
PART III 

SYMBOLIC NOTATION 

THE NOTATION AND ITS IMMEDIATE CONSEQUENCES, §§ 39-41 

39. Introduction. The conditions that the binary cubic 

(1) f=aoXi3 +3aiXi2X2+3d2XiX22+azX23 

shall be a perfect cube 

(2) (aiXi +a2X2)
3 

are found by eliminating a\ and e*2 between 

(3) ai3=ao, ai2a2 = di, a\a22 = (l2, a23=#3, 

and hence the conditions are 

(4) aoa2 = ai2
} a ia 3 =a 2

2 . 

Thus only a very special form (1) is a perfect cube. 

However, in a symbolic sense * any form (1) can be rep­
resented as a cube (2), in which a\ and 0:2 are now mere symbols 
such that 
(3') «i3, ai2a2, oLia.22, . 0:2s 

are given the interpretations (3), while any linear combination 
of these products, as 2ai3 — 7<*23, is interpreted to be the cor­
responding combination of the a's, as 2ao — 7#3. But no inter­
pretation is given to a polynomial in ai, <*2, any one of whose 
terms is a product of more than three factors a, or fewer than 
three factors a. Thus the first relation (4) does not now follow 
from (3), since the expression a^a^ (formerly equal to both 

* Due to Aronhold and Clebsch, but equivalent to the more complicated 
hyperdeterminants of Cayley. 
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aod2 and ai2) is now excluded from consideration; likewise 
for ai2a24 and the second relation (4). 

In brief, the general binary cubic (l) may be represented 
in the symbolic form (2) since the products (3') of the symbols 
ai , «2 are in effect independent quantities, in so far as we 
permit the use only of linear combinations of these products. 

But we shall of course have need of other than linear 
functions of ao, . . . , as. To be able to express them sym­
bolically, we represent / not merely by (2), but also in the 
symbolic forms 

(5) (01*l+ft2*2)3, (7l*l+72*2)3, • • . , 

so that 

(6) Pi3 = a0, 0i202 = ai, Pifo2 = a2, /32
3 = a3; T I 3 = ^O, . . . . 

Thus ao(i2 is represented by either a^pifc2 or /3i3aia22, while 
neither of them is identical with the representation ai2a2Pi2&2 
of a\2. Hence 

0002 - ai2 = U«i3PiP22+(3isa1a2
2 ~ 2ai2a2/3i2/?2) 

= %aip1(a1(32-a2l3i)2. 

We shall verify that this expression is a seminvariant of 

Xi=Xi+tX2, x2=X2, 

then/becomes F = ^4o^i3 + . . . , where 

Ao = aoJ Ai=ai+tao, A2 = a2+2tai+t2ao, 

A3 = a3+3ta2+3t2ai+t3ao. 
Hence, by (3), 

F = (a\Xi +C/2X2)3, ct2=CL2-\-tai. 

Similarly, the transform of (5i) is 

(PiX!+/3'2X2)*, |8 / 2=ft+/A. 

Hence we obtain the desired result 

A0A2-A1
2 = %a1l3i(a1l3'2-a'2i3i)2 

= ia i0i («i02 — a20i)2 = aoa2 — a\2. 
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40. General Notations. The binary n-ic 

f=aoXin+naiXin-lx2 + . . . + yf)aiXin-kx2
k + . . .+anx2

n 

is represented symbolically as ax
n = ftn = . . . , where 

CLx=(*lXl+a2X2, /3x = ^ lXl+ /3 2 X2, . • • , 

a i n = ao, ain~1a2 = ai, . . . , ain~ka2k = at, . . . , 

0L2n = an\ ftn = ao, . . . . 

A product involving fewer than n or more than n factors ai, 
o!2 is not employed except, of course, as a component of a 
product of n such factors. 

The general binary linear transformation is denoted by 

T: xi = ZiXi + rnX2, x2 = £2X1 + 773X2, (to) *0 

where (£77) = £1*72— £2*71. I t is an important principle of com­
putation, verified for a special case at the end of § 39, that 
T transforms ax

n into the nth power of the linear function 

(on £1 +012 £2)^1 + (aiT7i +a2r}2)X2 =ot^X\ +0:^X2, 

which is the transform of ax by T. Further, 

I ft ft I I PI ft I I £2 *?2 | 

where (a/3) = aifo — a2ft = — (/3a). Thus 

(^f t -a t ? f t ) - = (£77)-(a/3)-, 

so that (a($)n is an invariant of ax
n=px

n of index n. Since 
(/3a)n represents the same invariant, the invariant is identically 
zero if n is odd. 

EXERCISES 

1. (a/3)2 is the invariant 2(a0a2—#i2) of ax
2 = ^x

2. 

2. («/3)4 is the invariant 21 of a j 4 = /3:r4 (§ 31). 

3. (a/3)2 (/3T)2 ( T « ) 2 is the invariant 6 / of ax4=px*=yx* (§ 31). 

4. The Jacobian of ax
m and &x

n is 

L*. wi — 1 ^ m — \ I 
Wax ai Wax a2 ., N m — 1 *>—1 

„ - i » - i = m w a < 3 a * V - * . 
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5. The quotient of the Hessian of ax
n = px

n by n2(n—l)2 equals 

\ax
n " V ax

n - 2 a l Q J = |frn -2fc» (3x
n ~%fo\ 

one-half of the sum of which equals J ax
n~2px

n~2(a(3)2. 

6. ai ft 7i 

«2 ft 72 =(a0)7* + (07)a* + (7a)ftr = O. 

I «x ftc 7x I 

41. Evident Covariants. We obtain a covariant if of 

/ = «** = &» = . • • 

by taking a product of co factors of type ax and X factors of 
type (a/3), such that a occurs in exactly n factors, /3 in exactly 
n factors, etc. On the one hand, the product can be inter­
preted as a polynomial in a0, • • • , 0n, #i, oc2. On the other 
hand, the product is a covariant of index X of / , since, by 
(1), §40, 

(ABY(AC)s(BCy . . . A«BXCX . . . 

if X = r + s + ^ + - . . and 

AX = A1X1+A2X2, Ax=a^ A2=arp (AB)=A1B2-A2Bi, 

etc. The total degree of the right member in the as, jS's, . . . 
is 2\ + o) = nd, if d is the number of distinct pairs of symbols 
«i, a2; ]3i, fe; . • • in the product. Evidently d is the degree 
of if in ao, ai, . . . , and co is its order in #i, X2. 

Any linear combination of such products with the same 
co and X, and hence same d, is a covariant of order co, index 
X and degree d of / . 

EXERCISES 

1. (a0)(a7)a:r3frr47z4and (a/3)2(ay)ax
2px*y4

x areCOVariantSofax
5 = &r5= 7z5-

2. (ap)rax
n ~r $x

m ~ r is a covariant of c^n, /V*. 

3. If m=n, Pxn=ax
n and r is odd, the last covariant is identically zero. 

4. a0Xi2+2aiXiX2+a2X2
2 and 6o£i2+26i£i£2+te2 have the invariant 

(a(3)2 = a0b> — 2albi+a2b0. 



§ 42] SYMBOLIC NOTATION 67 

COVARIANTS AS FUNCTIONS OF TWO SYMBOLIC TYPES, §§ 42~45 

42. Any Covariant is a Polynomial in the ax, (a/5). This 
fundamental theorem, due to Clebsch, justifies the symbolic 
notation. It shows that any covariant can be expressed in 
a simple notation which reveals at sight the covariant property. 

While a similar result was accomplished by expressing 
covariants in terms of the roots (§36), manipulations with 
symmetric functions of the roots are usually far more complex 
than those with our symbolic expressions. 

The nature of the proof will be clearer if first made for 
a special case. The binary quadratic ax

2 has the invariant 

K = aod2 — ai2 

of index 2. Under transformation T of § 40, ax
2 becomes 

(aiXi+ariX2)
2=A0Xi2 + . . . , A0=a^2, Ai=a^arp A2=a2. 

Hence A0A2—Ai2 equals 

az2P2-a&avPv = (Zv)2K. 

We operate on each member twice with 

(i) F = _ ? ! &_t 

and prove that we get 6(a/3)2 = 12if, so that K is expressed 
in the desired symbolic form. We have 

(fr?) = iiii?2—few, 

7T-({i?)2 = 2({ , )&, - ^ ( ^ ) * = 2(*u)+2i,a*i, 
9r?2 OKI dm 

- 9 - ( ^ ) 2 = - 2 ( ^ ) a , ^ - ( { n ) 2 = - 2 ( { , ) + 2 i , i f e , 
ovi o&om 

since V(^ri) -2, by inspection. Next 

(2) Fafl8,= V(ai€i+«2fe)C8nn+|82i j2)=ai /92-a2 |5i = (al8). 



68 ALGEBKAIC INVARIANTS 

Hence 
Fa*2/3,2 = 4 a ^ ( a / 3 ) , F V ^ = 4(a?)2 , 

= jW«0)+«*0i(0«)> 

V2a^a^v = (/3a) (a/3) + (a?) (/3a) = - 2(a/3)2. 

The difference of the expressions involving V2 is 6(a/3)2. Hence 
if (l) operates twice on the equation preceding it, the result is 

6(a/3)2 = 12i£, K = i(a(3)2. 

43. Lemma. Vn(^)n = (n+l)(nl)2. 

We have proved this for n = 1 and n = 2. If w > 2, 

3*72 

^ - " ( f l ? ) W = » ( { l ? ) W " 1 + » ( » - l ) ( f l ? ) W - 2 l 7 2 f l . 

3fi3*?2 

Similarly, or by interchanging subscripts 1 and 2, we get 
^ - ( f i 7 ) w = -» (€ i7 ) n " 1 +»(» - l ) (^ ) n - 2 i 7 i f e . 
3523*71 

Subtracting, we get 

F(£iy)n = {2»+n(n- l )} ( f i ? ) w - 1 =n(»+l ) ({ i ? ) w - 1 . 

I t follows by induction that, if r is a positive integer, 

F r ( ^ ) n = = ( t t + l ) M t t - l ) . . . (n-r+2)\2(n-r + l)(Zr))n-r. 

The case r = n yields the Lemma. 

44. Lemma. If the operator V is applied r times to a product 
of k factors of the type a$ and I factors of the type fi^ there results 
a sum of terms each containing k—r factors a$, l—r factors j3„ 
and r factors (a/3). 

. The Lemma is a generalization of (2), § 42. To prove 
it, set 

A=afW2) • • • ««(*\ J3 = /3, (1W2) • • • Pn®. 
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Then 

Subtracting, we get 

VAB = I s (a^) )4)A. 
s = i 1 = 1 afs) I3v

{t) 

Hence the lemma is true when r = l. I t now follows at once 
by induction that 

(1) VrAB 

= 2X(aMpVi)) . . . (a(»)flfr)) , , A 7 -T o ( t , B «, 

where the first summation extends over all of the 
k(k — l) . . . (k — r + 1) permutations si, . . . , sr of 1, . . . , k 
taken r at a time, and the second summation extends over 
all of the 1(1—1) . . . (l—r+1) permutations t\, . . . , tr of 
1, . . . , / taken r a t a time. 

COROLLARY. The terms of (1) coincide in sets of r! and 
the number of formally distinct terms is 

k\ 11 l = (k\/l\ f 

(k-r)\ (l-r)\ r\ \r)\r)'r" 

For, we obtain the same product of determinantal factors 
if we rearrange si, . . . , sT and make the same rearrangement 
of h, . . . , tr. 

45. Proof of the Fundamental Theorem in § 42. Let K be 
a homogeneous covariant of order w and index X of the binary 
form / in § 40. By § 40, the general linear transformation 
replaces / = a x

n by 

I (f!)AtX1
n-*X2

k = (asXi +avX2)
n. 

Hence 

(1) Ak = a?-ha* 0 = 0,1,. . . ,» ) . 
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By the covariance of K, 

(2) K(A0, . . . , An; Xh X2) = (£T?)\K(OO, . . . , a„; xu x2). 

By (1) the left member equals 

in which the inner summation extends over various products 
AB, where A is a product of a constant and factors of type 
as, and B is a product of a constant and factors of type av. 
Let xi=y2j and #2=— yi. Then, by solving the equations 
of r , § 40, 

Hence the equation (2) becomes 

2 2 ( - l ) ^ ^ 7 7
w - ^ = ( f r 7 ) x + w i f . 

» = o 

Since the right member is of degree X+co in £i, £2, and of 
degree X + co in 771, 772, we infer that each term of the left mem­
ber involves exactly X + w factors with subscript £ and X+a> 
factors with subscript 77. 

Operate with F x + W on each member. By §43, the right 
member becomes cK, where c is a numerical constant j^O. 
By § 44, the left member becomes a sum of products each of 
X+w determinantal factors of which w are of type (ay) = ax, 
and hence X of type (a/3). The last is true also by the definiton 
of the index X of K. Hence K equals a polynomial in the 
symbols of the types ax, (a/3). 

To extend the proof to covariants of several binary forms 
a*w, 7xm, . . . , we employ, in addition to (l),Ct = y^n~ky1j

k
y . . . 

and read a^ y$, . . . for a$ in the above proof. 

FlNITENESS OF A FUNDAMENTAL SYSTEM OF COVARIANTS, 

§§ 46-51 

46. Remarks on the Problem. I t was shown in §§28-31 
that a binary form / of order < 5 has a finite fundamental 
system of rational integral covariants K\, . . . , Ks, such 
therefore that any rational integral covariant of / is a poly-
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nomial in Ki, . . . , Ks with numerical coefficients. We shall 
now prove a like theorem for the covariants of any system 
of binary forms of any orders. The first proof was that by 
Gordan; it was based upon the symbolic notation and gave 
the means of actually constructing a fundamental system. 
Cayley had earlier come to the conclusion that the fundamental 
system for a binary quintic is infinite, after making a false 
assumption on the independence of the syzygies between the 
covariants. The proof reproduced here is one of those by 
Hilbert; it is merely an existence proof, giving no clue as to 
the actual covariants in a fundamental system. 

47. Reduction of the Problem on Covariants to one on In­
variants. We shall prove that the set of all covariants of the 
binary forms / i , . . . , / * is identical with the set of forms 
derived from the invariants I oi fi, . . . , fk and l=xy' — x'y 
by replacing x' by x and y' by y in each / . It is here assumed 
(§15) that / is homogeneous in the coefficients of I and that 
the covariants are homogeneous in the variables. 

Let the coefficients of the / ' s be a, b, . . . , arranged in 
any sequence. Let A, B, . . .be the corresponding coefficients 
of the forms obtained by applying the transformation in § 5. 
The latter replaces / by £??'-£'??, where 

rj'=ay'-yx', £' = 8x'-0y'. 

Solving these, we get 

Ax'=a£'+Pri', Ay'=y?+ 5r)'. 

Let /(a, b, . . . ; #', y') be an invariant of / and the fs. 
Then 

1(4, B, . . . ; *W)=A x / ( a ,6 , . . . ; * ' , / ) • 

Since / is homogeneous, of order a>, in x', y', the right member 
equals 

Ax-"7(tf, & , . . . ; Ax', Ay'). 

Hence we have the identity in £;, rj': 

I(A, B, . . . ; £', r / )^A x - / (a , b} . . . ; af+jS,/, yf + dr,'). 
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Thus we may remove the accents on £', r[. Then, by our 
transformation, 

I(AyB, . . . ; f , i ? )=A x - / ( f l , f t , . . . ; s, y). 

Hence I(ay b, . . . ; x, y) is a covariant of / i , . . . , /* of order 
a) and index X —co. 

The argument can be reversed. Note that the sum of the 
order and the index of a covariant is its weight (§ 22) and hence 
is not negative. 

COROLLARY. A covariant of the binary form / has the 
annhilators in § 23. 

For, an invariant of/ and xy1—x'y has the annihilators 

y dxn dy' 

48. Hilbert's Theorem. Any set S of forms in x\, . . . , xn 

contains a finite number of forms Fi} . . . , Fk such that any form 
F of the set can be expressed as F=fiFi + . . .+ftFt, where 
fiy • • • > / * ore forms in Xi, . . . , xn, but not necessarily in 
the set S. 

For n = l, S is composed of certain forms c\xe\ C2Xe\ . . . . 
Let es be the least of the e's, and set Fi=csx

6s. Then each 
form in 5 is the product of F\ by a factor of the form cxe, e = 0. 
Thus the theorem holds when n — \. 

To proceed by induction, let the theorem hold for every 
set of forms in n — \ variables. To prove it for the system 
5, we may assume, without real loss of generality,* that 5 
contains a form Fo of total order r in which the coefficient 
of xn

r is not zero. Let F be any form of the set S. By division 
we have F = FoP+R, where R is a form whose order in xn 

* Let F be a form in 5 not identically zero and let the linear transformation 

Xi = Ciiyi+Ctay2+. . .+cinyn (* = ! , . . • , n) 

replace F(xh . . . , xn) by K(yi,. . . , yn)- In the latter the coefficient of the term 
involving only yn is obtained from F by setting x% = Cin and hence is F(cln, r2«, . . . , 
Cnn), which is not zero for suitably chosen c's (Weber's Algebra, vol. I, p. 457; 
second edition, p. 147). But our theorem will be true for S if proved true for 
the set of forms K. 
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is < r . In R we segregate the terms whose order in x» is exactly 
r — 1, and have 

F = FoP+Mxn
r-l+N, 

where M is a form in xi, . . . , x n _ b while iV is a form in 
Xi, . . . , xn whose order in xn is < r — 2. Each F uniquely deter­
mines an M. 

For the definite set of forms M in n — 1 variables the theorem 
is true by hypothesis. Hence there exists a finite number 
of the M's, say M\, . . . , Mt (derived from Fi , . ; . , Fj), 
such that any M can be expressed as 

M=fiMi + . . .+/,Jlf,, 

where t he / ' s are forms in #i, . . . , #n_i. Then 

F ^ F o P + i V + x / " 1 2 / ,M„ Xn'-'M^Ft-FoPi-Ni, 
x = l 

F = F0P'+ ZfiFi+R', P ' sP -2 / ,P« , R'^N-ZfiNt. 
t = i 

Each exponent of #„ in i£' is £ r —2. We segregate its terms 
in which this exponent is exactly r — 2 and have 

F = F0P'+ 2 / < F < +ATV- 2 +t f ,
J 

where M' is a form in xi, . . . , #n_i, and Nf a form in 
x\, . . . , xn whose order in xn is ^ r — 3. 

The theorem is applicable to the set of forms M', so that 
each is a linear combination of M\, . . . , M'm, corresponding 
to Fj+i, . . . , F i + m , say. As before, F differs from a linear 
combination of F0 , . . . , F*+ m by 

where M" is a form in xi, . . . , # n - i and iV" is a form whose 
order in xn is ^ r —4. Proceeding in this manner, we see that 
F differs from a linear combination of F0, . . . , Ft by a form 
2? in xi, . . . , xn-i. One more step leads to the theorem. 

49. Finiteness of a Fundamental System of Invariants. Con­
sider the set of all invariants of the binary forms / i , . . . , fd, 
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homogeneous in the coefficients of each form separately. By 
the preceding theorem, there is a finite number of these invariants 
/ i , . . . , Im in terms of which any one of the invariants / is 
expressible linearly: 
(1) / = £ i / i + . . .+EmIm, 

where Ej is not necessarily an invariant, but is a polynomial 
homogeneous in the coefficients of each /* separately. 

Let #1, 02, . . . be the coefficients in any order of/i , . . . , /d . 
Let Ai, A2, . . . be the coefficients in the same order of the 
forms obtained from them by applying a linear transformation 
of determinant (£77). We may write 

1(A) = ({n)x/(a), h(A) = (to)x>I*(o), Ej(A) =Gh 

where Gj is a function of the a's, £'s, T '̂S. From the identity 
(l) in the a's, we obtain an identity by replacing the #'s by the 
A's. Hence 

m 

({*)*/= 2 Gj(Srj)**Ih 

in which the arguments of the / ' s are 0's. Thus Gj is of order 
X — \j in £1, £2 and of order X —X> in 771, 772. Operate on each 
member by Vx. By § 43, the left member becomes 

(X + 1)(X!)*/. 

By the formula to be proved in § 50, the right member 
becomes 

m 

where the C's are numerical constants. Since Gj is of order 
P==\ — \J 1 0 in fi, £2 and of order *> in 771, 772, 

V +lGj = 0, P +2G, = 0, . . . , Fx£, = 0. 

Also Co, Ci, . . . , C„_i are zero since they multiply powers 
of (£77) whose exponents —v} —J>+1 , . . . , \j — \+i>—1= — 1 
are negative. Hence 

(X+l)(X!)2/= 2 / ^ F - G , . 
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The torm obtained from fi=ax
n by our linear transformation 

has the coefficients (1), §45. The polynomial Gj in these 
coefficients is therefore a sum of terms each a product of a 
constant by v factors of type a^ and v factors of type ar 

Hence, by § 44, VGj is a polynomial in the determinantal 
factors (a/3) and is consequently an invariant of the forms 
/,. Thus 

TO 

7 = 2 / , / ' , , 

where Vj is an invariant. Then, by (1), 
m TO 

k=l j , k = l 

By repeating the former process on this / , we get 
TO 

7= 2 l"jtTjh, 
j , k = l 

where the V are invariants of the forms ft. Since there is 
a reduction of degree at each step, we ultimately obtain an 
expression for / as a'polynomial in Zi, . . . , Im with numerical 
coefficients. 

50. Lemma. / / D= {1772— fei?i, and P is homogeneous (of 
order X) in £1, £2, and homogeneous (of order ») in 771, 772, then 

TO 

(1) VmDnP= 3>CrDn-m+rVrP, 
r = 0 

where Co, . . . , Cm are constants. 

First, we have 

F 7 ) P = P + , 2 | ^ + a | f + 7 ? - | 2 f -
OV2 3?1 OK10V2 

-(-P-^-vi^+D^-)={2+\+(i)P+DVP, 
\ 3?2 0̂ 71 ok20Vi/ 

by Euler's theorem for homogeneous functions (§24). If P 
is replaced by Dn~lP, so that X and /* are increased by n — 1, we 
get 

VDnP = (\+fx+2n)Dn~1P+DVDn-1P. 
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Using this as a recursion formula, we get 

VDnP=\n(\+fx)+n(n + l)}Dn-1P+DnVP, 

which reduces to the result in §43 if P = \, whence X = /x = 0. 
Hence (l) holds when m = l. To proceed by induction from 
m to m + 1, apply V to (l) . Thus 

m 

Vm+lDnP= 2 CrV(Dn-m+rVrP). 
r=0 

In the result for VDnP, replace n by n — tn+r and P by 
VrP, and therefore diminish X and ix by r. We get 

V(Dn~mJrrVrP) =t Dn~m^~r~1VrP-\-Dn~m^~rVr+1P 
where 

tr=(n— m+r)(\+/j.—r+n— m + 1). 

Hence, changing r+1 to r in the second summand, we get 

ro+1 
Fm+1Z>nP = s (G/ r+C r_ 1)Z> n-" l+ r- 1F rP, 

r=0 

with Cm + i = 0, C_i = 0. Thus (I) is true for every m. 

51. Finiteness of Syzygies. Let Ii, . . . , Im be a funda­
mental system of invariants of the binary forms / i , . . . , /d . 
Let 5(zi, . . . , zm) be a polynomial with numerical coefficients 
such that 5 ( / i , . . . , 7m),;when expressed as a function of the 
coefficients c of the fs, is identically zero in the c's. Then 
S(I) = 0 is a syzygy between the invariants. 

By means of a new variable £m+i, construct the homogeneous 
form S'(zi, . . . , Zm+i) corresponding to 5 . By §48, the 
forms 5 ' are expressible linearly in terms of a finite number 
S'i, . . . , S't of them. Take zm+i = l. Thus 

(1) S = G S i + . . .+C&, 

where Ci, . . . , Ct are polynomials in zi, . . . , zw. Take 
zi = / i , . . . , zm = Im> Hence there is a finite number of syzygies 
6*1=0, . . . , S* = 0, such that any syzygy 5 = 0 implies a 
relation (l) in which Ci, . . . , Ct are invariants. In particular, 
every syzygy is a consequence of Si = 0, . . . , St = 0. 
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52. Transvectants. Any two binary forms 

have the covariant 

(1) (/, ^ ^ ( a / i K * - ^ , 

called the rth transvectant (Ueberschiebung) of / and </>, and 
due to Cayley. I t is their product if r = 0, their Jacobian 
if r = l, and their Hessian if/=<£ and r = 2, provided numerical 
factors are ignored (Exs. 4, 5, § 40). 

I t may be obtained by differentiation and without the use 
of the symbolic notation. In fact, a special case of (1), § 44, is 

so that if / is of order k and <f> of order /, 

(2) (f(S), *(*)) r = ^ = ^ ^ % 7 ( € ) « ( i » ) l , - e -

After/( |x, €2) • </>(̂ 7i, 172) is operated on by Vr, we set 771 = £1, 

772 = £2. 

For example, let f(t)=afa 4>(s) = y£, P=a^y*. Then 

- 7 ^ — = 3 ( « J 8 I +«ii8>)7i,272, - 7 — = 3(a>/32 +a2/Sj7„27i. 
d£i9r?2 * * d&dvi c c 

The difference is VP. Taking 171= &, 772 = £2, we get 

3{^(/3i72 — 18271) +/^G*iY2-«27i)}Y£2. 

The numerical factor in (2) is here 1/6. Hence 

(3) (or^ . T €
3 ) l = J(l87)«€7{

2+J(«7)i8€7€
f. 

In general, consider the two forms 

f=afW2) • • • «t(k), * = ft(1W2) • • • ft®. 
Then by (l) , § 44, and the Corollary, and by (2), 

,« (f , > - i y («(1)g(1)) - • - (« ( r )g ( r ))/» 

where the summation extends over all the combinations of the 
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as r at a time, and over all the permutations of the 0's r at 
a time. Thus the number of terms in the sum is the reciprocal 
of the factor preceding 2. 

If the as are identified and also the p's, (4) becomes (1). If k = 2, 
/ = 3 , r = l , we have one-sixth of a sum of six terms; then if the p's are 
identified we have two sets of three equal terms and obtain (3). 

Since V is a differential operator, (2) gives 

(5) (sc/i, 2k,4>,y=ssax/i, *>. 

APOLARITY; RATIONAL CURVES, §§ 53-57 

53. Binary Forms Apolar to a Given Form. Two binary 
quadratic forms are called apolar if their lineo-linear invariant 
is zero; then they are harmonic (Ex. 3, § 11). In general, 
the binary forms 

f=ax
n= 2 (Vla&f-W, <t> = Pxn = 2 (n)biXin'-iX2\ 

i=o\i/ %=o\i/ 

of the same order, are called apolar if 

(i) M » = ( S o ( - i ) l ^ ^ n _ , - = o . 

In particular, / is apolar to itself if n is odd (Ex. 4, § 38). 

Let the actual linear factors of <t> be /5Z
(1), . . . , ftc(n). By 

(1), (4), § 52, 

(aj8)« = (o,», &<» . . . &<»>)» = (<tf(1)) • • • («£<»>). 

But /Sx
(r) vanishes if x\ and #2 equal respectively 

yi(r)=fe(r), y2
(r) = -|8i ( r ). 

Thus 
(o:/3(r)) =a i^ i ( r ) +o:2y2 ( r ) =ay(r). 

Hence if <f> vanishes for xi=yi(r\ #2=;y2(r) (r = l, • • • > #)> 
i/ is apolar to f if and only if 

a„(D a„(2) . . . a„(n)=0. 

Thus / is apolar to an actual nth power (y2#i—yi#2)n if 
and only if a„n = 0, i.e., if yi, y2 is a pair of values for which 
/=o. 
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If no two of the actual linear factors U of / are propor­
tional, / is apolar to n actual wth powers Un and these are readily 
seen to be linearly independent. Then their linear combinations 
give all the forms apolar t o / . For, i f / i s apolar to 0i, . • . , <t>n, 
it is apolar to &i0i + . . .+kn<t>n, where k\, . . . , kn are con­
stants, since, by (5), § 52, 

(/, *i*i + . • •+kn<t>n)n = kl(J, 0 i ) n + . . . + * . ( / , 0„)n = O. 

Moreover, / is not apolar to n + 1 linearly independent forms 

01, 02, . . . , 0n+l-

For, if so, we have w+1 equations like (1), in which the deter­
minant of the coefficients of ao, . . . , an is therefore zero. 
But this implies a linear relation between the 0's. / / / is the 
product of n distinct linear factors li} a form 0 can be repre­
sented as a linear combination of hn

} . . . , ln
n if and only if 

0 is apolar to / . In particular, if r and s are the distinct roots 
of f=ax2+2bx+c = 0, the only quadratics harmonic t o / are 
g(x—r)2+h(x—s)2. 

In case h, . . . , lr are identical, while li9£h(i>r), we may 
replace /in , . . . , lr

n in the above discussion by hn
} l\n~l\ . . . , 

/ i n ~ r + 1 \ r ~ 1 , where X is any linear function of X\ and X2 which 
is linearly independent of h. In fact, after a linear trans­
formation of variables, we may set h=X2, \ = x\. Then the 
above r forms have the factor X2n~r+1 and hence are of type 
0 with bt = 0(i ^n—r). Also, / now has the factor X2r, so 
that 0i = O(i<r). Hence every term of (l) is zero. 

For example, f=Xi2Xi(xi—x2)
2 is apolar to 

xi5, xi4x2; x2'°; (xi-x2)
5, (xl—x2)

ixl, 

which give five linearly independent quintics. 

In general, when there are multiple factors of./, the n 
forms apolar to / obtained above can be proved to be linearly 
independent. This fact is not presupposed in what follows. 

54. Binary Forms Apolar to Several Given Forms. From 
the list of the given forms we may drop any one linearly de-
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pendent on the others, since a form apolar to several forms is 
apolar to any linear combination of them. In the resulting 
linearly independent forms 

n /n\ 
Jr= 2 .)aiTXin-%X2i (f = 1, . . . ,-g), 

the g-rowed determinants in the rectangular array of the 
coefficients are not all zero. For, if so, there are solutions 
ki, . . . , kg, not all zero, of 

kiaii+k2ai2 + . . .+kgaig = 0 (i = 0, 1, . . . , w), 

which would give, contrary to hypothesis, the identity 

kifi+k2f2+. • .+V*=o. 

If boXin + . . . is apolar to each/ r , then 

^o(-l)Y^a^n_$- = 0 (r = l, . . . ,g). 

These determine g of the &'s as linear functions of the remaining 
J's, which are arbitrary. Hence there are exactly n+l—g 
linearly independent forms apolar to each of the g given 
linearly independent forms. 

In particular, apart from a constant factor, there is a 
single form apolar to each of n given linearly independent 
forms of order n. 

Consider three binary cubic forms 

/ i = ax
3 = 0o* i3+3ai#i2X2+3d2XiX22+azX23, 

J2 = ftr3 = &0*13 + %biXi2X2 +3&2X1X22 +63X2 3 , 

/ 3 = 7 x 3 =C 0 Xi 3 + 3CiXi2X2+3C2XiX2
2+C3X23 . 

Each is apolar to the cubic form 

(j> = (a/3) («Y) (Py)ax(3xyx. 

For, by (4), § 52, and the removal of a constant factor by (5), 

(*, 5X
3)3 = (a/3) (cry) (fr) (a5) (/35) (75), 

which is changed in sign if 5 is interchanged with a, /3, or 7, 
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and hence is zero if 5X
3 is one of the /*. Hence each /< is apolar 

to <f>. Now 
« 1 2 a.\CL2 « 2 2 

(aP)(ay)(py)= U 2 ftfc ft2 . 
I Ti2 7172 722 I 

In fact, the determinant vanishes if (a/3) = 0 as may be seen 
by setting fti=cai, 02 = £#2. Moreover, the two members are 
of total degree six and the diagonal term of the determinant 
equals the product of the first terms aife, etc., on the left. 

Since ai2ax=ai3xi+ai2a2X2 = aoXi+aiX2, etc., we find, by 
multiplying the members of the last equation by axpxyx, 

\aoXi+aiX2 aiXi+d2X2 #2^1+03^2 I 
<j> = \ boXi+biX2 biXi+b2X2 62^1+63^2 

I C0X1+C1X2 C1X1+C2X2 C2X1+C3X2 I 

= [012]xi3 + [013]xi2o;2 + [023]xiX22 + [123]x23, 
where 

I at dj at I 
[ijk] = \bt bj bt\. 

I Ci Cj Ct I 

If <j> is identically zero, the four three-rowed determinants 
in the rectangular array of the coefficients of / 1 , / 2 , fz are all 
zero, and the / ' s are linearly dependent. 

Apart from a constant factor, <f> is the unique form apolar 
to three linearly independent cubic forms / 1 , /2, /3-

The extension to n binary n-ics is readily made. 

55. Rational Plane Cubic Curves. The homogeneous coor­
dinates £, 77, f of a point on such a curve are cubic functions 
of a parameter /. We may take t = x\/x2 and write 

p£=fu py=f2, p f=/3 , 

where p is a factor of proportionality and the / ' s are the cubic 
forms in § 54. 

We may assume that t h e / ' s are linearly independent, since 
otherwise all of the points (£, 77, f) would lie on a straight 
line. 
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There is a unique cubic form <£ apolar to / i , fz, /3 (§ 54). 
This cubic form, denoted by <£ = <£/, is fundamental in the 
theory of the cubic curve. 

Three points determined by the pairs of parameters xi, xz; 
yij J'2j and Zi, Zo, are collinear if and only if 

(1) *r<M, = 0. 

For, if the three points lie on the straight line 

(2) Zf+mij+»r = 0, 

the three pairs of parameters are pairs of values for which 

(3) C(xi, x2)=lfi+mf2+nfz = 0. 

Since C is apolar to <j>, (1) follows from the first italicized theorem 
in § 53. Conversely, (1) implies that the cubic C which van­
ishes for the three pairs of parameters is apolar to <t> and hence 
(§ 53) is a linear combination o f / i , fz, fz, say (3); the corre­
sponding three points lie on the straight line (2). 

Since (2) meets the curve in three points the ratios x\/xz 
of whose parameters are the roots of (3), the curve is of the 
third order. 

We restrict attention to the case in which the actual linear 
factors ax, ($x, Jx of <f> are distinct. Since any cubic apolar 
to 0 is a linear combination of their cubes (§53), 

fi = Cn<x*3+c,2Pz3+CiayJ* (i = l, 2, 3). 

Since the determinant | cy | is not zero, suitable linear com­
binations of t he / ' s give ax

3, ftt3, yx
3. Hence by a linear trans­

formation on £, r;, f (i. e., by choice of a new triangle of ref­
erence), we may take * 

p£=ax
3, Pi?=&3, Pf = 7x3. 

The line £ = 0 is an inflexion tangent, likewise rj = 0 and 
f = 0. In addition to the resulting three inflexion points, 
there are no others. For, at an inflexion point three consecutive 
points are collinear, so that (1) gives <t> = <t>x3 = 0. In the present 

* We now have the formulas in the second part of § 54, where now ax
z is the 

actual, not a symbolic, expression of/i, etc. 
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case there are therefore exactly three inflexion points and they 
are collinear. 

56. Any Rational Plane Cubic Curve has a Double Point. 
Let Px denote the point (£, rj, f) determined by the pair of 
parameters x\, #2. If the ratios X1/X2 and yi/y2 are distinct 
and yet Px coincides with Py, then Px is a double point. For, 
any straight line (2), § 55, through Px meets the curve in 
only the three points whose pairs of parameters satisfy the 
cubic equation (3), and since two of these pairs give the same 
point Px, the line meets the curve in a single further point. 
Hence there is a double point Px = Py if and only if there are 
two distinct ratios x\/x2 and )'i/>'2 such that (l) holds identically 
in zi, 22. 

Let Q be the quadratic form which vanishes for the pairs 
of parameters xi, X2 and yi, y2 giving a double point. By (1), 
and the first theorem in § 53, Q is apolar to 4>x

24>t for z\, z2 

arbitrary. Write <£'x
3 as a symbolic notation for <£, alter­

native to <t>x
3. Applying the argument made in § 54 for three 

cubics to two quadratics, we see that the unique quadratic 
(apart from a constant factor) which is apolar to both </>x

20a 

and <t>'x2<t>'u> is their Jacobian 

J = \<t><t> ) #X</> X ' <S>Z<S> W* 

Since # and <f>' are equivalent symbols, their interchange must 
leave / unaltered. Hence 

J = 2(</></> )<t>x<t> x}02</> u>— <t> z<t>w\-

The quantity in brackets equals {<t>4>r)(zw) by (l), §40. Dis­
carding the constant factor |(zw), we may take 

Q = {<j><t>f)Hx4>,
x 

as the desired quadratic form. This is the Hessian of </>. 
Conversely, the pairs of values for which Q vanishes are the 
pairs of parameters of the unique double point of the curve. 

57. Rational Space Quartic Curve. Such a curve is given 
by 

p£=<*x4, PV=Px4j Pf = 7x4, pC0=5a;4, 
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where the four binary quartics are linearly independent. By 
§ 54, there is a unique quartic <t> apolar to each of the four. 
As in § 55, four points PXJ PV) P2) Pw on the curve are coplanar 
if and only if 

<t>X<t>V<t>Z<t>W = 0 . 

Thus 0 = 0 gives the four points at which the osculating plane 
meets the curve in four consecutive points. I t may be shown 
that the values x\(x\ #2(r) for which the Hessian of </> vanishes 
give the four points Pxd) on the curve the tangents at which 
meet the curve again. 

FUNDAMENTAL SYSTEMS OF CO VARIANTS OF BINARY FORMS 

§§ 58-63 

58. Linear Forms. A linear form ax is its own symbolic 
representation. If ax = fix, then (a/3)=0. Hence the only 
covariants of ax are products of its powers by constants. A 
fundamental system of covariants of n linear forms is evidently 
given by the forms and the \n(n — l) invariants of type (a/3), 
where ax and fix are two of the forms. 

59. Quadratic Form. A covariant K of a single quadratic 

may have no factor of type (a/3) and then it is 

or may have the factor (a/3) and hence the further factor (a/3), 
(ay) (fid), (ay)fix, or axfix, including the possibility 3 = y. In 
the first case, K = (afi)2K\J where K\ is a covariant to which 
the same argument may be applied. Now (ay)=ay if yi=y-2, 
y2=—yi. Hence in the last three cases, K has a factor of 
the type 

d = (afi)ayfiz, 

where ay is either ax or a new mode of writing (ay), and similarly 
fig is either fix or a new mode of writing (fid). 

Interchanging the equivalent symbols a and fi, we get 

0 = (fia)fiya2 = l2(afi)(ay82-(3yaz) =%(afi)2(yz), 
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by (1), § 40. We are thus led to the first case. Hence the 
fundamental system of covariants of / is composed of / and 
its discriminant. 

EXERCISES 

1. The fundamental system for f=ax
2=bx

2 and l=ax=px is / , /, (ab)2, 
{aa)2, {aa)ax. 

2. The fundamental system for j=ax
2 = bx

2 and <f> = ax
2 = px

2 is / , <f>, 
(ab)2, (a(3)2, {aa)2, (aa)ax«x. Hint: 

(aa) {a&atfy = (act) 2Wz ~ £ (a/8) 20y0#, 

as proved by multiplying together the identities (Ex. 6, § 40) 

(ap)av = (a0)ay-(aa)0y, (ap)az=(ap)at-(aa)pt} 

and noting that a and p are equivalent symbols. 

60. Theorems on Transvectants. In the expression (4), 
§ 52, for a transvectant, each sumraand taken without the 
prefixed numerical factor is called a term of the transvectant. 
In the first transvectant (3), § 52, the difference of the two 
terms is 

by Ex. 6, § 40, and is the negative of the 0th transvectant 
(viz., product) of (ap) and yf. The act of removing a factor 
a$ and a factor & from a product and multiplying by the 
factor (a&) is called a convolution (Fdiking). We have therefore 
an illustration of the following 

LEMMA. The difference between any two terms of a trans­
vectant equals a sum of terms each a term of a lower transvectant 
of forms obtained by convolution* from the two given forms. 

Consider the rth transvectant of 

j=Pa^ . . . a^, 4> = QPt{1) • • • ft®, 

where P and Q are products of determinantal factors. Then 
PQ is a factor of each term of the transvectant. Any two 
terms T and Tf differ only as to the arrangements of the as 
and the 0's. Hence Tf can be derived from T by a permuta-

* Including the case of no convolution, as 7|3 from itself, in the above example. 
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tion on the as and one on the j8's, and hence by successive 
interchanges of two a's and successive interchanges of two 
/3's. Any such interchange is said to replace a term by an 
adjacent term. For example, the two terms of (3), § 52, 
are adjacent, each being derived from the other by the inter­
change of a with p. Between T and V we may therefore 
insert terms Ti, . . . , Tn such that any term of the series 
T, Ti9 T2, . . . , Tn, V is adjacent to the one on either side 
of it. Since 

r-r=(r-ri)+(ri-r2)+. . .+(rn_!-rn)+(rn-r), 
it suffices to prove the lemma for adjacent terms. 

The interchange of two as or two /3's affects just two factors 
of a term of (4), § 52. The types of adjacent terms are * 

c(«'0O(«"0"), cwnW't?); 
C ( « W t , C(«'0")i8't; 

where $' and 0" were interchanged. The difference of the 
last two terms is seen to equal C(fi"p')a\ by the usual identity. 
The latter is evidently a term of the (r — l)th transvectant 
of / and (/3"/3')*/{0"e0't}> which is obtained from <f> by one 
convolution. 

The difference of the first two adjacent terms equals 
C(a'a")(p'P"), since 

I / ft af a" I 
\CL\OL 1 (I 1 ft 1 

(«vo(m-(«w(«'r)+(«'n^^^ 
/ ff of oft \a2a 2 P 2 P 2 I 

as shown by Laplace's development. The same relation 
follows also from the identity just used by taking £1=— ar/2, 
fe=a"i. The resulting difference is a term of the (r —2)th 
transvectant of 

which are derived from / and 0 by a convolution. 

* A pair C(a'P')a"s, C(a"/3,)a,{, obtained by interchanging ot and a", is 
essentially of the second type. 

file:///CL/OL
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The Lemma leads to a more important result. By the 
proof leading to (4), § 52, the coefficient of each term of a 
transvectant is 1/2V, if N is the number of terms. Just as 
S = %(Ti + T2) implies S-Ti=%(T2-Ti), so 

s=h{Tl+- - ,+TN) 

implies 
S-Ti=h(T2-Ti) + . . . + (Tn-Ti)}. 

Hence the difference between a transvectant and any one of its 
terms equal a sum of terms each a term of a lower transvectant 
of forms obtained by convolution from the two given forms. 

Each term of a lower transvectant may be expressed, by 
the same theorem, as the sum of that transvectant and terms 
of still lower transvectants, etc. Finally, when we reach a 
0th transvectant, i.e., the product of the two forms, the only 
term is that product. Hence we have the fundamental 

THEOREM. The difference between any transvectant and 
any one of its terms is a linear function of lower transvectants 
of forms obtained by convolution from the two given forms. 

For example, from (3), § 52, and the result preceding the 
Lemma, we have 

and (af£) is derived from a$z by one convolution. 

61. Irreducible Covariants of Degree m Found by Induction. 
Let 

f = ax
n = $x

n = . . .=\x
n 

be the binary n-ic whose fundamental system of covariants 
is desired. Since a term with the factor (a/3) is of degree at 
least two in the coefficients of / , the only covariants of degree 
unity are kf, where k is a numerical constant. We shall say 
that / is the only irreducible covariant of degree unity, and 
tha t / , Ki, . . . , Ks form a complete set of irreducible covariants 
of degrees <m if every covariant of degree <m is a poly-
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nomial in / , . . . , Ks with numerical coefficients. Given the 
latter, we seek the irreducible covariants of degree m. 

A covariant of degree m is a polynomial in the (afi) and 
the ax such that each term contains m letters a, 0, 7, . . . . 
Let Tm be one of the terms with its numerical factor suppressed. 
Let a, Q, . . . , K, X be the m letters occurring in Tmy so that 

Tm = P(a\)a(p\)h . . . (*X)V (<* + & + • • . + * + / = »), 

where P involves only a, 0, . . . , K. Then 

Tm^=Pax^ . . . I** 

is a covariant of degree m—1. Evidently Tm is a term of 

( r m _ i , X,n)' (r = » - 0 , 

since it is obtained by r = a+& + . . .+k convolutions from 
Tm-i\x

n- By the final theorem in § 60, 

Tm={Tm.ljy+ri\j(Tm.ljy1 

where the Cj are numerical constants, and each Tm_i is derived 
from Tm-\ by convolutions and hence is a covariant of degree 
jn—1. But the covariant of degree m was a linear function 
of the various Tm. Hence every covariant of degree m of f is 
a linear function of transvectants (Cm_i , / )* of covariants Cm-i 
of order m — \ with f. Such a transvectant is zero if k>n, 
in view of the order of / . Moreover, it suffices by (5), § 52, 
to employ the Cm_i which are products of powers of / , K\, . . . , 
Ks. Hence the covariants of degree m are linear functions of 
a finite number of transvectants. 
, In the examination of these transvectants (COT_b f)k

} we 
first consider those with k = l, then those with k = 2, etc. We 
may discard any (Cm-\,fY for which Cm-\ has a factor, <f>, of 
order =k, which is a product of powers of f, Ki, . . . , Ks, and 
of degree <m — 1. For, if T i s a term of (<£,/)fc, and if Cm _i = <?(/>, 
then T is obtained by k convolutions of <£/", and qT by the same 
k convolutions of q<j>f, not affecting q. Hence qT is a term of 
(q<t>,f)k* Hence 

iCm^fY = qT+^q(Cm^jy. 
3=0 
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But the terms of the last sum have by hypothesis been con­
sidered previously, while the covariants q and T are of degree * 
<m and hence are expressible in terms of/, K\, . . . , Ks. 

62. Binary Cubic Form. The only irreducible covariant of 
degree one of 

was shown to be / . The only covariants of degree two are 

(afiW-rpf-r (r = 0 , 1 ,2,3) . 

This vanishes identically if /• is odd. If r = 0, we have / 2 , 
which is reducible. Hence the only irreducible covariant of 
degree two is 

(aj8)2ax& = (/, f)2 = Hessian H of / . 

To find the irreducible covariants of degree tn = 3, we 
have Cm-i = H or /2 . In the second case, Cm_i has the factor 
f of degree <m —1 and order 3^k (since we cannot remove 
by convolution more than three factors from the second function 
f in the transvectant). Hence we may discard C m _ i= / 2 . I t 
remains to consider (H,f)k, & = 1, 2. Now 

(H, J) = (<xp)2(ay)pxyx
2 = Jacobian / of H a n d / 

is irreducible, being of order and degree three and hence not 
a polynomial in / and H. Next, 

(H, f)2 = (aP)2{ay) (187)7. = P(<*0)yx, P = (aj3) (ay) (fly). 

Interchanging a with 7, we get P(py)ax. Interchanging ft 
with 7, we get P(ya)f3x. Hence 

(ff,/)2=iP{(a/3)7x + (j87)«* + (7«)fe}=0. 

The irreducible covariants of degree three or less are therefore 
/ , H, J. 

To find those of degree w = 4, we have C w _ i = / 3 , fH, J, 

* This is evident for the factor q of Cm-\. Since $ is of degree <m—1, the 
term T of (</>, f)k involves fewer than m—1+1 symbols a, £,. . . , and hence is 
of degree < m. 
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of which the first two may be discarded as before. I t remains 
to consider ( / , / )* , for £ = 1,2, 3. By § 52, 

( 7 , / ) = (a/3)2(a7)(&7,2, &3) 

= M 2 ( a 7 ) {KfidhSBS + i {y8)pxyx8
2}. 

Replacing (f$8)yx by (y8)/3x + ((3y)8x, and noting that 

(ap)*(ay) (/3y)yx8X* = (H, / )2 • /" = 0, 
we get 

( 7 , / ) = M 2 ( a 7 ) ( 7 5 ) & T , 5 , 2 . 

Interchange 7 and 8. Hence 

(S, f ) =h("P¥(y6)pxyx6x{(«y) 8x + (^)yx\. 

The quantity in brackets equals — (y8)ax. Hence 

( / , / ) = -h(pc0)Ky8¥axpxyx8x= -\E2. 

Denoting 77 by hx
2 = h'2x, we have 

J=(kx
2,ax*) = (ka)kxax

2, f = 0*, 

(J, f)2 = (ha) (A/5) (aP)axt3x+c((ka)2ax, f ) , 

by the theorem in § 60. Here 7 = (Aa)2a* = (# , / )2 = 0. Since 
the first term is changed in sign when a and f$ are interchanged, 
we have ( / , / ) 2 = 0. 

For the third case, 

( / , / ) * = ( M ) 2 M & 7 * 2 , *,8)8 = (aP)2(ay)(p8)(y8)2 =D, 

an invariant, evidently equal to (77, 77)2, the discriminant 
of J?. Thus 7) is the discriminant of / (§§8, 30) and is not 
identically zero. Hence D is the only irreducible covariant 
of degree four. 

We can now prove by induction that / , 77, / and D form 
a complete set of irreducible covariants of degree ^ m > 5. Let 
this be true for covariants Cm-\ of degree = m — 1. We may 
discard (Cm-i, f)k if Cm-i has the factor / or / , each of which 
is of order 3 ^k and of degree (1 or 3) less than m — 1; and 
evidently also if it has the factor D. Hence Cm-i=He, e^2. 
If k = 2, it has the factor 77 of order 2 ^ k and degree 2 < m — 1. 
I t remains to consider (77*, / ) 3 . If e > 2 , He has the factor 
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H2 of order 4 ^ 3 and degree 4 < w — 1 , since He is of degree 
^ 6. Finally, 

(H2J)* = {hx
2h'2x, a*y = (ha)2{tia)tix=={ti2

x, (hcc)2ax)=0. 

Hence / , H, J, D form a fundamental system of covariants 
(cf. §30). 

63. Higher Binary Forms. The concepts introduced by 
Gordan in his proof of the finiteness of the fundamental system 
of covariants of the binary p-ic enabled him to find * the 
system of 23 forms for the quintic, the system of 26 forms for 
the sextic, as well as to obtain in a few lines the system for 
the cubic (§62) and the quartic (§31). Fundamental sys­
tems for the binary forms of orders 7 and 8 have been deter­
mined by von Gall.f 

Gordan's method yields a set of covariants in terms of 
which all of the covariants are expressible rationally and 
integrally, but does not show that a smaller set would not 
serve similarly. The method is supplemented by Cayley's 
theory J of generating functions, which gives a lower limit 
to the number of covariants in a fundamental system. 

64. Hermite's Law of Reciprocity. This law (§ 27) can be 
made self-evident by use of the symbolic notation. Let the 
form 

4>=Q!sP = /3 / = . . .=OoO*;i-piX2)(#l-p2#2) • • • (*1~ Pv%2) 

have a covariant of degree d, 

K = aodX{pi-p2y(pi-ps)j(p2-pd)k . . . (xi-Plx2)
h . . . (xi-ppx2)

lt>, 

so that each of the roots pi, . . . , pp occurs exactly d times 
in each product. Consider the binary d-ic 

f = ax
d = bx

d = . . .=Co(xi-rix2) . . . (xi~rdx2) . 

* Gordan, Invariantentheorie, vol. 2 (1887), p. 236, p. 275. Cf. Grace and 
Young, Algebra of Invariants, 1903, p. 122, p. 128, p. 150. 

t Mathematische Annalen, vol. 17 (1880), vol. 31 (1888). 
J For an introduction to it, see Elliott, Algebra of Quantics, 1895, p. 165, p . 

247. 
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To the various powers, whose product is any one term of K, 

(PI —P2)S (pi-/>3) ;, (p2-pz)k, . . . , 

(xi-Pix2)
l\ (xi-P2x2)

h, . . . , 

we make correspond the symbolic factors 

(aft)*, (ac)'', {bc)\ . . . , ax\ bx\ . . . 

of the corresponding covariant of/: 

C = (ab)\ac)j(bc)* . . . ax
l%hx

h 

of degree /> (since there are p symbols a, b, c, . . ., cor­
responding to pi, . . . , pp) and having the same order 
/1+/2+/3 + . • • as K. Conversely, C determines K. 

EXAMPLES 

Let p = 2. To K=aQ
2s(Pl — p2)2s corresponds the invariant C= (ab)2s 

of degree 2 of f=ax
2s = bx

2s. Again, to the covariant Ktf of 0 corresponds 
the covariant (ab)2s ajbj of the form ax

2sJrt = bx
2s+t. 

CONCOMITANTS OF TERNARY FORMS IN SYMBOLIC NOTATION, 

§§ 65-67 

65. Ternary Form in Symbolic Notation. The general 
ternary form is 

ill 
/ = 2 — — - arstXirx2

8X3t
) 

r Is It I 

where the summation extends over all sets of integers r, s} t, 
each = 0,. for which r+s+t = n. 

We represent / symbolically by 

J = ax
n = l3x

n . . . , ax = aiXi+a2X2+a3X3, . . . . 

Only polynomials in ai, a2) az of total degree n have an inter­
pretation and 

aira2a3t = arst* 

Just as aiP2—a2Pi was denoted by (a/5) in §39, we now 
write 

Oil Ot2 # 3 

(aPy) = \pi 02 ft. 
I 71 72 73 I 
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Under any ternary linear transformation 

T: xt= ZtXi + ViX2 + tiX3 (7 = 1, 2, 3) 

ax becomes a^Xi+anX2+^X3J a n d / becomes 

ft ^ 
2 t t t̂ 4 rstXTiXS2Xt3 = (OL$XI +0^X2 +a^Xs) . 

Thus ax behaves like a covariant of index zero of / . Also 

Arst=a{a1]
sa$t) 

j aS av aZ I 
ft 0, ft =(a07)(*i?r), 

I 7* TT, 7f I 

so that (a/fy) behaves like an invariant of index unity of/. 

EXERCISES 

1. The discriminant of a ternary quadratic form ax
2 is £ (a/37)2. 

2. The Jacobian of a / f3x
m, yx

n is to (aPy)ax
l ~lpx

m ~lyx
n - 1 . 

3. The Hessian of ax
n is the product of {aPy)2ax

n~2{3x
n~2yx

n~2 by a 
constant. 

4. A ternary cubic form ax
3 = @x

s = . . . has the invariants 

(a/87) (a/8 5) ( a 7 5) (j87 5), (a(3y) (a/8 5) ( a 7 «) O?Y0) ( 5 €0) 2 . 

66. Concomitants of Ternary Forms. If u\, U2} u$ are 
constants, 

ux = u\X\ +U2X2+U3X3 = 0 

represents a straight line in the point-coordinates xi, X2, X3. 
Since u±9 U2, 113 determine this line, they are called its line-
coordinates. If we give fixed values to xi, X2, X3 and let the 
line-coordinates m, U2, m take all sets of values for which 
ux = 0, we obtain an infinite set of straight lines through the 
point (#1, X2, X3). Thus, for fixed x's, ux = Q is the equation 
of the point (#1, X2, xs) in line-coordinates. 

Under the linear transformation T, of § 65, whose deter­
minant (£i?f) is not zero, the line ux = 0 is replaced by 

Ux = UiXi + U2X2 + U3X3 = 0, 
in which 3 3 3 

U\= 2 frUi, U2= 2 rjitli, Z73 = 2 £iUi. 
» = 1 t = l t = l 
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The equations obtained by solving these define a linear trans­
formation T\ which expresses ui, U2, m as linear functions 
of Z7i, U29 U3 and which is uniquely determined * by the 
transformation T. Two sets of variables xi, X2, #3 and ui, U2, uz, 
transformed in this manner, are called contragredient. 

A polynomial P(c, x, u) in the two sets of contragredient 
variables and the coefficients c of certain forms fi(xi, X2, #3) 
is called a mixed concomitant of index X of the fs if, for every 
linear transformation T of determinant A^O on xi, X2, x% and 
the above defined transformation T± on ui, U2, us, the product 
of P(c, x, u) by Ax equals the same polynomial P(C, X, U) 
in the new variables and coefficients C of the forms derived 
from the / ' s by the first transformation. For example, ux is 
a concomitant of index zero of any set of forms. 

In particular, if P does not involve the u9s, it is a covariant 
(or invariant) of the / ' s . If it involves the w's, but not the 
x's, it is called a contravariant of the / ' s . 

Since Ui=u^ U2 = uv, U3=u^y we see by the last formula 
in § 65, with 7 replaced by u, that (aflu) behaves like a contra-
variant of index unity of ax

n, and also like one of ax
n, (3x

m. 

For the linear forms ax and px, (a$u) has an actual interpretation. 
F o r / = a x

2 = /V, where 

/ = #200*12 + #020*22 + #002*3 2 + 2 a i l 0 £ l * 2 + 2 0 i 01*1*3 + 2#011*2*3, 

it may be shown that 

^200 #110 0101 Ul 

#110 #020 #011 1h \ , 
= (<x/3«)2. 

#101 #011 #002 1H 

I Ml U2 Uz 0 I 

By equating to zero this determinant (the bordered discriminant of 
/ ) , we obtain the line equation of the conic / = 0. 

67. Theorem. Every concomitant of a system of ternary forms 
is a polynomial in ux and expressions of the types ax,(al3y), (a/3u). 

* We have only to interchange the rows and columns in the matrix of T and 
then take the inverse of the new matrix to obtain the matrix of the transforma­
tion Ti. Similarly, xu fy are contragredient with uu u2) if we have J , § 40, and 
«i=(%tfi-&tf2)/(fc7), U2=(-r]1Ul+^U2)/{^). 
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A concomitant of the forms ]i(x\7 #2, #3) is evidently a 
covariant of the enlarged system of forms /< and ux. We may 
therefore restrict attention to covariants. In the proof of the 
corresponding theorem for binary forms, we used the operator 
(1), § 42. Here we employ an operator V composed of six terms 
each a partial differentiation of the third order: 

|_3_ _3_ _3_| 
afi a& 9& 

vA— — 9 - 93 

3771 3̂ 72 3173 3£i3?723f3 

LA _1_ JL 
|3fi 9f2 Sfsl 

the determinant being symbolic. I t may be shown as in 
§ 43 that 

V(tofin = n(n+l)(n+2)(W)»-1. 

As in § 44, the result of applying Vr to a product of k factors 
of the type a^ I factors of the type 0,, and m factors of the 
type 7 f, is a sum of terms each containing k—r factors a$, 
Z—r factors £,, m —r factors 7$-, and r factors of the type (afiy). 

For the case of an invariant / , the theorem can be proved 
without a device. In the notations of § 65, we have 

I{A) = (wyi(a). 
Each A is a product of factors a$, av, a$. Hence 1(A) equals 
a sum of terms each with X factors of the type a$, X of type 
av, and X of type «f. Operate on each member of the equation 
with F \ The left member becomes a sum of terms each a 
product of a constant and factors of type (a(3y). The right 
member becomes the product of 1(a) by a number not zero. 
Hence / equals a polynomial in the (afiy). 

For a covariant K, we have, by definition, 

K(A,X) = (W)*K(a,x). 

Solving the equations of our transformation T in § 65, 
we get 

(^V^)Xl=Xi(rj2^3 — Vst2)+X2(v3^l — Vl^s)+X3(r]i^2 — V2^l), 
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etc. Replacing x\ by 3̂ 223 — ̂ 3-2, x2 by y^zi — yizz, and X3 by 
yi%2—y2%i, we get 

(tvOXi^y^-yrZ,, 

{^)X2=y^-yiz^ 

(iinS)Xz=y&n-yfo. 
Our relation for a covariant K of order co now becomes 

^(product of factors a$, y^ z^ a^ . . . , %) = (^rj^^^K^a, x)J 

each term on the left having X+co factors with the subscript f, 
etc. Apply the operator F to the left member. We obtain 
a sum of terms with one determinantal factor (a/37), (afty) or 
(ayz)=ax, and with X+co —1 factors with the subscript £, etc. 
The result may be modified so that the undesired factor (aPy) 
shall not occur. For, it must have arisen by applying V to 
a term with a factor like a$vyt and hence (by the formulas 
for the Xi) with a further factor zv or z$. Consider therefore 
the term Ca$r{y$zn in the initial result. Then the term 
— Ca$r,yr,zz must occur. By operating on these with V} 

we get C(aPy)zv, — C{otPz)yriJ respectively, whose sum equals 

C{ (Pyz)av - (ayz)(3v} = C(pxav-axPv), 

as shown by expanding, according to the elements of the last 
row, 

ai /3i yi Z\ 

\(X2 @2 y2 Z2 

« 3 Pz y% %3 

The modified result is therefore a sum of terms each with 
one factor of type (a/37) or ax and with X+co —1 factors with 
subscript £, etc. 

Applying V in succession X+co times and modifying the 
result at each step as before, we obtain as a new left member 
a sum of terms each with X+co factors of the types (a/37) and 
ax only. From the right member we obtain nK, where n is 
a number F^O. Hence the theorem is proved. 
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68. Quaternary Forms. For ax=aiXi+. . .+0:4X4, 

— OLx —px — Yx — °x 

has the determinant (afiyd) of order 4 as a symbolic invariant 
of index unity. Any invariant of / can be expressed as a 
polynomial in such determinantal factors; any covariant as 
a polynomial in them and factors of type ax. In the equation 
ux = 0 of a plane, u±, . . . , u± are called plane-coordinates. 
The mixed concomitants defined as in § 66 are expressible 
in terms of ux and factors like aX) (apy d), (apyu). For geometrical 
reasons, we extend that definition of mixed concomitants to 
polynomials P(c, x, u, v), where vi,. . . , v± as well as ui,. . . , u± 
are contragredient to xi, . . . , #4. There may now occur 
the additional type of factor 

(aPuv) = (aijfo -OC2P1) (^3^4-U&z) + . . . + (a3jft4 -^4/33) (^i^2 -U2V1). 

These six combinations of the u9s and fl's are called the line-
coordinates of the intersection of the planes ux = 0, vx = 0. For 
instance, (apuv)2 = 0 is the condition that this line of inter­
section shall touch the quadric surface ax

2 = 0. 
We have not considered concomitants involving also a 

third set of variables w\, . . . , w*, contragredient with the x's. 
For, in 

U\X\+. . .+W4#4 = 0, fll#l+. . .+fl4£4 = 0, 

W1X1+. . .+W4#4 = 0, 

xi, . . . , £4 are proportional to the three-rowed determinants 
of the matrix of coefficients, so that (auvw) is essentially a*. 




