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PREFACE

This book is a sequel to the author’s Basic Real Analysis, which systematically
developed concepts and tools in real analysis that are vital to everymathematician,
whether pure or applied, aspiring or established. The intention was that it and
its companion volume, Advanced Real Analysis, together would contain what the
young mathematician needs to know about real analysis in order to communicate
well with colleagues in all branches of mathematics.
The first editions of these books consciously omitted a few topics, the most

notable of which were advanced topics in the calculus of several real variables,
particularly the integration theorems that relate an integral over a region or
surface to an integral over the boundary. These integration theorems go under the
general name “Stokes’s Theorem” because of the history that will be explained
in the Introduction, and they too are tools in real analysis that are vital to every
mathematician.
This book aims to treat that topic. Actually the digital second edition of

Basic Real Analysis dealt with low dimensional aspects of the topic somewhat by
addressing arc length, line integrals, and Green’s Theorem in the plane in Chapter
III. The spirit of the treatment of thesematterswas the same as the treatment in that
book of Riemann integration in one and several variables, careful and thorough,
the expectation being that the reader had earlier seen this material presented in a
utilitarian fashion. When it comes to surface integrals, however, the method used
for addressing arc length breaks down, as was shown toward the end of Section
III.13 of Basic Real Analysis. Unlike the length of a curve, the area of a surface
cannot be defined as the supremeum of some obvious inscribed approximations,
and a different approach to the whole subject is needed.
Thedifferent approach thatwe follow is to usematerial that lies at the beginning

of the study of both differentiable topology and algebraic topology. The material
in question is the topic of differential forms, including integration of differential
forms. The spirit of the treatment is quite different from that of Basic Real
Analysis, andChapter I of the present book takes some time to develop differential
forms and tools for working with them.
By way of prerequisites, this book relies in part on some real analysis that

is treated in Chapters III, V, VI, and X of Basic Real Analysis. In addition,
it makes use of elementary linear algebra and a certain amount of multilinear
algebra that can be found in the author’sBasic Algebra, Chapter VI, Sections 1–7.

vii



viii Preface

The key theorems that are needed from real analysis are the Inverse and Implicit
FunctionTheorems and the change-of-variables formula for theLebesgue integral
in Euclidean space. The Riemann integral could be used in place of the Lebesgue
integral in most circumstances, but at a cost of making certain statements more
cumbersome. The key thing that is needed from algebra is some familiarity with
the tensor algebra of a real finite dimensional vector space.
A philosophical problem arises in finding the right setting for the integration

theorems that are collectively known as Stokes’s Theorem and that relate an
integral over a region or surface to a integral over the boundary. The integration
theorems are most transparent when the sets of integration are rectangular, and
we indicate the simple idea in the Introduction. On the other hand, the proofs are
most natural when the sets and functions are smooth, as they are for a circle or a
ball. Rectangular sets are not smooth. The setting in which the sets and functions
are smooth is that of “manifolds-with-boundary,” which are defined in Chapter II
of the present book. To handle both settings at the same time—rectangular sets
and smooth manifolds-with-boundary—the traditional approach is to break the
sets of integration into pieces by some kind of triangulation or other cutting of
regions into parts. Then one establishes Stokes’s Theorem for each piece and
adds the results. Pedagogically this approach is unsatisfactory.
Amoremodern approach is to use “manifolds-with-corners,” which are defined

and used in the first half of Chapter III. Manifolds-with-corners handle a great
many caseswithout any cutting of regions into pieces, but they are still insufficient
to handle all cases of practical interest without additional effort. The second half
of Chapter III treats Stokes’s Theorem in a still broader context due to Hassler
Whitney. Whitney worked with what he called “standard manifolds” but which
are more aptly called “Whitney manifolds.” Whitney manifolds do indeed handle
all cases of practical interest.

Some years ago, aware of the tension between the two standard approaches
to Stokes’s Theorem via rectangular sets and smooth manifolds, I asked my
colleague Blaine Lawson whether one could now finally give a satisfactory
exposition of the theorem. At that time he introduced me to manifolds-with-
corners and explained to me how one could often use them to avoid the traditional
cutting ofmanifolds into concrete pieces. The resulting situation, although better,
was still not satisfactory in my view.
More recently, to help cope with restrictions because of the COVID-19

pandemic, I decided to look at the matter again. Libraries were closed. But
during my online reading I encountered Whitney’s book Geometric Integration
Theory, which proves a version of Stokes’s Theorem that seems to handle all
examples of practical interestwithout any need at all to cutmanifolds into concrete
pieces. In response to emailed questions about some passages inWhitney’s book,
my colleague Chris Bishop introduced me to various notions of dimension and



Preface ix

explained to me the relationships among them, pointing to his book Fractals in
Probability and Analysis written with Yuval Perez for some of the details. I am
grateful to both colleagues for sharing information with me.

The problems at the ends of chapters are an important part of the book. Some
of them are really theorems, some are significant examples, and a few are just
exercises. The reader gets no indication which problems are of which type, nor
of which ones are relatively easy. Each problem except perhaps the last one can
be solved with tools developed up to that point in the book, plus any additional
prerequisites that are noted. Detailed hints appear at the end of the book.
The typesetting was by AMS-TEX, and the figures were drawn with help from

Mathematica.
I invite corrections and other comments from readers. I plan to maintain a list

of known corrections on my own Web page.
A. W. KNAPP

November 2020



INTRODUCTION

Stokes’s Theorem is a generalization of the Fundamental Theorem of Calculus
from one dimension to higher dimensions. In an easy formulation the Funda-
mental Theorem of Calculus says that

Z b

a
F 0(x) dx = F(b) − F(a)

on the closed interval [a, b] if F is a real-valued function with a continuous
derivative F 0. In thinking how to generalize this theorem while keeping the
ideas clear, we shall not be looking for the best possible hypotheses and will be
content with assuming in the statement merely that F is smooth (i.e., infinitely
differentiable). At any rate the formula relates the integral of the derivative of F
over an interval to a linear combination of the values of F at the endpoints.
We encountered two qualitatively similar results in Chapter III of Basic Real

Analysis, as follows:

(1) One such result was the formula in Proposition 3.47 for the line integral
of the gradient of a smooth function over a smooth curve ∞ in Rn with domain
[a, b], namely Z

∞

∇ f · ds = f (∞ (b)) − f (∞ (a)).

Again the formula relates an integral of a derivative of f over a curve to a linear
combination of the values of f at the endpoints of the curve.
(2) The other such result was the formula in Section III.13 concerning Green’s

Theorem in the plane, namely
ZZ

U

≥@Q
@x

−
@P
@y

¥
dx dy =

Z

∞

P dx + Q dy.

Here U is a region in R2, the curve ∞ traces out its boundary with the region
on the left, and U and ∞ are assumed to be suitably nice. This formula involves
a two-component real-valued function with entries P and Q, and it relates an
integral over the region involving first derivatives of P and Q to an integral over
the boundary of the values of P and Q.

x
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The first of these results is simply a matter of applying the Fundamental
Theorem of Calculus component by component, and it is not mysterious.
Let us consider Green’s Theorem in more detail. The idea behind the theorem

is clearest for the special case thatU is a rectanglewith sides parallel to the axes, a
case that was considered in Example 1 of Section III.13 ofBasic Real Analysis. In
that caseTheorem3.49 is proved by considering P andQ separately. To handle P ,
one applies the Fundamental Theorem of Calculus in the x variable and integrates
the result in the y variable; to handle Q, one applies the Fundamental Theorem
of Calculus in the y variable and integrates the result in the x variable.
Unfortunately the style of proof that works well for a rectangle already runs

into technical problems if one tries to prove the theorem for a closed disk in R2.
Example 2 in Section III.13 of Basic Real Analysis gives the details. There are
two technical problems—(a) the need to impose new parametrizations on a curve
and see that its line integrals are unchanged and (b) the need to use Lebesgue
integration or some other device to cope with unbounded integrands. Example 3
in Section III.13 shows that for a washer (or annulus) in R2, further difficulties
arise, and the argument uses a decomposition of the region into a number of
parts. For a more complicated region, the corresponding decomposition may be
expected to be more difficult to describe, and it is not at all apparent how to make
a general argument.

Classical treatments of calculus in three variables, or particularly of what is
sometimes given the more advanced-sounding name vector analysis, discuss two
further theorems of this kind, known respectively as the Divergence Theorem (or
the Gauss–Ostrogradsky Theorem) and the Kelvin–Stokes Theorem (or simply
Stokes’s Theorem).
The Divergence Theorem inR3 concerns a solid bounded regionU inR3 with

a 2 dimensional boundary @U . In classical notation it says that
ZZZ

U

≥@P
@x

+
@Q
@y

+
@R
@z

¥
dx dy dz =

ZZ

@U
P dy∧dz+Q dz∧dx+R dx∧dy.

Evaluation of a term on the right side involves parametrizing the surface in
(x, y, z) space by parameters s and t , and then dy ∧ dz, dz ∧ dx , and dx ∧ dy
are given formally by substituting the product of a two-by-two determinant times
ds dt , specifically

dy ∧ dz =
@(y, z)
@(s, t)

ds dt, dz ∧ dx =
@(z, x)
@(s, t)

ds dt, dx ∧ dy =
@(x, y)
@(s, t)

,

and carrying out the double integrations. Some important questions concerning
orientations and signs need to be sorted out, but we skip over those for the time
being.
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In the case that U is a rectangular solid with faces parallel to the axes, the
formula can be verified one term at a time by using the Fundamental Theorem
of Calculus in the differentiated variable and then integrating in the other two
variables, carefully managing the signs that appear from the integrated terms.
This computation is the expected generalization of the computation in Example 1
of Section III.13 of Basic Real Analysis on Green’s Theorem. For more general
solids U , one can attempt a similar argument after breaking the original integral
into a number of pieces. Once again, it is not at all apparent how to describe such
a decomposition of a complicated region, and thus it is not at all apparent how to
give a general proof of the Divergence Theorem in this style.
TheKelvin–Stokes Theorem,1 sometimes known simply as Stokes’s Theorem,

concerns an oriented 2 dimensional surface S having a 1 dimensional boundary
given by a curve ∞ , the whole manifold plus boundary embedded in R3. The
formula is
ZZ

S

≥@R
@y

−
@Q
@z

¥
dy ∧ dz +

≥@P
@z

−
@R
@x

¥
dz ∧ dx +

≥@Q
@x

−
@P
@y

¥
dx ∧ dy

=
Z

∞

P dx + Q dy + R dz.

When a sketch of proof is given in an elementary text for this theorem in special
cases, it often goes by reducing the theorem to Green’s Theorem in the plane.
When necessary, the surface is cut into pieces and canceling pieces of boundary
curve are adjoined.

From an expository point of view, the whole matter is rather unsatisfactory.
In 1934 the young French mathematicians André Weil and Henri Cartan had
the joint responsibility in Strasbourg for teaching a course on “differential and
integral calculus,” and they consulted each other frequently. In his autobiography
Weil writes of this interaction, saying,2

One point that concerned him [Cartan] was the degree to which we
should generalize Stokes’ formula in our teaching. This formula is
written as follows: Z

b(X)

ω =
Z

X
dω,

1The theorem was discovered by William Thomson (Lord Kelvin) and communicated to Stokes
by letter in 1850.

2André Weil, The Apprenticeship of a Mathematician, Birkhäuser, Basel, 1992, pp. 99-100.
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where ω is a differential form, dω is its derivative, X its domain of
integration, and b(X) the boundary of X . There is nothing difficult
about this if for example X is the infinitely differentiable image of an
oriented sphere and if ω is a form with infinitely differentiable coef-
ficients. Particular cases of this formula appear in classical treatises,
but we were not content to make do with these.

Weil goes on to describe how this interaction led a group of young French math-
ematicians over a period of years to explain systematically much of elementary
mathematics in a series of published books going under the title Eléments de
Mathématique and written with the pseudonym Nicolas Bourbaki.3
Ironically although Bourbaki’s books eventually developed a wide swath of

mathematics rigorously, especially in the 1950s and1960s, they hadnot yet treated
Stokes’s Theorem as of 2018. Possibly the reason was that a suitable framework,
conveniently handling all shapes of interest at once, was not developed until well
after World War II. Let us elaborate somewhat on the history.

Building on his own work frommuch earlier and on some work of H. Poincaré
and E. Goursat, Elie Cartan4 had brought a degree of unity to the subject by
showing that Green’s Theorem, the Divergence Theorem, and the Kelvin–Stokes
Theorem were really special cases of the same general theorem. In a course
in 1936–1937, whose notes were published as a book in 1945, he showed how
to view all three classical theorems as instances of a result about “differential
forms” and “exterior differentiation,” the unifying formula being the one in the
quotation above fromWeil’s book. Moreover, the theory, which dealtwith smooth
“manifolds-with-boundary,” was not limited to cases in R3, and the final proof
took little more than a couple of pages. The cost of having such a tidy final result
for smooth manifolds-with-boundarywas that the hard work was transferred into
the definitions and verifications necessary to set up the theory. The 1965 book
by M. Spivak, Calculus on Manifolds, proves Stokes’s Theorem just for smooth
manifolds-with-boundary,5 it does so in exactly this way, and it makes the point
that the difficulty occurs in setting up the theory. We shall see this cost first hand
in the present book in that all of Chapter I and part of Chapter II are devoted to
setting up the theory.
In practical applications unfortunately, physicists and engineers need a version

of Stokes’s Theorem that holds for rectangular sets and other polyhedral sets, as
3Although the original six members of the Bourbaki group were all French, mathematicians of

other nationalities joined the group later. Members were expected to retire from the group about at
age 50.

4Father of Henri.
5In Spivak’s book the manifolds-with-boundary are always embedded in some Euclidean space

for the sake of concreteness, but working in such a setting merely adds one unnecessary parameter
to the mix and obscures the simplicity of the final formula.
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well as for smooth manifolds-with-boundary. This is the matter that concerned
H. Cartan in the quotation above. Even as late as the 1950s, rectangular solids and
polyhedral sets were best treated directly, essentially by cutting the set into pieces
and making an explicit calculation for each piece, while round shapes were best
treated as manifolds-with-boundary to which E. Cartan’s theory could be applied
directly.
In 1961 J. Cerf and A. Douady introduced smooth “manifolds-with-corners,”

which included solid balls and also rectangular solids. In other words, smooth
manifolds-with-corners offered a step toward further unifying the treatment of
Stokes’s Theorem. The present book will give a proof of Stokes’s Theorem for
smooth manifolds-with-corners in Sections 1–3 of Chapter III. The argument is
really no harder than the argument for smooth manifolds-with-boundary, and one
can perhaps regard the setting of manifolds-with-corners as giving a sufficient
answer to H. Cartan’s question about pedagogy.
It may be a sufficient answer, but it is not completely satisfactory. The corners

in the theory of smooth manifolds-with-corners turn out to be of really limited
scope. In R3, for example, when three planes come together at a point, the result
is a corner in the sense of the theory, but when four planes come together at a
point, the resulting intersection point no longer fits the theory. Thus, for example,
the theory applies to a tetrahedron in R3 but not to a square pyramid.
It turns out that there is a more all-encompassing theory, and it was already

known by 1960. Hassler Whitney developed the theory and published it in a
book in 1957. The present book concludes Chapter III with the relevant parts
of Whitney’s theory. Qualitatively Whitney’s theory looks at a manifold and
boundary and divides the boundary into two sets. One set consists of nice points
like those in the E. Cartan theory of smooth manifolds-with-boundary. The
other set consists of exceptional points. Whitney’s theorem is that if the set of
exceptional points is small in a certain precise sense, then everything is fine and
the Stokes formula is valid. The theorem handles all smooth manifolds-with-
corners. In fact, the theorem appears to handle all situations that might be of
interest to physicists and engineers, as well as all those that are of interest to most
mathematicians. The proof still takes only a few pages, with its complications
concealed in the definitions. One cannot ask for more.
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