivially on X,,. This
proves ().

To complete the proof, we show that ¢, R is O at every point (by, ..., b-_1). Since
K is infinite, it will follow that the polynomial ¢, R is 0; thus R = 0 because ¢,
is not the O polynomial. Then f and g will have a nontrivial common factor by
Proposition 8.1, and f will have to divide g because f is prime. Thus suppose that
cr(b1,...,br—1) #0. Then f(by, ..., b-—1, X,) is a nonconstant polynomial in X,
and must have a root b, since K is algebraically closed. Hence f(b1,...,b;) =0,
and the hypothesis on g shows that g(by, ..., b,) =0. By (x), R(b1,...,b,—1) =0.
This completes the proof.

7.Y3 —2XY242X%Y —4X3 = (Y = 2X)(Y +ivV2X)(Y —iv2X).

8. The resultant matrix in the W variable is

Xy4-y> —2x%*v* X3 0
0 Xy*-y’ —2x?%y? x3
v* Y3 -X2 0 ’
0 v4 yd  —x?

and its determinant is —X3Y?(Y — 2X)?. Substituting into either of the equations
F =0and G = 0 gives the projective solutions (x, y, w) equal to (1, 0, 0), (0, 0, 1),
and (1,2,4 £ 4ﬁ), up to nonzero scalar factors. (One has to check that both the
equations F = 0 and G = 0 are satisfied.)

9. Introduce a new indeterminate 7 = ¥; — Z;, and remove Y;. Then R(F, G) =
RYy,....,.T+Zj,...,Yy,Z,...,Z,) is a polynomial in T, the Z;’s, and all the
Y’s except for ¥;. Also, R(F, G) = 0 when T is set equal to 0. Hence R(F, G) is
divisible by T'. Then (a) and (b) follow. For (c), the polynomials ¥; — Z; are distinct
primes. Since each divides R(F, G), their product must divide. Their product has
the same degree as R(F, G), and the result follows.
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10. We may assume that K is algebraically closed and that f is monic, say with
FX) =TI, (X—¢§)and f'(X) =m ]_[;":_11 (X —n;). Then the previous problem

gives f'(&) = m[]/=' & —nj). and
ROF ) = e 16 =) = s {1 160
i,j i=

with ¢, m—1 equal to the constant ¢ from Problem 9c when n = m — 1. According to
Section V.4, the product is (—1)"""~D/2) times the discriminant D(f) of f. So the
result follows.

11. Replace G by G(X, Y, W) — (X2 + Y)F(X, Y, W)toget YWH (X, Y, W),
where H(X, Y, W) = (X? + Y?)(X? —3Y?%) —4X%YW. Then

I(P,FNG)=I(P,FNYWH)=I1(P,FNY)+I(P,FONW)+I(P,FnNH).

For I (P, F NY), we use the method of Section 4, looking at F (¢, 0, 1), which is I
thus I(P, FNY)=4. Since Pisnoton W, I(P, FNW) =0.

For I (P, F N H),replace Hby H(X,Y,W) — F(X,Y,W)togetYJ(X, Y, W),
where J(X, Y, W) = —4X2Y —4Y3 —7X2W + Y2W. Then

I(P,FNH)=I(P,FNYJ)=I(P,FNY)+I(P,FNJ),

and again I (P, F NY) = 4. If the local expressions of F and J are denoted by f
and j, then their lowest-order terms f3(x, y) and j>(x, y) are given by

fex,y) =332y — 3 = y(V3x + »)(V3x — y),
Ry ==T2+y = -VTx+ »ETx —y).

Thus F and J have no tangent lines in common at P,and I(P, FNJ) =3-2=6.
Collecting the results, we find that (P, FNG) =444+ 6 = 14.

12. Let P = [xp, Yo, wo], and choose ® € GL(3, K) with ®(x¢, yo, wo) =
(0,0, 1). The local versions of G and L are g(X,Y) = G(®~!(X, Y, 1)) and
I(X,Y) = L(®~'(X, Y, 1)). The expansion of g as a sum of homogeneous poly-
nomials is g = g, + --- + g4 because m = mp(G) > 0, and [ is of the form
[(X,Y) =aX+DbY because P lies on L. We can parametrize [ by ¢(¢) = (bt, —at),
and then the definition of intersection multiplicity is that I (P, L N G) is the least
integer k such that the expression gi(¢(¢)) = tkgk (b, —a) is nonzero. The defi-
nition of tangent line is any projective line L; whose local version /; is one of the
factors of gn(X,Y) = c[]; (X + BiY)™. Then gn(p(1)) = t"gn(b, —a) =
c ]_[l- (ajb— Bia)™ . If (a, b) is a multiple of some (¢;, B;), then g, (¢ (7)) = 0; hence
I(P,LNG)>m-+ 1. Otherwise g, (¢(¢)) #0,and I (P, L N G) = m.
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13. The linear span LT(/) of the members LT( f) for f in / is a monomial ideal and
is of the form (M, ..., My) for suitable monomials M; each of the form LM( f;) for
some fj in 1. Then {fi, ..., fx} is a subset of I such that (LT(f}),...,LT(fi)) =
LT(/), and { f1, ..., fr} is a Grobner basis of I by definition.

14. If «, B, y are vectors of exponents in monomials such that the first i with
w® .o # w® . ghas w? . a > w? . g, then it equally true that the first i with
w® (@ +y) #wD . (B+y)hasw? . (@+y) > w? . (B4 y). This proves that
property (i) of monomial orderings holds with no further conditions on the weights.
Property (ii) says for each vector @ of nonnegative exponents not all O that the first i
with w® - o # 0 has w® - & > 0. Applying this condition as a necessary condition
to the j standard basis vector o = e 7, we see that the first 7 such that wj(-’) # 0 must

have wj(.’) > 0 for (ii) to hold. On the other hand, if this condition holds for all j, then
a suitable positive linear combination of these conditions gives (ii) for any «.

15. In (a), a > o' implies that X*~¢ > X > Y? for all # > 0. Multiplying
by x4 gives X4 > X9y? . Since Y > 1 implies XY? > X9 we conclude that
Xay? > x9y? forall b and b'. For a = a’, we observe that b > b’ implies that
Y?=?" >~ 1 and hence that Y* > Y*. Multiplying by X¢ gives X*Y? > xay?’
Hence the ordering is lexicographic.

In (b), we observe that an inequality between X¢ and Y implies the same inequality
between X"® and Y”?. Consequently the particular inequality for X and Y depends
only on the rational number a/b. The assumption for (b) is that X < Y9, hence that
X% < v9? < ybif ga < b, thusifa/b < q‘l. Thus the set S of rationals a/b
such that X* > Y? is bounded below by ¢~!. Let r~! be the greatest lower bound
of S. We know then that q_l < r~! hence that r < qg.- So0 <r <oo,andr isa
well-defined real number.

Suppose that u /v < r~1. Then u/visnotin S, and so X* < YV. In the reverse
direction, suppose that u/v > r~!. Then there is some rational ¢/d in S with
u/v > c/d > r~ ! this has X¢ > Y9. Then X*¢ > X" > Y% Sinced > 0,
X" < Y¥ would imply X“¢ < Y? which is false. Thus we must have X* > Y?.
This proves (b).

For (c), the only rational u /v for which the inequality between X* and Y¢ is not
decided is u/v = r~', and that only if 7 is rational. In this case a single weight vector
will decide the correct inequality. All other inequalities between monomials follow
from these. In fact, what needs deciding is the inequality between X¢Y? and X% y*'
when a > a’ and b < b/, and this is the same as the inequality between X a=d" and
yb'-b,

16. The formulas for f are a matter of computation. Both satisfy the conditions
of Proposition 8.20 because LM(f) = X2Y is > each of LM((X + Y) f}) = X?Y,
LM(1f>) = Y2, LM(Xf1) = XY, and LM((X + 1) f») = XY? and because no term
of r or r, is divisible by LM(f]) = XY or LM(f;) = Y2.

17. In (a), we check that {X? + ¢ XY, XY} is a Grobner basis using Theorem 8.23.
The leading monomials of the two generators are X and XY, and neither divides the
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other. Since the leading coefficients are 1, this Grobner basis is minimal.

In (b) when ¢ # 0, X% 4 ¢ XY has a nonzero term whose monomial is divisible by
the leading monomial of another generator; specifically the term ¢XY in X? 4+ cXY
is divisible by the XY from the other generator. Following the procedure in Theorem
8.28, we find that {X?, XY} is the reduced Grébner basis.

18. If (c1, ..., cu) lies in Vg (1), then ¢; is one of finitely many roots of P;(X),

for each j. Hence | Vg (I)| < []}_, deg P;.

19. Fix j, and choose a polynomial Q; in X that vanishes at the j™ coordinate of
every member of Vg (I). Then P;(Xy, ..., X,) = Q;(X;) is a polynomial vanishing
on Vi (I), and the Nullstellensatz shows that some power of it is in /. The result is a
polynomial in X; alone, as required.

20. If Vg (I) is a finite set, then Problem 19 shows that / contains a nonconstant
polynomial in X; for each j. The leading monomial for the 7™ such polynomial
has to be a power of X;, and it lies in LT(/). Conversely suppose that a power

Xj/ lies in LT(/) for each j. Form a reduced Grébner basis of 7. Since the only

monomials dividing X;j are powers of X, there exist members g; of the Grobner
basis for 1 < j < n such that

g(Xi, o, X)) = X[+ X a1 4+ Xjaj1 + a0
for suitable polynomials Ajmj—1s -+ @j,0 inXjiy,..., X,. Then Vg (1) is contained
in Vg ((g1,---.,&n)), and any member (cy, ..., ¢,) of the latter has the property for
each j thatc; isaroot of a polynomial of degree m in one variable, once (¢j11, . .., Cy)
is fixed. Thus Vg (I) is contained in a finite set and has to be finite.

21. For (a), the coefficients a;, . ;, are given as in K (X), and we look for solutions
of F(Ty, ..., T,) = 0. Clearing fractions in the coefficients, we see that it is enough
to find a solution when each g;, . ;, has denominator 1.

For (b), substitution of 7; = ij:l b; ij , where each b;; is an unknown in K,
into the equation F (71, ..., T,,) = 0 gives

N o N o
' > a.. in( X:lbijx./)zl ( lbl-ij)’n =0.
j: =

J

We expand this out and set the coefficient of each power of X equal to 0. The largest
possible power of X that can appear is the sum of the largest power of X inany a;, .., ,
namely 8, and ) ;_, Nix. Since F is homogeneous of degree d, > ;_, ix = d. Thus
the largest possible power of X is Nd + 6. We get one equation for each power of X

that appears, and the unknowns are the various b;;’s.

22. The number of equations is < Nd + & + 1, since the powers of X go from O to
at most Nd + 8. The number of unknowns is one for each index i with 1 <i < n and
each possible power of X from O to N, hence exactly (N + 1)n. For N sufficiently
large we want to see that Nd +§ + 1 < (N + 1)n. Since d < n, the inequality in
questionis § + 1 —n < N(n — d), and this is satisfied by taking N large enough.
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23. In the context of Problem 22, we have a homogeneous system with more
unknowns than equations (for large N). If the number of unknowns is n + 1 and
the number of equations is m, then we are looking for solutions in IP”I’{. Since the
inequality m < n is satisfied, the quoted theorem applies and produces a nonzero
solution for the b;;’s.

Chapter IX

1. For (a), we argue by contradiction. Suppose that c;(x), ..., ¢, (x) are members
of k(x), notall 0, such that } *; ¢;(x)t; = 0. Clearing fractions, we may assume that
each ¢;(x) lies in k[x]. If necessary, we can divide through by a power of x and
arrange that some c;(x), say cj,(x), has a nonzero constant term. The element x is
by assumption transcendental over k. Applying the substitution homomorphism of
k[x] into k given by evaluation at 0 yields Zj ¢j(0)t; = 0. By the assumed linear
independence of #1, ..., t, over k, ¢;(0) = O for all j. This contradicts the fact that
¢j,(0) # 0. Then (b) is immediate. For (c), we know that [IF : k(x)] < oo, and
therefore [k’ (x) : k(x)] < co. By (b), [k’ : k] < oo.

2. This is immediate from Proposition 7.15. Alternatively, here is a direct proof.
We may assume that the characteristic is p. It is enough to prove that if K is perfect
and L is a finite extension, then L is perfect. Arguing by contradiction, we may
assume that [L : K] is as small as possible among all counterexamples. The image
M of L under x — x? is a subfield of L, and M contains K because K is perfect.
We cannot have M = L, since L is assumed not to be perfect. By construction of
L, M is perfect. Composing x > x” from L into M with x > x!'/? from M into
itself, we obtain a field map of L onto M that fixes M. The result is a one-one M
linear transformation of the finite-dimensional M vector space L onto a proper vector
subspace, contradiction.

3. Let FF be a function field in one variable over k. Since k is perfect, Theorem
7.20 shows that IF is separably generated. Let us write ' = k(xy, ..., x,). Theorem
7.18 shows that there is some x; such that I is a separable extension of k(x;). If we
write x for x;, then the Theorem of the Primitive Element shows that ' = k(x)[y]
for some y algebraic over k(x). Put R = k[x][y] = k[x, y]; the field of fractions of
RisF. Let g(x, Y) be the minimal polynomial of y over k(x). If d(x) is a common
denominator for the coefficients of g(x, Y), thend (x) # O because x is transcendental
overk. If weset f(X,Y) =d(X)g(X,Y),then f(x,y) = 0. Hence the substitution
homomorphism k[ X, Y] — R given by replacing X by x and Y by y factors through
to a homomorphism ¢ carrying k[ X, Y]/(f (X, Y)) onto R. The ring R is an integral
domain; hence the ideal (f (X, Y)) is prime, and f (X, Y) is irreducible. We can find
an ideal I in k[X, Y] containing (f (X, Y)) such that ¢ descends to an isomorphism
of k[X, Y]/I onto R. This ideal I has to be prime, and we let J be a maximal ideal
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of k[ X, Y] containing it. Then we have a chain of inclusions of prime ideals
0S (fX,Y)CICl.

Theorem 7.22 shows that k[ X, Y] has Krull dimension 2, and it follows that either
(f(X,Y)) = I in the above chain of inclusions, or I = J. The latter equality would
mean that 7 is maximal and therefore that R = k[X, Y]/ is a field; this is not the
case, and thus (f(X, Y))=1. Hence R = k[X, Y]/(f(X,Y)). Here f(X,Y) is an
affine plane curve irreducible over k, and the field of fractions of R is by definition
the function field of the curve; this field is IF, and the argument is complete.

4. The singular points are common zeros of f, g_f’ and %. If there are infinitely

many, then Bezout’s Theorem says that f and g—f( have a nontrivial common factor,

and sodo f and % Since f is irreducible and the partial derivatives reduce degrees
in one or the other variable, we must have (‘;—{( = g—{, = 0 as polynomials. This is
impossible in characteristic 0. In characteristic p, the first condition says that the
only powers of X that appear in f are powers of X7, and the second condition says
that the only powers of Y that appear are powers of Y”. The coefficients of f are
powers of p because k is assumed perfect, and thus f is exhibited as a p™ power, in

contradiction to its assumed irreducibility.

5. Differentiate f(X,b) = (X — a)f1(X) and evaluate at (a, b) to obtain
@b = fita) + (@ - a) f{@ = fi(a).

6. Multiply the equation g (X, b) = (X —a)g;(X) by f1(X) and substitute to obtain
g(X,b) fi(X) = f(X,b)gi(X). Then the function g(X, -) fi(X) — f(X, -)g1(X)
is 0 at b and is of the form g(X,Y) f1(X) — f(X,YV)g1(X) = (Y — b)h((X,Y),
where i1 (X, Y) for each X is a polynomial in Y. Since (Y —b)h (X, Y) isequaltoa
polynomial in (X, Y), h{(X, Y) is a polynomial in (X, Y). To complete the problem,
evaluate both sides at (x, y), and use the facts that f(x, y) = 0 and that f;(x) # 0.

7. Since F = k(x, y) is a function field in one variable, it is enough to see that y is
transcendental over k. Arguing by contradiction, suppose that there is some nonzero
polynomial c¢(Y) in k[Y] having y as a root. As a polynomial in k[X, Y], ¢(Y) maps
to c(y) = 0 when we pass to the quotient in k[ X, Y]/(f (X, Y)), and therefore c(Y)
is the product of f(X,Y) by a polynomial. On the other hand, % is not 0, and
thus f(X, Y) depends nontrivially on X. Hence the product of f(X,Y) and any
nonzero polynomial in (X, Y)) depends nontrivially on X, contradiction. The result
now follows from the observation at the end of Section 1.

8. Substituting a for x in the formula for g(x, y) gives

gla,y) = (y — b’y (a, )/ fi(a)r.

In this formula, A (a, y) is a polynomial expression in y, hence also in y — b. Thus
v1 is > 0 on it. The expression fi (@)* is a nonzero member of k, on which v; takes
the value 0. Therefore

vi(gla, y)) = kvi(y — b) +vi(hi(a, y)) = kvi(y — b).
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The left side is independent of k, and the right side is unbounded in k. Therefore
there is some upper bound to the values of k for which g(x, y) has an expansion of
the kind in question.

9. For (a), we cannot have &y (a, b) = 0 in Problem 8 for arbitrarily large k because
of the bound found in Problem 8. If k = n is the smallest k for which A (a, b) # 0,
then the displayed formula holds with 4 = h,,. For uniqueness we substitute a for x
and see that g(a, y) = p,(y)(y —b)" for a polynomial p, with p, (b) # 0. We cannot
have two such expressions involving distinct powers n because y is transcendental
over k.

For (b), we see from (a) that every nonzero member of R is of the required form
with n > 0. Since T is the field of fractions of R, the same thing is true for [ as long
as we allow n to be arbitrary in Z.

For (c), if we have two such expressions, we set them equal, clear fractions, and
write the resultas (y—b)* p(x, y) = g(x, y) forsome k > 0 and for some polynomials
p and g with p(a, b) # 0and g(a, b) # 0. Substituting (a, b) for (x, y), we obtain 0
from (y — b)*p(x, y) unless k = 0, and we obtain something nonzero from ¢ (x, y).
Therefore k = 0, and the required uniqueness follows.

10. From the definition we immediately have v(g) = 400 if and only if g = O,
as well as v(gg') = v(g) + v(g’) for all g and g’. We are to show that v(g + g’) >
min(v(g), v(g’)). Thus write g(x, y) = (y — b)"h1(x, y)/ha(x,y) and g'(x, y) =
(y —b)"h(x, y)/hy(x, y) with n < m. Then min(v(g), v(g')) = min(n, m) = n.
Also, / o

g+ = (v — by METOB Tl
The numerator of the displayed fraction is a polynomial and can be written in the
form of Problem 9a. Say that (y — b)¥ is the power of (y — b) that appears in it,
k being > 0. Then v(g + g’) = n + k, and this is > n = min(v(g), v(g’)). The
assertions about the valuation ring and the valuation ideal are clear.

11. Let v’ be a second valuation having the stated properties. If g(x, y) is given
in F*, decompose g as in Problem 9b, and apply v’. Then we obtain v'(g(x, y)) =
nv'(y — b) + v'(hi(x,y)) — v'(h2(x,y)). The assumptions on v’ show that
v/ (h1(x,y)) = V' (ha(x, y)) = 0. Therefore

V'(g(x, y)) =nv'(y —b) =v'(y — b)u(g(x, y)),

and v" = v/(y — b)v. By assumption, v'(y — b) is positive. Since v’ has to be onto
7 U {oo}, we must have v'(y — b) = 1.

12. For (a), the argument is the same as with Problem 7 except that the roles of
x and y are reversed. The partial derivative %f@)) = 2y is not the 0 element
because the characteristic is not 2, and hence that earlier argument applies. Part (b)
is elementary field theory, and (d) is a routine verification.

For (¢), let kK’ be the subfield of elements of IF algebraic over k. Problem 1 shows
that [k’ : k] < [K'(x) : k(x)] < [F : k] = 2. Arguing by contradiction, suppose
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that {1, ¢} is a basis of k’ over k. let X> + uX + v be the minimal polynomial of
t over k; ¢ satisfies 1> + ut + v = 0. Problem la shows that 1 = a(x) + yb(x)
with b(x) # 0, and then  satisfies 12 — 2a(x)t + (a(x)> — f(x)b(x)?) = 0. Hence
ut +v = —2a(x)t + (a(x)®> — f(x)b(x)?). If u # —2a(x), then we can solve
for ¢ and obtain the contradiction that ¢ is in k(x). Thus u = —2a(x), and also
v = a(x)? — f(x)b(x)%. Since x is transcendental over k, the first of these shows that
a(x) does not involve x, i.e., a(x) lies in k. Then the second shows that f(x)b(x)?
lies in k, and unique factorization leads to the conclusion that f(x) and b(x) do not
depend on x. This contradicts the assumption that f(X) is nonconstant.

13. Let z = a(x) 4+ yb(x) be in the integral closure. Then so is the image of z
under the nontrivial Galois group element o, and so are z 4+ o (z) and zo (z). The
latter elements are 2a(x) and a(x)? — f(x)b(x)2. Thus a(x) is in the intersection of
the integral closure with k(x), which is k[x] because k[x] is a principal ideal domain
and is integrally closed. Then f(x)b(x)? is in k[x] by the same argument. Since
f(x) is square free, it follows that b(x) is in k[x].

14. Part (a) is immediate from Corollary 6.6. Discrete valuations of I that are not
in Dp play no role because of the inclusion k C R: any discrete valuation that is > 0
on R has to be 0 on k™, since the image of k* under the valuation is a subgroup of Z.

For (b), the condition for z £ 0 to be in p(x)eo is that v(z) > —p ord,(x) for
all v € Dp. If a particular v has v(x) > 0, then v does not contribute to (x)so, and
this condition says that v(z) > 0. By (a), z isin R.

15. For (a), let c(x) = ¢cpx" + -+ ¢co = X" (cn + Cp_1x ™' + -+ 4+ cox™") with
¢y # 0. Then v(c,) =0, and v(qixj_”) > 0 for j < n. Hence

1

v(x" (e + CnoiXx V4 cox™™) = nv(x) +v(cp +cpo1x” 44 cox ")

=nv(x) +v(c,) = nv(x).

For (b), 2v(y) = v(y?) = v(f(x)) = (deg f)v(x), the latter equality holding by (a).
In (¢), we have

v(a(x) 4+ yb(x)) > min (v(a(x)), v(yb(x)))
= min (v(a(x)), v(y) + v(b(x)))
= min ((dega)v(x), (5 deg f + degb)v(x))
= v(x) max (dega, § deg f + degh) > pv(x).

16. Any v € Dy with v(x) > 0 has v(z) > 0 = —ord,(x)x on all elements
z = a(x) 4+ yb(x) with a(x) and b(x) in k[x], by Problems 13 and 14a. Suppose
that v(x) < 0. Then Problem 15c and the assumptions on the degrees of a(x) and
b(x) shows that v(z) > pv(x) = —pord,(x). Hence (z) > —p(x)o0, and z lies in
L(p(x)c0)-
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18. For (a), let o be the nontrivial element of the Galois group. Problem 17c
shows that if z = a(x) + yb(x) is in L(p(x)), then so is 6 (z) = a(x) — yb(x).
Hence any v € Dy with v(x) < 0 has v(a(x) + yb(x)) > —pord,(x)s = pv(x)
and v(a(x) — yb(x)) = —pordy(x)so = pv(x). Consequently

v(a(x)) = v(2a(x)) = min (v(a(x) + yb(x)), v(a(x) — yb(x)))
> min (pv(x), pv(x)) = pv(x)

and

v(a()? — F)b(x)?) = v(alx) + yb(x)) + v(a(x) — yb(x)) > pv(x) + pv(x).

Using Problem 15a and the fact that v(x) < 0, we see from these two inequalities
that dega < p and deg(a® — fb?) < 2p.

For (b), Problem 14b shows that L(p(x)s) C R, and Problem 13 shows that
R consists of all a(x) + yb(x) with a(x) and b(x) in k[x]. Part (a) thus shows that
dega < panddeg(a®— fb*) < 2p. Sincedega < p, the second of these inequalities
shows that deg fb> < 2p. Thus degh + %deg f < p. In the reverse direction, if
a(x) and b(x) are polynomials satisfying the degree relations, then Problem 16 shows
that a(x) + yb(x) isin L(p(x)co)-

19. The polynomials a(x) and b(x) are limited only by the restrictions on their
degrees. Fromdega < p, we getaspace of dimension p+1. From deg b+% deg f <
p,wehavedeghb < [p - % deg f], and we get a space of dimension [p — % deg f] +1
if [p — 3 deg f] = 0. Thus

Up@)s) = (p+ D)+ [p— 5deg f]+1
=2p+2+4[—3degf] =2p+2—[5(1 +deg /)]

if p>—[ — Jdeg f] = +[3(1 +deg f].

20. Part (a) is immediate from Theorem 9.3, since [IF : k(x)] = 2. For (b), Theo-
rem 9.9 and Problem 19, in combination with the result of (a), show for sufficiently
large positive p that

1 — g = £(p()oo) — pdeg(x)oo = 2p +2 — [1(1 + deg f] - 2p.

Hence g = [5(1 +deg f] — L.

21. Let @ : k(X)[Y] — k(X)[Z] be the substitution homomorphism that fixes
k(X) and has ®(Y) = g(X)Z, and follow it with the quotient homomorphism to
k(X)[Z1/(Z* — h(X)). Then

(Y’ — f(X) = g(X)’Z* — f(X) = g(X)*(Z* — h(X)),
which goes to 0 in the quotient. Thus the composition of ® followed by the quotient
map descends to a field map ¢ : k(X)[Y]/(Y? — f(X)) = k(X)[Z]/(Z? — h(X)).

The inverse is constructed in the same way, starting from the formula W(Z) =
g(X)7ty.
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22. For (a), the conclusion genus 1 when there are no repeated roots is immediate
from Problem 20b with deg f = 3. If there are repeated roots, then we can write
f(X) = g(X)*h(X) with deg g = degh = 1. Applying Problem 21, we see that the
genus is the same as for Problem 20b with deg f = 1, i.e., the genus is 0.

For (b), a singularity occurs only at points (x, y) of the zero locus in kgl gat which
both first partials are 0. Then2Y = 0, which says that y = 0 because the characteristic
isnot 2, and f’(X) = 0, which says that x is a root in k,jg of both f(X) and f’(X).
This means that x is at least a double root in kg of f(X).

23. Theresidue class degree f;, is 1, since k is algebraically closed. Thusdegnv =
n. Corollary 9.4 gives £(0v) = 1, Corollaries 9.22 and 9.23 together give £(1v) = 1
if g > 1, and Corollary 9.19 gives £((2g — 1)v) = deg(2g — Dv) + (1 — g) =
2g—1)+(1—g) =gand £(2gv) = deg(2gv) + (1 — g) = g + 1. The inequality
L(nv) < £((n + 1)v) < €(nv) + 1 follows by combining Theorem 9.6, the fact that
A < B implies L(A) € L(B), and the fact that f, = 1.

24. Foreachn > 0,
L(nv) ={0}Uf{x e F* | =(X)oo = —nv} = {0} U {x € F* | (x)o0 < nv}.

Thus n > 1 is a gap if and only if £(nv) = £((n — 1)v), and otherwise £(nv) =
£((n — 1)v) + 1 by the last fact in Problem 23.

Suppose that there are m gaps in passing from £(0v) to £(2gv). In the process we
take 2g steps from (n — 1)v to nv, of which m are gaps and 2g — m are nongaps. (The
gaps are certain of these integersn, 1 <n < 2g.) Since £(0v) = 1l and £(2gv) = g+1
by Problem 23, the total number of nongapsis (g+1) — 1 = g. Solving2g —m = g
gives m = g. The formulas £((2g — 1)v) = g and £(2gv) = g + 1 from Problem 23
show that 2g is not a gap.

25. For (a), if the gap sequence is (1,2,...,8), then 1 = £(0v) = £(lv) =
£(2v) = --- = £(gv). Conversely if the gap sequence is something else, let n with
1 <n < gbethefirstnongap;then1 = £(0v) = --- = £((n—1)v) < £(nv) < £(gv).

For (b), Problem 23 gives £(0v) = £(1v) = 1 if g > 1, and thus 1 is a gap.

For (c), there are no integers strictly between 0 and 2g if g = 1, and the only such
integer for g = 1 is 1. Part (b) shows that the gap sequence is indeed (1) if g = 1,
and thus the gap sequence is always the standard one.

For (d), we have some x and y in F* with (x)oo = rv and (y)soc = sv. Thus
(x) = (x)o —rvand (y) = (y)o — sv, and (xy) = (x)o + (yo) — (r + s)v. Since v
does not contribute to (x)g and (y)o, (xy)eo = (r + s)v, and thus r + s is a nongap.

For (e), if 2 is a nongap, then iteration of (d) shows that 2,4,6,...,2¢g — 2 are
nongaps. The only possible gaps are the remaining integers from 1 to 2g — 1, namely
1,3,5,...,2g — 1. There are g of these, and so all of them must be gaps.
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1. If Fisin I(P), expand F' as a sum of homogeneous terms F = 22020 Fy.
Then0 = F(txo, ..., 1xy) = Y 9og Fa(txo, ..., tx0) = Y 9oy Fa(xo, . .., x,)t? for
all + € k*. Since k is infinite, every coefficient of this polynomial in 7 is 0. Thus
each Fy isin I (P), and I (P) is generated by homogeneous elements.

2. In each part we argue by contradiction. For (a), if {X,} is a system of nonempty
closed subsets of X with the finite intersection property such that (1), X, = @, then
we can inductively define a strictly decreasing sequence of finite intersections of the
X¢’s, in contradiction to the Noetherian property. In (b), if E is a closed irreducible
subset that is not connected, then £ = U U V with U and V nonempty, disjoint, and
relatively open. Then £ = U¢ U V¢ contradicts the irreducibility of E.

3. For (a), the continuous image of a connected set is connected. Continuity is
by Proposition 10.32, and connectedness is by Problem 2b applied to the Noetherian
topological space V. For (b), if f is any polynomial function on A", then f o ¢ is
in O(V) because ¢ is a morphism, and f o ¢ is constant by Corollary 10.31. Then
@ cannot have two distinct points in its image, since any two points in A” can be
distinguished by some polynomial.

4. Certainly O(U) 2 k[X, Y]. Also, the function field k(U) consists of all
quotients of polynomials a/b with @ and b in k[ X, Y] and b # 0. Thus suppose that
f = a/b lies in O(U). By unique factorization in k[ X, Y], we may assume that a
and b are relatively prime. In the expression f = a/b, regularity at P implies that
b(P) # Obecause an equality a/b = c¢/d of two such expressions implies thata = kc
and b = kd for some nonzero scalar k. Since f is regular everywhere in A? except
possibly at the origin, b(X, Y) is nonvanishing away from the origin. However, if
b is nonconstant, then V() is a curve and has dimension 1, whereas the origin has
dimension 0. We conclude that b is constant, and f = a/b is in k[X, Y].

5. Arguing by contradiction, let ¢ : W — U be an isomorphism from an affine
variety onto U. Thenthe map ¢ : O(U) — O(W) = A(W) givenby ¢(f) = fogpis
an isomorphism. Let: : U — A? be the inclusion. The corresponding map on regular
functions is 7 : A(A%) — O(U) given by T(h)(x, y) = h(x, y) for (x, y) # (0,0),
and it is an isomorphism by Problem 4. Then (¢ o ¢)~ = Tog is an isomorphism
of A(A?) onto A(W). Its inverse has to be of the form ¥ with V(g) = goy for
some isomorphism ¥ : A> — W, according to Theorem 10.38. Since v/ o § 07’is the
identity map on A(A?), 1 0 ¢ o ¥ is the identity map on A”. Using the definition of ¢
shows that g o (x, y) = (x, y) for (x, y) # (0, 0). Thus ¢ o ¢ is an isomorphism of
A? onto U that is the identity on U. This is a contradiction, since there is no possible
image for (0, 0) under ¢ o ¥ that makes ¢ o i one-one.

6. Let ¢ be the rational map of the irreducible curve C into the irreducible curve
C’, and let (E, ¢pg) be a morphism in the class ¢. If ¢ is not dominant, then ¢ (E)
is a proper closed subset of C’ and must be finite. Hence ¢g (E) is finite. The set E
is connected by Problem 2b, and morphisms are continuous by definition. Therefore
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g (E) is connected. Being connected and finite, it is a singleton set {y}. If ¢c is
defined as everywhere equal to y on C, then (C, ¢¢) is in the equivalence class ¢. So
@ is constant.

7. Suppose that f is a member of Oy(py(V) with ¢} (f) = 0. Since the set on
which f € k(V) is regular is open, there exists an open neighborhood E of ¢(P) on
which f is defined. The morphism ¢ is continuous, and thus ¢! (E) is open in U.
Since ¢ is a morphism and f is regular on E, f o ¢ is regular on ¢~ (E). According
to the proof of Proposition 10.42, ¢} ( f) is defined to be the unique member of k(V)
that agrees with f o ¢ on ¢~ ! (E). We are assuming ¢p(f)tobe 0, and thus f o ¢
equals 0 on ¢! (E). By dominance of ¢, ¢(¢~!(E)) is a dense subset of E. Thus
the continuous function f is 0 on a dense subset of its domain E and is 0.

8. The inclusion (WX — Y Z) C (X, Z) yields a homomorphism ¢ of A(V) onto
k[W, X, Y, Z1/(X, Z) = k[W, Y]. Let b = ¢(b). Then b'(w, y) = b(w,0, y, 0)
is a polynomial in (w, y) nonzero in the complement of the origin. The solution
of Problem 4 shows that 5'(0,0) # 0. Thus 15(0, 0,0,0) # 0, and f is defined at
(0,0,0,0). In view of the discussion of this example in Section 4, f is everywhere
defined. Therefore it is in O(V), which equals A(V) because V is an affine variety.
Thus there is a polynomial g in k[W, X, Y, Z] whose image g in A(V) equals X /Y.
ThenYg = X,and Yg = X +(W X —Y Z)h for some polynomial h. So Y (g+hZ) =
X (1 + Wh). This implies that Y divides 1 + Wh, which we see is impossible by
evaluating at the origin.

9. The equivalence of continuity of ¢ and continuity of all ¢, will be taken as
known. Supposethaty : U — V isamorphism. Let anindex o, anopenset E C V,
and a member f of O(E) be given. We are to show that f o ¢, is in C’)((p(;] (E)).
Since ¢ is a morphism and E is open in V, we know that f o ¢ is in O(¢ ™' (E)). By
restriction, f o g is in O(Uy N @~ 1(E)) = O((pojl(E)). Thus ¢, is a morphism.

In the reverse direction suppose that all ¢, : U, — V,, are morphisms. Let E
be open in V, and let f be in O(E). We are to show that f o ¢ is in O(¢~ ! (E)).
Since 9 1(E) = U, Wan @~ 1(E)), itis enough to prove regularity of f o oneach
U, N @~ (E). On this open set, f o ¢ equals f o ¢, which is regular because ¢, is
a morphism. Thus ¢ is a morphism.

10. For (a), we use the equivalence of regularity with the condition in Proposition
10.28. Thus regularity at P in U means that there is a subneighborhood Uy of U
within V about P such that f equals a quotient @/b on Uy with @ and b in A(V) and
with b nowhere vanishing on Up. Choose polynomialsa and b in k[ X7, ..., X, ] that
restrict to @ and b on V. Let U, be an open subset of A" whose intersection with V
is Up. Since b is nowhere 0 on Uy and is continuous on U/, the subset ﬁo of U1 on
which b is nonvanishing is open and contains Up. Then Proposition 10.28 shows that
F = a/b is a member of O(Uy) whose restriction to Uy equals f.

For (b), the result of (a) is local. Thus we can immediately allow V to be quasi-
affine. Using Proposition 10.37, we can extend (a) to the case that V' is quasiprojective.
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11. Continuity is no problem. For the condition involving regularity, we use
Problem 10. Let E be a relatively open set in V, and let f be in O(E). We are to
show that f o ¢ is in O(¢ ' (E)). Thus let P be in ¢ ' (E) C U; then ¢(P) is in
E C V. Since f isin O(E), Problem 10 produces a relatively open neighborhood Eo
of ¢(P), an open subset Eo of Y with Eo NV = Ey, and a function F in (’)(Eo) such
that F!E = f|E Smce(p X — Y is a morphism, F o ¢ is in O((p*I(Eo)) Since
(g~ 1(Eo) NU)C EgNV =Ey, F o ¢ agrees with f o ¢ on ¢ “YEp N U. Thus
f o ¢ has an extension F o ¢ from ¢~ (Eg) N U to o ! (Eo) that is in O(Eg). The
quotients that exhibit F og as defined at points of ¢! (Eo) NU exhibit f op as defined
there. The inclusion ¢~ Y(Ey) = 1(Eo nv) = 1(EO) Ne~ vy c 10 1(Eo) nU
shows that f o ¢ is in O(p™! (Eo)). This being true for all P in ¢ I(E), fogisin
O(p~ ' (E)).

12. Part (a) follows by applying instances of Problem 11 to ¢ and ¢~!. Then
(b) follows by another application of Problem 11. Part (c) follows by inductive
application of (b).

13. Let d; be the degree of homogeneity of F;. Then the i row of the right-hand
matrix is A%~ times the i™ row of the left-hand matrix. Hence the dimension of the
span of the rows is the same for the two matrices, and this number is the rank.

14. This comes down to the fact that differentiating withrespectto X for j > Oand
then setting X equal to 1 is the same as setting X equal to 1 and then differentiating
with respect to X ;.

15. For any of the functions F;, the right side of the formula in Euler’s Theorem is 0

at (xo, ..., x,) by assumption. Hence Euler’s Theorem gives xog%(xo, X)) =
_ 27:1 xjg—g(xo, ..., Xp). This says that

n
x0 x 0" column of J(F)(xq, ..., Xx,) = — Y x; x jM column of J(F)(xo, ..., Xn).

j=1

Since xg # 0, this is a relation of the required type.

16. Problem 13 shows that the left side equals rank J(F)(1, x1 /X0, . .., Xn/X0),
which Problem 15 shows to be equal to the rank of the matrix formed from the last n
columns, which Problem 14 shows to be equal to the rank of J ( f) (x1/x0, . . . , Xn/X0).

18. Regard the elements w;; as the entries of a matrix. The given condition is
that every 2-by-2 subdeterminant of this matrix equals 0. The matrix is not 0, and
consequently its rank is 1. Every matrix over k of rank 1 is of the form xy’ for column
vectors x and y, and then [{w;;}] is exhibited as o ([{x;}], [{y;}])-

19. For (a), one suitable monomial ordering is the lexicographic ordering that
takes the elements W;; in the order Woo, Wo1, ..., Wy, with Wy largest. Given a
monomial M’ of total degree d, choose among all monomials of total degree d the
smallest one in the ordering that is congruent to M’ modulo a. Write M = ﬂ a”
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If a;; > O and if there exists (k, [) with! > j, k > i,and ay; > 0, then W;; Wy, divides
M. Write My = M/W,'jWkl. Put M" = M()W,']ij. Since W,'jWkl — W,'[ij is in
a, M” is congruent to M modulo a. In the monomial ordering, all of the elements
Wi, Wii, Wy are smaller than W;;. Therefore M" < M, in contradiction to the
minimality of M.

In (b), let the largest W;; whose exponents in M and M’ are unequal be W ;,. Let
the products of the powers of the strictly larger monomials be N and N’, respectively.
It is enough to prove that o(M/N) # ¢(M’/N’). Then we have

M / N = l_[ Wi‘;i./' — W,'(:%U 1_[ Wi‘;[j
W{_,‘SW,‘O_,'O (i, j) with
i(]<i or
(io=i and jo</)

and a similar expression for M’/N’. The minimality condition says that a;; = 0 if
ip <iand jo < j. Thus

M/N=( TT W) T W) = (Teio Thizjo Wit ) (Tisjo Wiet')-

io<i, jo>j io=i, jo<j

aj, ai,
and 9M/N) = (TTiiy [Ti<jo X&' Y™) (T4, XiOOIYI ”).

On the right side each pair of indices (k, /) occurs at most once. Thus an equality
@(M/N) = ¢(M'/N’) would imply that ay; = by; for every (k, I). This proves (b).

In (c), we know that a C ker ¢. If equality fails, then there is a linear combination
>, ¢ M, of monomials in ker ¢ that is not in a. Applying (a), we may assume that
each M, is reduced. Then ), c,¢(M,) = 0. Each ¢(M,) is a monomial, and (b)
shows that the various monomials ¢ (M, ) are distinct. Since the set of monomials is
linearly independent, each ¢, is 0. Therefore >, ¢, M, = 0, contradiction.

20. For (a), compute the kernel of the natural substitution homomorphism of
k[ Xo, ..., Xm, Yo, ..., Y,] into R[Yy, ..., Y,]. For (b), let P = [yo, y1,.-., Ynl,
p = IWU) € k[Xo,...,X], and q = T({P} < k[Yp,...,Y,]. The inside
homomorphism has kernel a by Problem 19. The outside homomorphism takes
Xo, ..., X,y into R and takes each Y; to y; Z, where Z is an indeterminate; its kernel
is isomorphic to pg. The kernel of the compositionis I (o (U x {P})), which is prime
because R[Z] is an integral domain.

21. See Fulton’s book, page 145.

22. See Fulton’s book, page 146.

23. For (a), Proposition 10.9 shows that I (V (1)) = (h(X, Y)) for an irreducible
polynomial £ if dim V (I) = 1. The containment I C I(V (1)) shows that each f;
has to be of the form f; = a;h for some a; ink[X, Y]. Since f; and 4 are irreducible,
a;j has to be a scalar. Thus I = (h(X,Y)), and [ is prime. For (b), one can take
I = (Y + X2, Y — X?), which has V(1) = {(0, 0)} and which is not prime because
it contains X2 but not X.
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24. Let {g1, ..., g} be a minimal Grobner basis, and suppose that g; = abisa
nontrivial factorization of g; ink[X1, ..., X, ]. Since I is prime, we may assume that
aliesin I. ThenLM(g;) = LM(a) LM(b), and LM(a) lies in LT(J). Since {g1, ..., g}
is a Grobner basis, LM(a) lies in the monomial ideal (LM(gy), ...,LM(gs)). By
Lemma 8.17,LM(g;) divides LM(a) for some i. It follows that LM(g;) divides LM(g;).
Since the Grobner basis is minimal, i = j. That is, LM(g;) = LM(a) = LM(g)).
Thus LM(b) = 1, in contradiction to the assumption that the factorization of g; is
nontrivial.

25. Identify ay1 X2 + 2a12 XY + an¥? 4+ 2a13XZ + 2a»3Y Z + a33Z* with the
symmetric matrix
ap ap a3
A= (alz an 1123) .
a3 a3 ass
By the Principal Axis Theorem choose an invertible matrix M such that A’ = M'AM

X' X

is diagonal. Put < Y’ ) = M! < Y ) and substitute. Then the given quadratic
VA z

polynomial equals « X’ 2 4+ BY'? + y Z'2, where «, S8, y are the diagonal entries of

A'. If aBy = 0, this is reducible; it is readily checked to be irreducible if «By # 0.

Since afy = det A’ = (det M)? det A, the reducible polynomials correspond to the

affine hypersurface on which det A = 0.

26. The first conclusion is a special case of Corollary 9.19. Then take x to be a
nonconstant member of L(2vp), and take y to be a member of L(3vp) not in the
linear span of {1, x}. Corollary 9.22 shows that (x)o, = 2, and then the equality
(¥)oo = 3 follows from the definitions.

27. These are special cases of Theorem 9.3.

28. Since 2 = [k(E) : k(x)] = [k(E) : k(x, y)][k(x, y) : k(x)], the integer
[k(E) : k(x, y)] divides 2. The corresponding equality with 3 and k(y) shows that
[k(E) : k(x, y)] divides 3. Therefore [k(E) : k(x, y)] = 1.

29. The values of vp on the seven listed members of k(E) are 0, 2, 3,4, 5, 6, 6,
respectively. The members are all in L(6vo), which has dimension 6 by Problem 28,
and thus the listed members are linearly dependent. If y? or x> does not contribute
to this dependence, then v takes distinct values on the remaining six members of
L(6vp), and Problem 19a at the end of Chapter VI gives a contradiction. Hence the
coefficients b and ¢ of y? and x3, respectively, are nonzero. If x and y are replaced by
—bcx and bc? y and if the linear combination of terms is then divided by b3c*, then
the linear dependence takes the form (y2 +ajxy+azx)— 3+ arx?+asx+ag) =0,
as required. Hence ¢ carries E — {0} into C N A2,

30. Certainly f(X, Y) is not divisible by any nonconstant polynomial in X. Thus
the only possible reducibility is of the form f(X,Y) = (Y 4+ p(X)(Y + g(X)).
Expanding out the right side shows that

pX)+q(X) =a1X +as,
P(X)g(X) = —(X> 4+ arX? + as X + ag).



712 Hints for Solutions of Problems

The second equation shows that at least one of p(X) and ¢(X) has degree > 1, and
then the first equation shows that deg p(X) = degq(X). But this equality would
mean that deg p(X)q(X) is even, contradiction. Hence f (X, Y) is irreducible.

31. The function ¢ is a morphism of E — {0} into C N A% by Lemma 10.39, and
the composition with By is a morphism into P?>. Then ¢ is a morphism of E — {0}
into C by Problem 11. The class of (E — {O}, ¢) is therefore a rational map of E
into C, and Corollary 10.54 shows that ¢ extends to a morphism ® : £ — C.

32. Let @ : k(C) — k(FE) be the field mapping that corresponds to & under
Theorem 10.45. The field k(C) is generated by the functions xo and yy that pick
out the coordinates of points of C N A%, and Theorem 10.45 shows that CD(xo)
(class of xg o ¢). For P in E — {0}, this has CD(xo)(P) = xo(p(P)) = x(P), i.e.,
CD(xo) = x. Similarly <I>(y0) = y. Therefore CD(k(C)) = k(x, y). By Problem 28,
® is onto k(E). By Corollary 10.46, ® is birational.

33. The homogeneous polynomial of degree 3 from which f (X, Y) arises is
FX,Y,W)=Y*W+a XYW +a3YW?) — (X° + &2 X*W + asXW? + agW?).

The points of C on the line at infinity arise by setting W = 0 and F(X, Y, W) =
0 simultaneously, and the only such point is [0, 1,0]. Computation shows that
M(O 1,0) = 1. Consequently [0, 1, 0] is a nonsingular point of C.

34. A pomt (x0, yo) In A? is a singular point of C if and only if f(xo, yo) =
X(xo o) = dy(xo yo) = 0. At (x9, yo), computation shows that

Pf _op B _ g

2f _ a?f
axz = —0X —2a, iy =ai, 3xs =

Xz —
All higher-order derivatives are 0. Application of Taylor’s formula about (xo, yo)
therefore gives

FX,Y) = (=3x0 — a2)(X — x0)> + a1 (X —x0)(Y — yo) + (¥ — y0)* — (X — x0)".
We put X = x and Y = y, taking into account that f(x, y) = 0. After division by
(x — x0)2, the result is that
((y = y0) & = x0) ™) +a1(y — yo)(x — x0) ™" = (Bx0 + a2) + (x — x0).
That is, z> + ajz = (3x0 4+ a2) + (x — xo). Suppose that P is in E — {O} and that
vp(z) < 0. Then we have vp(z + aj) < 0 and
0 < vp((Bxo + a2) + (x — x0)) = vp(z* +a1z) = vp(z) +vp(z +ar) <0,

contradiction. Therefore vp(z) > 0. Meanwhile, vo(x — x9) = vo(x) = —2 and
vo(y — yo) = vo(y) = —3. Hence vp(z) = (=3) — (=2) = —

35. Corollary 9.22 shows that no member of k(E) has the properties of z found
in Problem 34. Thus C is nonsingular at every (xp, ¥o). In combination with Prob-
lem 33, this shows that C is everywhere nonsingular. By Corollary 10.55, ® is an
isomorphism.



