
Chapter 10 

PARALLEL POSTULATES

[Euclid’s Fifth Postulate] ought to be struck from the postulates altogether. For it is a theorem 

— one that invites many questions ... — and requires for its demonstration a number of 

definitions as well as theorems. ... it lacks the special character of a postulate. 

— Proclus (Greek, 410–485) [AT: Proclus], p. 151 

PARALLEL LINES ON THE PLANE ARE SPECIAL 

Up to this point we have not had to assume anything about parallel (non-intersecting) lines. 

No version of a parallel postulate has been necessary, on the plane, on a sphere, or on a 

hyperbolic plane. We defined the concrete notion of parallel transport and proved in 

Problem 8.2 that, on the plane (and hyperbolic planes), parallel transported lines do not 

intersect. Now in this chapter we will look at three important properties on the plane that 

require further assumptions and that will be needed in later chapters. If you are willing to 

assume these three statements, you may skip this chapter, but we urge you at least to read 

them. 

If two lines on the plane are parallel transports of each other along some 

transversal, then they are parallel transports along any transversal. (Contained in 

Problem 10.1) 

On the plane, the sum of the interior angles of a triangle is always 180°. 

(Contained in Problem 7.3b or Problem 10.2) 

On the plane, non-intersecting lines are parallel transports along all transversals. 

(Contained in Problem 10.3d) 
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We have already seen that none of these properties is true on a sphere or a hyperbolic 

plane. Thus, all three need for their proofs some property of the plane that does not hold 

on spheres and hyperbolic planes. The various properties that permit proofs of these three 

statements are collectively termed the Parallel Postulates. 

Only the three statements above are needed from this chapter for the rest of the book. 

Therefore, it is possible to omit this chapter and assume one of the above three statements 

and then prove the others. However, parallel postulates have a historical importance and a 

central position in many geometry textbooks and in many expositions about non-Euclidean 

geometries. The problems in this chapter are an attempt to help people unravel and enhance 

their understanding of parallel postulates. Comparing situations on the plane with situations 

on a sphere and on a hyperbolic plane is a powerful tool for unearthing our hidden 

assumptions and misconceptions about the notion of “parallel” on the plane. 

As we discussed already in Chapter 8, because we have so many (often unconscious) 

connotations and assumptions attached to the word “parallel,” we find it best to avoid using 

the term “parallel” as much as possible in this discussion. Instead we will use terms such 

as “parallel transport,” “non-intersecting,” and “equidistant,” which make explicit the 

meaning that is intended. 

PROBLEM 10.1 PARALLEL TRANSPORT ON THE PLANE 

Show that if l1 and l2 are lines on the plane such that they are parallel transports 

along a transversal l, then they are parallel transports along any transversal. Prove 

this using any assumptions you find necessary. Make as few assumptions as you can 

and make them as simple as possible. Be sure to state your assumptions clearly. 

What part of your proof does not work on a sphere or on a hyperbolic plane? 

SUGGESTIONS 

This problem is by no means as trivial as it at first may appear. In order to prove this 

theorem, you will have to assume something — there are many possible assumptions, use 

your imagination. But at the same time, try not to assume any more than is necessary. If 

you are having trouble deciding what to assume, try to solve the problem in a way that 

seems natural to you and then see what develops while making explicit any assumptions 

you are using. 

On spheres and hyperbolic planes, try the same construction and proof you used for 

the plane. What happens? You should find that your proof does not work on these surfaces. 

What is it about your proof (on a sphere and hyperbolic plane) that creates difficulties? 

Problem 10.1 emphasizes the differences between parallelism on the plane and 

parallelism on spheres and hyperbolic planes. On the plane, non-intersecting lines exist, 

and one can “parallel transport” everywhere. Yet, as was seen in Problems 8.2 and 8.3, on 

spheres and hyperbolic planes two lines are cut at congruent angles if and only if the 
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transversal line goes through the center of symmetry formed by the two lines. That is, on 

spheres and hyperbolic planes two lines are parallel transports only when they can be 

parallel transported through the center of symmetry formed by them. Be sure to draw a 

picture locating the center of symmetry and the transversal. On spheres and hyperbolic 

planes it is impossible to slide the transversal along two parallel transported lines while 

keeping both angles constant (something you can do on the plane). In Figures 10.1, the line 

r' is a parallel transport of line r along line l, but it is not a parallel transport of r along l. 

Figure 10.1a Parallel transport on a hyperbolic plane along l but not along l 

Figure 10.1b Parallel transport on a sphere along l, but not along l' 

Pause, explore, and write out your ideas before reading further. 

We will now divide parallel postulates into three groups: those involving mostly 

parallel transport, those involving mostly equidistance, and those involving mostly 

intersecting or non-intersecting lines. This division is useful even though it is rough and 

unlikely to fit every conceivable parallel postulate. Which of these three groups is the most 

appropriate for your assumption from Problem 10.1? We will call the assumption you 

made in Problem 10.1 “your parallel postulate.” 
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PROBLEM 10.2 PARALLEL POSTULATES NOT INVOLVING 

    (NON-)INTERSECTING LINES 
 

Commonly used postulates of this sort are 

 

 H = 0: The holonomy of triangles is zero. 

 

 A = 180: The sum of the angles of a triangle is equal to 180 . 
 

 PT!: If two lines are parallel transports (PT) along one line then they are PT  

  along ALL transversals. 

 

Note that these are false on spheres and on hyperbolic planes. The last two properties (A = 

180 and PT!) will be needed crucially in almost all the remaining chapters (and you may 

have already used one of them in Problem 9.4). These properties are needed to study (on 

the plane) parallelograms, rectangles, and similar triangles (Chapters 12 and 13), circles 

and inversion (Chapters 15 and 16), projections of spheres and hyperbolic planes onto the 

Euclidean plane (Chapters 14 and 17), Euclidean manifolds (Chapters 18 and 24), solutions 

to quadratic and cubic equations (Chapter 19), trigonometry (Chapter 20), and polyhedra 

in 3-space (Chapter 23). It is these properties and their uses that we most often associate 

with consequences of the parallel postulates. 

 In Problem 7.3b we proved A = 180 on the plane, so we can 

 

a. Ask what assumption about the plane was used in proving 7.3b. 

 

b. Use A = 180 to prove PT!. 

Look first at transversals that intersect the line along which the two lines are parallel 

transports. 

 

c. Using PT! (Problem 10.1), prove A = 180 without using results from Chapter 7. 

Start by parallel transporting one side of the triangle. 

 

d. Show that, on the plane, H = 0  A = 180  PT!. If your postulate from 10.1 is in 

this group, then show that it is also equivalent to the others. 

This is usually accomplished most efficiently by proving H = 0  A = 180  PT!  Your 

Postulate  H = 0, or in any other order. 

 

e. Prove that, on the plane, two parallel transported lines are equidistant. 

 

Look for rectangles or parallelograms. 
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EQUIDISTANT CURVES ON SPHERES AND HYPERBOLIC PLANES 

The latitude circles on the earth are sometimes called “parallels of latitude.” They are 

parallel in the sense that they are everywhere equidistant as are concentric circles on the 

plane. In general, transversals do not cut equidistant circles at congruent angles. However, 

there is one important case where transversals do cut the circles at congruent angles. Let l 

and l be latitude circles the same distance from the equator on opposite sides of it. See 

Figure 10.2. Then every point on the equator is a center of half-turn symmetry for these 

pair of latitudes. Thus, as in Problems 8.3 and 10.1, every transversal cuts these latitude 

circles in congruent angles, even though these latitude circles are not geodesics. In the first 

section of Chapter 2 we noted that Euclid, in his Phenomena, discussed such equidistant 

circles. 

 

Figure 10.2 Special equidistant circles 

The same ideas work on a hyperbolic plane: If g is a geodesic and l and l' are the (two) 

curves (not geodesics) that are a distance d from g, then l and l' are equidistant from each 

other and every transversal cuts them at congruent angles. This follows from the fact that 

g has half-turn symmetry at every point. 

 

PROBLEM 10.3 PARALLEL POSTULATES INVOLVING   

    (NON-)INTERSECTING LINES 

One of Euclid’s assumptions constitutes Euclid’s Fifth (or Parallel) Postulate (EFP), 

which says 

 EFP: If a straight line intersecting two straight lines makes the interior angles on  

           the same side less than two right angles, then the two lines (if extended  

           indefinitely) will meet on that side on which are the angles less than two       

           right angles. 

For a picture of EFP, see Figure 10.3. 
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Figure 10.3 Euclid’s Parallel Postulate 

You probably did not assume EFP in your proof of Problem 10.1. You are in good company 

— many mathematicians, including Euclid, have tried to avoid using it as much as possible. 

However, we will explore EFP because, historically, it is important, and because it has 

some very interesting properties, as you will see in Problem 10.3. On a sphere, all straight 

lines intersect twice, which means that EFP is trivially true on a sphere. But in Problem 

10.4, you will show that EFP is also true in a stronger sense on spheres. You will also be 

able to prove that EFP is false on a hyperbolic plane. 

 Thus, EFP does not have to be assumed on a sphere — it can be proved! However, 

in most high school geometry textbooks, EFP is replaced by another postulate, claimed to 

be equivalent to EFP. This postulate we will call the High School Parallel Postulate 

(HSP), and it can be expressed in the following way: 

 HSP: For every line l and every point P not on l, there is a unique line l' that  

  passes through P and does not intersect (is parallel to) l. 

 

Figure 10.4 High School Parallel Postulate 

In many books the HSP is called “Playfair’s Parallel Postulate”, but this is an inappropriate 

name, as we will show in the historical notes in the last two sections of this chapter. 

 Note that, because any two great circles on a sphere intersect, there are no lines l' 

that are parallel to l in the “not intersecting” sense. Therefore, HSP is not true on spheres. 

On the other hand, if we change “parallel” to “parallel transport” then every great circle 

through P is a parallel transport of l along some transversal. What happens on a hyperbolic 

plane? In Problem 10.3, you will explore the relationships among EFP, HSP, and your 

postulate from Problem 10.1. In Problem 10.4 we will explore these postulates on spheres 

and hyperbolic planes. 
 

a. Show that, on the plane, EFP and HSP are equivalent. If your postulate from 10.1 

is in this group, is it equivalent to the others? Why or why not? 
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To show that EFP and HSP are equivalent on the plane, you need to show that you can 

prove EFP if you assume HSP and vice versa. If the three postulates are equivalent, then 

you can prove the equivalence by showing that EFP  HSP  Your Postulate  EFP or 

in any other order. It will probably help you to draw lots of pictures of what is going on. 

Also, remember that we proved in Problem 8.2 (without using any parallel postulate) that 

parallel (non-intersecting) lines exist. Note that HSP is not true on a sphere but EFP is 

true, so your proof that EFP implies HSP on the plane must use some property of the plane 

that does not hold on a sphere. Look for it. 

b. Prove that either EFP or HSP can be used to prove (without using 10.1 or 7.3b)

one of H = 0, A = 180, or PT!. (It does not matter which. Why?)

So, are all these postulates equivalent to each other on the plane? The answer is almost, but 

not quite! In order for A = 180 (or H = 0 or PT!) to imply EFP (or HSP), we have to make 

an additional assumption, the Archimedean Postulate (AP) (in some books this is called 

the Axiom of Continuity), named after the Greek mathematician, Archimedes (who lived in 

Sicily, 287?–212 B.C.): 

AP: On a line, if the segment AB is less than (contained in) the segment AC, then 

        there is a finite  (positive) integer, n, such that, if we put n copies of AB end-to-

         end (see Figure 10.5), then the nth copy will contain the point C. 

Figure 10.5 The Archimedean Postulate 

The Archimedean Postulate can also be interpreted to rule out the existence of 

infinitesimal lengths. The reason these postulates are “almost but not quite” equivalent to 

each other on the plane is that, though AP is needed, it is assumed by most people to be 

true on the plane, spheres, and hyperbolic planes. But this is the first time we have needed 

this assumption in this book.  

c. Show that, on the plane, AP and A = 180 imply EFP.

Look at the situation of EFP, which we redraw in Figure 10.6. Pick a sequence of equally 

spaced points A, A, A,... on n (on the side of the angle ). Next, parallel transport l along 

m to lines l, l,... that intersect n at the points A, A,... . And parallel transport m along l 

to m, m,..., which also intersect n at the points A, A,... . Look for congruent angles and 

congruent triangles. Use AP to argue that n and m will eventually intersect. 
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Figure 10.6 AP and A = 180 imply EFP 

Clearly, this proof feels different from the other proofs in this chapter. And, as 

already pointed out, most of the applications in this book of parallel postulates only need 

A = 180 and PT!. Is it possible for us not to bother with EFP and HSP? Or are they needed? 

Yes, we need them, but only in a few places, such as in Problem 11.3, where what we need 

to know is 

d. Prove using EFP: On the plane, non-intersecting lines are parallel transports

along every  transversal. 

Compare with EFP.

PROBLEM 10.4  EFP; HSP ON SPHERE AND HYPERBOLIC PLANE 

a. Show that EFP is true on a sphere in a strong sense; that is, if lines l and l are cut

by a transversal t such that the sum of the interior angles  +  on one side is less

than two right angles, then not only do l and l intersect, but they also intersect

closest to t on the side of  and . You will have to determine an appropriate

meaning for “closest.”

To help visualize the postulates, draw these “parallels” on an actual sphere. There are really 

two parts in this proof — first, you must come up with a definition of “closest,” and then 

prove that EFP is true for this definition. The two parts may come about simultaneously 

as you come up with a proof. This problem is closely related to Euclid’s Exterior Angle 

Theorem but can also be proved without using EEAT. One case that you should look at 

specifically is pictured in Figure 10.7. It is not necessarily obvious how to define the 

“closest” intersection. 

Figure 10.7 Is EFP true on a sphere? 

m' 

m'' 

m''' 

A' 

A'' 

l' l'' 

B  
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b. On a hyperbolic plane let l be a geodesic and let P be a point not on l; then show 

that there is an angle  with the property that any line l passing through P is 

parallel to (not intersecting) l if the line l does not form an angle less than  with 

the line from P that is perpendicular to l (Figure 10.8). 
 

 

Figure 10.8 Multiple parallels on a hyperbolic plane 

Look at a variable line through P that does intersect l and then look at what happens as you 

move the intersection point out to infinity. 

c. Using the notion of parallel transport, change the High School Postulate so that the 

changed postulate is true on both spheres and hyperbolic planes. Make as few 

alterations as possible and keep some form of uniqueness. 

Try to limit your alterations so that the new postulate preserves the spirit of the old one. 

You can draw ideas from any of the previous problems to obtain suitable modifications. 

Prove that your modified versions of the postulate are true on spheres and hyperbolic 

planes. 

d. Either prove your postulate from Problem 10.1 on a sphere and on a hyperbolic 

plane or change it, with as few alterations as possible, so that it is true on these 

surfaces. You may need to make different changes for the two surfaces. 

In Problem 10.1 you should have decided whether or not your postulate is true on spheres 

or on hyperbolic spaces. 

COMPARISONS OF PLANE, SPHERES, AND HYPERBOLIC PLANES 

Figure 10.9 is an attempt to represent the relationships among parallel transport, non-

intersecting lines, EFP, and HSP. Can you fit your postulate into the diagram? The High 

School Postulate (HSP) assumes both the existence and uniqueness of parallel lines. In 

Problem 8.2, you proved that if one line is a parallel transport of another, then the lines do 

not intersect on the plane or on a hyperbolic plane. Thus, it is not necessary to assume the 

existence of parallel lines (non-intersecting lines) on the plane or hyperbolic plane. On a 

sphere any two lines intersect. However, in Problem 8.4 we saw that there are non-

intersecting lines that are not parallel transports of each other on a hyperbolic plane and on 

any cone with cone angle larger than 360. 

any geodesic through P in this 
this 

region does not intersect l 

  
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always intersect 2.1 

 are parallel transports are parallel transports along any transversal that 
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lines transversals10.1 

  

  

 are parallel transports sometimes are 

not parallel transports 

8.4b 

do not exist 

2.1 

 

Non- intersecting lines along all 

 transversals 10.3d 

  
  

Euclid’s 5th Postulate must be assumed 

Chapter 10 

is false 

8.4b 
is provable in a strong 

sense 

10.4a 

 a unique line many lines No 

non-intersecting lines 

2.1 
High School through a point through a point 

Parallel not intersecting not intersecting 

Postulate a given line a given line 
 10.3 10.4b 

Your postulate from 10.1    

Two points determine a unique line and line segment 

6.1d 

at least two line 

segments 

6.1d 
Sum of the angles of a triangle = 180 

7.3b & 10.2 
< 180 

7.1 
> 180 

7.2 

Holonomy = 0 < 0 > 0 

10.2 7.4 7.4 

VAT & ITT are always true, 3.2 & 6.2 

SAS, ASA, 

and SSS 
hold for all triangles 

6.4, 6.5, & 9.1 
hold for small triangles 

6.4, 6.5, & 9.1 

AAA 

 

is false, 9.4, similar 

triangles 
is true, 9.4, 

no similar triangles 

 

Figure 10.9 Comparisons of the three geometries 
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PARALLEL POSTULATES WITHIN THE BUILDING  

STRUCTURES STRAND 
 

Basalt pebbles with perpendicular and parallel lines in the title picture of this chapter are  

from Neolithic period, late 7th millennium B.C.! We cannot know what was puzzling a  

human who engraved those lines but we do know that the problem of parallels puzzled  

Greek geometers (see the quote at the beginning of this chapter). The prevailing belief was  

that it surely follows from the straightness of lines that lines like n and m in Figure 10.10  

had to intersect, and so Euclid’s Fifth Postulate would turn out to be unnecessary. 

Figure 10.10 Surely these intersect! 

 During and since the Greek era, there have been attempts to derive the postulate 

from the rest of elementary geometry; attempts to reformulate the postulate or the definition 

of parallels into something less objectionable; and descriptions of what geometry would be 

like if the postulate was in some way denied. Part of these attempts was to study what 

geometric properties could be proved without using a parallel postulate, but with the other 

postulates (properties) of the plane. The results of these studies became known as absolute 

geometry. Both the plane and a hyperbolic plane are examples of absolute geometry. 

Included in absolute geometry are all the results about the plane and hyperbolic planes that 

we have discussed in Chapters 1, 3, 5, 6, 8, and 9 (except AAA, Problem 9.4). In general, 

absolute geometry includes everything that is true of both the plane and hyperbolic planes. 

 Claudius Ptolemy (Greek, 100–178) implicitly used what we now call Playfair’s 

Postulate (PP) to prove EFP. This is reported to us by Proclus (Greek, 410–485) [AT: 

Proclus], who explicitly states PP. 

 PP.  Two straight lines that intersect one another cannot be both parallel to the  

          same straight line. 

Or, in another common wording, 

 PP.  Given a straight line and a point not on the line, there is at most one straight 

  line through the point that does not intersect the given line. 

 Playfair’s Parallel Postulate got its current name from the Scottish mathematician 

John Playfair (1748–1819), who brought out successful editions of Euclid’s Elements in 

the years following 1795. After 1800 many commentators referred to Playfair’s postulate 

(PP) as the best statement of Euclid’s postulate, so it became a tradition in many geometry 

books to use PP instead of EFP. The reader can see easily that both PP and EFP assert the 

uniqueness of parallel lines and neither asserts the existence of parallel lines. HSP seems 

to have been first stated by Hilbert in the first edition of his Grundlagen der Geometrie 

(but not in the later editions, where he used PP) and in [EG: Hilbert]. But later, apparently 

 +  < two right angles 
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starting in the 1960s, many (but not all) textbooks (including first two editions of this 

book!) started calling HSP by the name “Playfair’s Postulate”. In absolute geometry HSP 

is equivalent to PP and EFP (as you showed in 10.3a), and because absolute geometry was 

the focus of many investigations, the statement “HSP is equivalent to EFP” was made and 

is still being repeated in many textbooks and expository writings about geometry even 

when the context is not absolute geometry. As you showed in 10.4a, EFP is true on spheres 

and so is PP, and so they cannot be equivalent to HSP, which is clearly false on the sphere. 

During the 9th through 12th centuries, parallel postulates were explored by mathematicians 

in the Islamic world. al-Hasan ibn al-Haytham (Persian, 965–1040) proved EFP by 

assuming, A quadrilateral with three right angles must have all right angles. Quadrilaterals 

with three right angles are known later in Western literature as Lambert quadrilaterals after 

Johann Lambert (German–Swiss, 1728–1777), who studied them and also was the first to 

extensively investigate hyperbolic trigonometric functions. The Persian poet and geometer 

Omar Khayyam (1048–1131) wrote a book that in translation is entitled Discussion of 

Difficulties in Euclid [AT: Khayyam 1958]. Khayyam introduces a new postulate (which 

he attributes to Aristotle, though it has not been found among the surviving works of 

Aristotle), which says Two straight lines that start to converge continue to converge. In his 

work on parallel lines he studied the Khayyam quadrilaterals (later in the West to be called 

Saccheri quadrilaterals), which are discussed here in Chapter 12. Nassir al-Din Al-Tusi 

(Khorasan, 1201–1274) furthered the study of parallel postulates and is credited (though 

some say it may have been his son) with first proving that A = 180 is equivalent to EFP, 

our 10.3bc. Al-Tusi’s works were the first Islamic mathematical works to be discovered in 

the Western Renaissance and were published in Rome in 1594. 

 The assumption parallel lines are equidistant (see our 10.2d) was discussed in 

various forms by Aristotle (Greek, 383–322 B.C.), Posidonius (Greek, 135–51 B.C.), Proclus, 

ibn Sina (Uzbek, 980–1037), Omar Khayyam, and Saccheri (Italian, 1667–1733). 

 John Wallis (English, 1616–1703) proved that EFP followed from the assumption 

To every triangle, there exists a similar triangle of arbitrary magnitude. (See our 9.4.) The 

works, already mentioned, of Wallis, Saccheri, Lambert in the 17th and 18th centuries were 

continued  by the French school into the early 19th century by Joseph Fourier (French, 1768–

1830), who concluded that geometry was a physical science and could not be established a 

priori, and Adrien-Marie Legendre (1752–1833), who proved that in absolute geometry the 

sum of the interior angles of a triangle is always less than or equal to 180. 

  The breakthrough in the study of parallel postulates came in the 19
th century when, 

apparently independently, János Bolyai (Hungarian, 1802–1860), and N. I. Lobachevsky 

(Russian, 1792–1856) finally developed hyperbolic geometry as an absolute geometry that 

did not satisfy EFP. See Chapters 5 and 17 for more discussions of hyperbolic geometry. 

These discoveries of hyperbolic geometry showed that the quest for a proof of EFP from 

within absolute geometry is impossible. 

 For details of the relevant histories, see [HI: Gray], [DG: McCleary], [HI: 

Rosenfeld], and the Heath’s editorial notes in [AT: Euclid, Elements]. 
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NON-EUCLIDEAN GEOMETRIES WITHIN THE  

HISTORICAL STRANDS 
 

Building Structures Strand. Because of this long history of investigation into parallel 

postulates within the Building Structures Strand, many books misleadingly call hyperbolic 

geometry “the non-Euclidean geometry.” As pointed out in the introduction to Chapter 2, 

spherical geometry has been studied since ancient times within the Navigation/Stargazing 

Strand, but it did not fit into absolute geometry and thus was (and still is) left out of many 

discussions of non-Euclidean geometry, especially those that take place in the context of 

the Building Structures Strand. In those discussions that do include spherical geometry, 

hyperbolic geometry is usually called Lobachevskian geometry or Lobachevskian/Bolyai 

geometry, and spherical geometry is usually called Riemannian geometry. Bernhard 

Riemann (German, 1826–1866) pioneered an intrinsic and analytic view for surfaces and 

space and suggested that the intrinsic geometry of the sphere could be thought of as a non-

Euclidean geometry. He also introduced an intrinsic analytic view of the sphere that 

became known as the Riemann sphere. The Riemann sphere is usually studied in a course 

on complex analysis. The use of the term “Riemannian geometry” to denote the non-

Euclidean geometry of the sphere leads to confusions since “Riemannian geometry” more 

commonly refers to the part of differential geometry that gives intrinsic analytic 

descriptions of the local geometry of general surfaces and 3-space. 

 Art/Pattern Strand. In this strand, artists’ experimentations with perspective in art 

led to the mathematical theory of projective geometry that developed initially 

independently of both spherical and hyperbolic geometries. Then in the last part of the 19th 

century, projective geometry was used to provide a unified treatment of the three 

geometries. It was within this development that Felix Klein introduced the names double 

elliptic geometry (for the geometry of the sphere), elliptic geometry (for the geometry of 

the sphere with antipodal points identified — this the same as the real projective plane, 

RP2, discussed in Problem 18.3), parabolic geometry (for Euclidean geometry), and 

hyperbolic geometry (for the Bolyai/Lobachevsky geometry). In Chapter 11, we will 

discuss Klein’s development of various geometries in terms of their isometries. A 

geometric connection between spherical and projective geometry can be seen in the image 

onto the plane of the sphere (with antipodal points identified) under gnomic projection. 

(See Problems 14.2 and 20.6.) 

 For a fuller discussion of spherical and hyperbolic geometry in this strand, see [HI: 

Kline], Chapter 38, and [HI: Katz], Section 17.3. 

 In Kline we also find a statement (page 913) that represented the view of some 

mathematicians: 

By the early 1870s several basic non-Euclidean geometries, the hyperbolic, and the two elliptic 

geometries, had been introduced and intensively studied. The fundamental question which had 

yet to be answered in order to make these geometries legitimate branches of mathematics was 

whether they were consistent. 

So for those, who believe that the only “legitimate” branches of mathematics are the ones  
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included in some rigorous formal system, non-Euclidean geometries did not became a part 

of mathematics until the late 1800s. 

 Navigation/Stargazing Strand. In the introduction to Chapter 2 we saw that 

spherical geometry has been studied within this strand for more than 2000 years, and in 

this study were developed (spherical) coordinate systems and trigonometric functions. We 

hope that the reader agrees that this was (and still is) legitimate mathematics. 

 For more readings (and references) on this history of spherical geometry within the 

Navigation/Stargazing Strand, see [HI: Katz], Chapter 4, and [HI: Rosenfeld], Chapter 1. 

Into the 19th century, spherical geometry occurred almost entirely in the 

Navigation/Stargazing Strand and was used by Brahe and Kepler in studying the motion of 

stars and planets and by navigators and surveyors. The popular book (which is also 

available online) Spherical Trigonometry: For the use of colleges and schools (1886) [SP: 

Todhunter] contains several discussions of the use of spherical geometry in surveying and 

was used in British schools before hyperbolic geometry was widely known in the British 

Isles. On the continent, C. F. Gauss (1777–1855) was using spherical geometry in various 

large-scale surveying projects before the advent of hyperbolic geometry. Within this 

context, Gauss initiated (and Riemann expanded) the analytic study of surfaces that led to 

what we now call differential geometry. Gauss introduced Gaussian curvature, which was 

discussed in Chapter 7. Within this theory of surfaces, spherical geometry is described 

locally as the geometry of surfaces with constant positive (Gaussian) curvature and 

hyperbolic geometry is described locally as the geometry of surfaces with constant negative 

curvature. As we discussed in Chapter 5, there are no analytic surfaces in 3-space with the 

complete hyperbolic geometry, but the pseudosphere (Problem 5.3) locally has hyperbolic 

geometry. Because of this, in the Navigation/Stargazing strand, hyperbolic geometry is 

called by some authors pseudosphere geometry. 

 

 




